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ABSTRACT
We derive bounds for the objective errors and gradient residuals
when finding approximations to the solution of common regular-
ized quadratic optimization problems within evolving Krylov spaces.
These provide upper bounds on the number of iterations required
to achieve a given stated accuracy. We illustrate the quality of our
bounds on given test examples.
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1. Introduction

In this paper, we derive upper bounds for the number of iterations required to reach a
certain level of optimality by subspace methods for solving the trust-region subproblem

minimize
x∈Rn

q(x) := gTx + 1
2
xTHx subject to ‖x‖ ≤ δ (1)

and its regularization variant

minimize
x∈Rn

qR(x, σ , p) := q(x)+ 1
p
σ‖x‖p. (2)

Here, we are given a gradient g, a symmetric, but possibly indefinite, Hessian H, a radius
δ > 0, a weight σ > 0 and a power p>2, and use the Euclidean norm ‖ · ‖. Subproblems
(1)–(2) lie at the heart of the step calculation in both trust-region and cubic-regularization
methods for unconstrained optimization [9,11,31,32].

A typical requirement in the trust-region case is that the computed x should decrease
the objective function, i.e. q(x) < q(0) ≡ 0, and that the gradient of the Lagrangian for the
problem, g + Hx + μx, should be smaller than a prescribed tolerance in norm, i.e.

‖g + Hx + μx‖ ≤ ε (3)
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for some given ε > 0, whose precise value determines the rate of convergence of the
trust-region algorithm, and a suitable Lagrangemultiplier,μ ≥ 0, for the trust-region con-
straint ‖x‖ ≤ δ. For regularization problems, a similar requirement is that qR(x, σ , p) <
qR(0, σ , p) ≡ 0 and that the norm of the gradient of qR(x, σ , p) should be small. Since
∇xqR(x, σ , p) = g + Hx + μx where μ = σ‖x‖p−2, the latter requirement is identical
to (3) but for a differentμ. As the subspace methods we consider automatically ensure that
their relevant objectives decrease, our intention is to provide bounds on the number of
steps (actually products withH) required by such methods to achieve (3) for the problems
under consideration.

The subspaces of interest here are the nested Krylov spacesKk := K(H, g, k) for k ≥ 0,
where, for general A and b, we defineK(A, b, k) := span{Aib}k−1

i=0 . A sequence of estimates
xk are generated so that

xk = argmin
x∈Kk

q(x) subject to ‖x‖ ≤ δ (4)

for the trust-region subproblem, or

xk = argmin
x∈Kk

qR(x, σ , p) (5)

for the regularization case; here and elsewhere argmin refers to the set of globalminimizers
of the function under consideration within the domain specified.1 This is useful as the
well-known GLTR method [18] for (1) and the GLRT approach [9] for (2), which exploit
the evolving Lanczos basis for Kk, use precisely these formulations.2 However, we must
be cautious as it is well known [18, Theorem 5.8] that such methods may fail to solve the
problem if the sequence of Krylov subspaces lies in an unpropitious non-trivial invariant
subspace of �n, and in this case it may be necessary to enhance the search space with a
specific eigenvector ofH from outside the Krylov space. Fortunately, as we shall see, this is
not necessary if our goal is merely to satisfy (3).

To put subspace methods in context, we briefly review other approaches. Early methods
[16,30] were aimed at the trust-region case (1), and use the optimality conditions for the
problem (see Theorem 2.1) to reduce it to a scalar root-finding problem involving a so-
called secular equation. A safeguarded Newton process is applied, and the required value
and derivatives of the related secular function at each scalar value μ require the direct
solution of a symmetric, positive-definite linear system (H + μI)x = −g. These ideas may
be extended to higher-order root-finding methods, and for problems with sparse Hessians
[20].

The first methods designed to avoid factorization [37,38] are only able to find approxi-
mate solutions, based on properties of the conjugate-gradient method. GLTR [18] is the
first method fully to explore this Krylov subspace. Other subspace methods [13,14,23]
have focussed on evolving very low-dimensional (non-Krylov) subspaces. Another popu-
lar approach is to couch (1) as a parametric or generalized eigenvalue problem [1,26,34,35],
and to harness existing, powerful software for this domain. A third suggestion is to for-
mulate the problem as a semi-definite or second-order cone program [15,24,25,33], and
as before to use sophisticated methods from this area. GLTR has a good reputation [1]
unless the solution required lies outside the Krylov space, when, perhaps unsurprisingly,
eigenvalue approaches may have the edge.
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The regularization subproblem (5) has risen in importance in the 21st century, and
obvious analogues [6,9,20] of the direct and subspace approaches have been proposed.
There has also been a move towards simpler (accelerated, first-order methods) [5,7,40]
that recognize that matrices may be too large to manipulate when the problem is
enormous.

While all of these methods provide guarantees of convergence to a solution of their
relevant subproblem, little has been said about how this convergence occurs. Recently there
has been some effort to bound the decrease in the objective function value, and thus the
overall number of iterations required to reach a specified objective accuracy, for first-order
and subspace methods [8,24,25,41,42]. Our interest, though, is in trying to achieve (3),
since this is more significant for the overall convergence of many nonlinear optimization
methods [9,11,32]. This is the main focus of our paper.

In §2 we examine the benefits and limitations of Krylov approximations to the solutions
wewish to find.We follow this, in §3, by deriving bounds both on the decrease in themodel
objective functions and on the norm of the violation of the first-order criticality residu-
als from the Krylov space under consideration. We note that bounds on the former have
already been proposed [8,41,42], and indeed our bounds make use of some of those in [8].
The bounds we derive for the residuals generalize well-known ones for conjugate-gradient
methods applied to definite linear systems. They behave just as in the conjugate-gradient
case, but necessarily reflect the additional complications due to the potential indefiniteness
of thematrices involved and the presence of explicit or implicit regularization. The bounds
allow us to give an upper estimate of howmany iterations will be required to satisfy (3), and
thus on the work involved in finding a suitable approximation to the solution of the sub-
problem under consideration. We examine our residual bounds on test examples that are
designed to illustrate a variety of spectral distributions in §4. Finally, we make concluding
remarks in §5.

2. Solutions from the Krylov space and beyond

Let λ1 ≤ · · · ≤ λn be the eigenvalues ofH, with the leftmost λ1 having multiplicity n1, and
let ui, i ∈ N := {1, . . . , n} be the corresponding orthonormal eigenvectors. Crucially, there
are well-known characterizations of the global solutions of (1) and (2).

Theorem 2.1 ([16], Theorem 2.1; [30], Lemma 2.1): Any global solution x∗ to the trust-
region subproblem (1) satisfies

(H + μ∗I)x∗ = −g, (6)

where the Lagrange multiplier μ∗ ≥ max(0,−λ1) and μ∗(‖x∗‖2 − δ2) = 0. Moreover the
solution is unique and μ∗ > max(0,−λ1) whenever gTui 
= 0 for some 1 ≤ i ≤ n1.

Theorem 2.2 ([9], Theorem 3.1; [31], Theorem 10): Any global solution x∗ to
the regularization subproblem (2) satisfies (6), where the multiplier μ∗ = σ‖x∗‖p−2 ≥
−λ1. Moreover the solution is unique and μ∗ > −λ1 whenever gTui 
= 0 for some
1 ≤ i ≤ n1.
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We consider the evolving Krylov spaces Kk, k ≥ 0, in more detail. Clearly we may
decompose

g =
n∑
j=1
(gTuj)uj

in terms of the basis of eigenvectors {uj}j∈N ofH. Let I+ := {j | gTuj 
= 0}, I0 := N \ I+
andm := |I+|.3 Thus

g =
∑
j∈I+

(gTuj)uj and hence Hig =
∑
j∈I+

λij(g
Tuj)uj.

Therefore Km = · · · = Kn, since Km = span{uj}j∈I+ and the vectors Hig for m < i ≤ n
are dependent on those inKm. Hence, our Krylov methods will make no further progress
beyond themth iteration, and at that point provide estimates of their relevant solutions xm
and multipliers μm.

We now contrast xm with a desired global minimizer x∗. Let U+ be the n by m matrix
whose columns are the eigenvectors uj, j ∈ I+,U0 be the n by n−mmatrix whose columns
are the remaining eigenvectors and U = (U+ : U0). Likewise let� be the diagonal matrix
of eigenvalues ordered as for U, and let�+ and�0 be its diagonal blocks. Thus

� = UTHU =
(
�+ 0
0 �0

)
. (7)

If we define ḡ := UTg, and therefore g = Uḡ, this leads to(
ḡ+
ḡ0

)
:= ḡ =

(
UT+g
UT
0 g

)
=
(
UT+g
0

)
and g = U+ḡ+, (8)

since ḡ0 = 0 as uTj g = 0 for all j ∈ I0.
Consider the trust-region subproblem (1), and the change of variables x = Ux̄. In this

case, x∗ = Ux̄∗, where

x̄∗ ∈ argmin
x̄∈Rn

ḡTx̄ + 1
2
x̄T�x̄ subject to ‖x̄‖ ≤ δ. (9)

The optimality conditions (6) for this are(
�+ + μ∗I 0

0 �0 + μ∗I

)(
x̄+∗
x̄0∗

)
= −

(
ḡ+
0

)
, (10)

where x̄∗ and the Lagrange multiplier

μ∗ ≥ max(0,−λ1) (11)

satisfy

‖x̄∗‖ ≤ δ and μ∗(‖x̄∗‖2 − δ2) = 0, (12)

and we have partitioned

x̄∗ = UTx∗ ≡
(
x̄+∗
x̄0∗

)
.
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By contrast, if x ∈ Km, then x = U+x̂+ for some vector x̂+ ∈ R
m, in which case (4)

gives xm = U+x̂+∗ , where uniquely

x̂+
∗ = argmin

x̂+∈Rm
ḡT+x̂

+ + 1
2
x̂+T�+x̂

+ subject to ‖x̂+‖ ≤ δ. (13)

The optimality conditions (6) then imply that

(�+ + μ+
∗ I)x̂

+
∗ = −ḡ+, (14)

where x̂+∗ and the Lagrange multiplier

μm ≡ μ+
∗ > max

(
0,−min

j∈I+
λj

)
(15)

satisfy

‖x̂+‖ ≤ δ and μ+
∗ (‖x̂+

∗ ‖2 − δ2) = 0. (16)

Given x̂+∗ , let x̂0∗ = 0 and define

x̂∗ =
(
x̂+∗
x̂0∗

)
so that xm = Ux̂∗.

In this case, (14) and (16) become
(
�+ + μ+∗ I 0

0 �0 + μ+∗ I

)(
x̂+∗
x̂0∗

)
= −

(
ḡ+
0

)
, (17)

and

‖x̂∗‖ ≤ δ and μ+
∗ (‖x̂∗‖2 − δ2) = 0. (18)

Now compare x̄∗ and μ∗ from (10)–(12) with x̂∗ and μ+∗ from (15), (17) and (18). The
only substantial difference is between (11) and (15). Indeed, ifμ+∗ ≥ max(0,−λ1), the two
sets of conditions are identical, and in this case xm = x∗ and μm = μ∗, i.e. the solution
from the subspace Km solves the full-space trust-region problem (1). This must occur if
minj∈I+ λj = λ1 or, equivalently I+ ∩ {1, . . . , n1} 
= ∅, where we recall n1 is the multiplic-
ity of λ1, but may also happen if minj∈I+ λj > λ1. Ifμ+∗ < −λ1, I+ ∩ {1, . . . , n1} = ∅, and
xm cannot solve (1), but it is nonetheless a critical point of the problem.4 This possibility
is often called the ‘hard case’ [30] and μ∗ = −λ1; the first block equation in (10) uniquely
defines x̄+∗ , and x̄0∗ is amultiple of any eigenvector of the second (singular) block, the precise
combination ensuring that ‖x̄∗‖ = δ.

The main lesson here is that if we wish to solve (1) we shall have to look outside the
Krylov space and may need to compute an eigenvector corresponding to λ1. If we are
content simply in finding a critical point of (1), the Krylov space suffices. An essentially
identical argument may be used in the case of the regularization subproblem (2) with the
same conclusions.
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3. Error bounds

3.1. Bounds on the decrease of the objective functions

In essence Carmon and Duchi [8] provide the following bounds.5

Theorem 3.1 ([8, Theorem 1&Corollary 3]): Let λ1 and λn be the leftmost and rightmost
eigenvalues of H. Then, for all k ≥ 0,

(i)

q(xk)− q(x∗) ≤ 36[q(0)− q(x∗)]
(
e−4

√
(λ1+μ∗)/(λn+μ∗)

)k
, (19)

where xk is given by (4), x∗ is a global minimizer of (1), and μ∗ is its corresponding
Lagrange multiplier, and

(ii)

qR(xk, σ , p)− qR(x∗, σ , p) ≤ 36
[
qR(0, σ , p)− qR(x∗, σ , p)

] (
e−4

√
(λ1+μ∗)/(λn+μ∗)

)k
,

(20)
where xk is given by (5), x∗ is a global minimizer of (2) and μ∗ = σ‖x∗‖.

Thus the error in the relevant objective function decreases at worst linearly as a function
of the subspace dimension unless μ∗ = −λ1, in which case Theorem 3.1 provides no use-
ful bound. As we have already mentioned, the unlikely ‘hard case’ μ∗ = −λ1 only occurs
if g is orthogonal to the space of eigenvectors corresponding to the eigenvalue λ1 of H,
and should this happen these eigenvectors will not occur in the Krylov spaces Kk, except
through numerical rounding. A simple expedient advocated by others [8] is to perturb g
by a small random vector so that, with high probability, it will have some component in the
space of eigenvectors corresponding to the eigenvalue λ1, and thus the hard case cannot
occur.

We note that Carmon and Duchi actually provide a second, sublinear decrease estimate
that may be less pessimistic for small k, but we shall not use this here. Zhang et al. [42,
Theorem 4.2] suggest quantitatively-similar bounds in the trust-region case, but again we
shall not need them.

We now restrict our attention to the best estimate xm available from the evolving Krylov
space.We provide a bound on the decrease of the objective function at this point compared
to that at the best estimate xk available fromKk; the bound indicates at worst a linear rate
of convergence as the space expands. We exclude the special case g = 0 since then x = 0
is a critical point of both of the subproblems under consideration.

Corollary 3.2: Suppose that g 
= 0. Let {λj, uj}j∈N be eigenpairs of H, I+ = {j | gTuj 
= 0},
m = |I+|, and

λmin
+ = min

j∈I+
λi and λmax

+ = max
j∈I+

λi. (21)

Then, for all k ≥ 0,



OPTIMIZATION METHODS & SOFTWARE 7

(i)

q(xk)− q(xm) ≤ 36
[
q(0)− q(xm)

] (
e−4/

√
κm
)k

, (22)

where xk and xm are given by (4),

κm := λmax+ + μm

λmin+ + μm
, (23)

and μm is the Lagrange multiplier corresponding to xm, and
(ii)

qR(xk, σ , p)− qR(xm, σ , p) ≤ 36
[
qR(0, σ , p)− qR(xm, σ , p)

] (
e−4/

√
κm
)k

, (24)

where xk and xm are given by (5), κm is given by (23) but now μm = σ‖xm‖.

Proof: Since g 
= 0, I+ 
= ∅, m>0 and both λmin+ and λmax+ are well defined. Let H+ be
the matrix with eigenpairs {λj, uj} for j ∈ I+ and {λmax+ , uj} for j ∈ I0 = N \ I+. Then
Kk = span{Hig}k−1

i=0 = span{Hi+g}k−1
i=0 for k ≥ 0, and the iterates xk generated from the

Krylov spaces Kk for (4) and (5) for the problem with Hessian H+ are identical to those
with Hessian H. However the hard case cannot occur with the Hessian H+ as none of the
eigenvalues for j ∈ I0 is smaller than the smallest for j ∈ I+. Hence, as we saw in §2, for
this Hessian x∗ = xm andμ∗ = μm. Thus wemay apply Theorem 3.1 for the problemwith
Hessian H+ to deduce (22) and (24). �

As Carmon and Duchi mention, this then implies a worst-case estimate of

k ≤ min(m,O(
√

κm log(1/ε))) (25)

iterations in order to guarantee q(xk)− q(xm) ≤ ε or qR(xk, σ , p)− qR(xm, σ , p) ≤ ε as
appropriate.

3.2. Bounds on the residuals

Recall that the orthonormal Lanczos basis matrix Vk ∈ �n×k forKk satisfies

HVk = VkTk + γkvk+1e
T
k , (26)

where

Tk =

⎛
⎜⎜⎜⎜⎝
δ1 γ1
γ1 δ2 ·

· · ·
· δk−1 γk−1
γk−1 δk

⎞
⎟⎟⎟⎟⎠ (27)

is tridiagonal and the γi, i = 1, . . . , k − 1 with k ≤ m, are strictly positive [2,22,27,39].
As the off diagonals γi > 0, Tk is irreducible, and has distinct real eigenvalues (the so-
called Ritz values) θi,k, i = 1, . . . , k, arranged in increasing order. It is well known [17,
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Corollary 8.1.7] that the Ritz values satisfy the interlacing properties

θi,k ≤ θi,k+1 ≤ θi+1,k (28)

for i = 1, . . . , k, k<m, and

λmin
+ = θ1,m ≤ θ1,k+1 ≤ θ1,k ≤ θ1,1 ≡ gTHg

‖g‖2 ≤ θk,k ≤ θk+1,k+1 ≤ θm,m = λmax
+ (29)

for k = 1, . . . ,m − 1, where λmin+ and λmax+ are defined in (21).
Since v1 = g/‖g‖, it follows that

VT
k g = ‖g‖e1 and g = ‖g‖Vke1 (30)

as Vk has orthonormal columns. Furthermore pre-multiplying (26) by VT
k yields

VT
k HVk = Tk,

and thus the definition (4) implies that

xk = Vkyk, where (Tk + μkI)yk = VT
k (H + μkI)Vkyk = −VT

k g = −‖g‖e1. (31)

Moreover, applying Theorem 2.1 to (4) shows that Tk + μkI is positive definite.
Let

rk := g + Hxk + μkxk = g + (H + μkI)xk. (32)

It then follows from (26), (30) and (31) that

Hxk = HVkyk = VkTkyk + γke
T
k ykvk+1 = −Vk(μkyk + ‖g‖e1)+ γke

T
k ykvk+1

= −μkxk − g + γke
T
k ykvk+1.

Hence rk = γke
T
k ykvk+1 and

‖rk‖ = γk

∣∣∣eTk yk∣∣∣ = γk‖g‖
∣∣∣eTk (Tk + μkI)−1e1

∣∣∣ . (33)

Note that the definition of γk > 0 as the (k, k + 1)-st entry ofTk+1 and the Cauchy Schwarz
inequality implies that

γk = eTk+1Tk+1ek ≤ ‖Tk+1‖ = ‖VT
k+1HVk+1‖ ≤ ‖H‖. (34)

Thus, aside from the term γk‖g‖ > 0, the residual norm decays with |eTk (Tk + μkI)−1e1|,
and we now focus on this.

We recall a vital result by Demko et al. [12] on the component-wise decay of the inverse
of symmetric bandedmatrices. Here the bandwidth of a banded symmetricmatrixM is the
number of nonzero upper (or equivalently lower) super diagonals, and, if M is addition-
ally positive definite, κ(M) := λmax(M)/λmin(M) is its spectral condition number, where
0 < λmin(M) ≤ λmax(M) are the left- and right-most eigenvalues ofM.
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Lemma 3.3 ([12, Theorem 2.4]): Let M ∈ R
n×n be a symmetric, positive definite matrix

with bandwidth β > 0. Then

|(M−1)i,j| ≤ ct|i−j|/β

for all i, j = 1, . . . , n, where

c = 1
λmin(M)

max

(
1,
(√

κ(M)+ 1
)2

2κ(M)

)
and t =

√
κ(M)− 1√
κ(M)+ 1

.

Note that we shall prefer the slightly weaker, but simpler, bound

c ≤ 2
λmin(M)

, (35)

and indeed c = 1/λmin(M) so long as κ(M) ≥
√
1 + √

2.
For any k ≤ m, we have that Tk from (27) is symmetric and tridiagonal with left- and

right-most eigenvalues (Ritz values) respectively θ1,k < θk,k. As we have seem Tk + μkI is
positive definite, and thus has distinct left- and right-most eigenvalues

λmin(Tk + μkI) ≡ θ1,k + μk < λmax(Tk + μkI) ≡ θk,k + μk (36)

as well as spectral condition number

κk := κ(Tk + μkI) = θk,k + μk

θ1,k + μk
. (37)

We may apply Lemma 3.3 to Tk + μkI to deduce our main result.

Theorem 3.4: The residual (32) for the kth iterate, x∗
k , generated by either the trust-region

subproblem (4) or the regularization subproblem (5) satisfies the bound

‖rk‖ ≤ ‖g‖
(

2γkκk

θk,k + μk

)(√
κk − 1√
κk + 1

)k−1
, (38)

where κk is given by (37) and γk is the (k, k + 1)-st entry of Tk+1.

Proof: Since |eTk (Tk + μkI)−1e1| = |((Tk + μkI)−1)k,1|, wemay apply Lemma 3.3 toTk +
μkI, with β = 1, together with (35)–(37) to deduce the bound∣∣∣eTk (Tk + μkI)−1e1

∣∣∣ ≤ ckt
k−1
k (39)

for all k ≤ m, where

ck = 2
θ1,k + μk

≡ 2κk

θk,k + μk
and tk =

√
κk − 1√
κk + 1

. (40)

The desired bound (38) then follows directly from (33) and (40). �

In the trust-region case, this leads to the following residual bound.6
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Corollary 3.5: The residual (32) for the kth iterate, x∗
k , generated by the trust-region

subproblem (4) satisfies the bound

‖rk‖ ≤ ‖g‖
(
2δ‖H‖κk

‖g‖
)(√

κk − 1√
κk + 1

)k−1
, (41)

where κk is given by (37).

Proof: It follows from (31), the Cauchy-Schwarz and Rayleigh-Ritz inequalities and the
bound ‖yk‖ ≤ δ that

‖g‖2 = ‖(Tk + μkI)yk‖2 ≤ (θk,k + μk)
2‖yk‖2 ≤ (θk,k + μk)

2δ2,

and hence
1

θk,k + μk
≤ δ

‖g‖ . (42)

Thus combining (34), (38) and (42), we find that (41) holds. �

Corollary 3.6: Let κ∗ = max1≤k≤m κk. Then the iteration defined by (4) satisfies

‖rk‖ ≤ ε (43)

as soon as

k ≤ min
[
m,
⌈
log

(
2δ‖H‖κ∗

ε

)/
log

(√
κ∗ + 1√
κ∗ − 1

)⌉
+ 1

]
. (44)

Proof: Since the function

q(κ) =
√

κ − 1√
κ + 1

is monotonically increasing for κ ≥ 1, we deduce from Corollary 3.5 that

‖rk‖ ≤ ‖g‖
(
2δ‖H‖κ∗

‖g‖
)(√

κ∗ − 1√
κ∗ + 1

)k−1
. (45)

Recalling that rm = 0, (43) and (45) lead directly to (44). �

A similar result is possible for the regularization case.

Corollary 3.7: The residual (32) for the kth iterate, x∗
k , generated by the regularization

subproblem (5) satisfies the bound

‖rk‖ ≤ ‖g‖
(2‖H‖κk

‖g‖
)(μk

σ

)1/(p−2)
(√

κk − 1√
κk + 1

)k−1
, (46)

where κk is given by (37).
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Proof: It follows from (31), the Cauchy-Schwarz and Rayleigh-Ritz inequalities and the
relationship μk = σ‖yk‖p−2 that

‖g‖2 = ‖(Tk + μkI)yk‖2 ≤ (θk,k + μk)
2‖yk‖2 = (θk,k + μk)

2
(μk

σ

)2/(p−2)

and hence
1

θk,k + μk
≤ 1

‖g‖
(μk

σ

)1/(p−2)
. (47)

Thus (46) follows by combining (34), (38) and (47). �

Corollary 3.8: Let κ∗ = max1≤k≤m κk. Then the iteration defined by (4) satisfies (43) as
soon as

k ≤ min
[
m,
⌈
log

(
2‖H‖κ∗
ε

(μm

σ

)1/(p−2)
)/

log
(√

κ∗ + 1√
κ∗ − 1

)⌉
+ 1

]
. (48)

Proof: Given Corollary 3.7, the proof is essentially identical to that of Corollary 3.6,
except that we additionally make use of the bound 0 ≤ μk ≤ μm for k = 1, . . . ,m [10,
Theorem 2.5]. �

3.3. Comments

We now comment on the bounds obtained in §3.1 and 3.2. Those on the (linear) rates
of convergence given in Corollaries 3.2, 3.6 and 3.8 are very typical of the Chebyshev
bounds that have been derived for conjugate-gradient (CG)-like methods for solving sym-
metric, positive-definite systems of linear equations Ax = b (see, e.g. [27, §5.6.2]). Briefly,
in this case ‖rk‖A−1 = ‖xk − x∗‖A, where rk = Axk − b and x∗ = A−1b. Since ‖rk‖ ≤√
λmax(A)‖rk‖A−1 , the argument in the CG case focuses on finding an upper bound on

‖xk − x∗‖A. In particular, xk is chosen to minimize ‖x − x∗‖A over all x ∈ K(A, b, k), and
this is easily shown to lead to the bound

‖xk − x∗‖A ≤ ‖x0 − x∗‖A min
ψ∈Pk

max
i∈N

|ψ(λi(A))|, (49)

where

Pk = {polynomials ψ of degree k for which ψ(0) = 1}
and λi(A), i ∈ N , are a subset of the eigenvalues ofA. Weakening the requirement that the
maximum in (49) instead considers ψ(λ) over all λ ∈ [λmin(A), λmax(A)] and invoking a
well-known bound from approximation theory relating to Chebyshev polynomials, it then
follows that

‖xk − x∗‖A ≤ 2
(√

κ(A)− 1√
κ(A)+ 1

)k

‖x0 − x∗‖A.

Since ‖x0 − x∗‖A ≤ ‖r0‖/
√
λmin(A), we thus obtain the bound

‖rk‖ ≤ 2
√

κ(A)
(√

κ(A)− 1√
κ(A)+ 1

)k

‖r0‖;

if x0 = 0, ‖r0‖ = ‖b‖ in the latter.
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The presence of κm ≤ κ∗ in the bounds in §3.1 and 3.2 is strongly reminiscent of the CG
case, and indicates that rescaling (preconditioning) the problem so that κm or κ∗ = O(1)
would be beneficial. In the strictly convex case whenH is positive definite, κm is no larger
than the traditional condition number λmax+ /λmin+ obtained from (29). Although we know
that θk,k increases monotonically from (29), as does μk [10,28], we have not been able to
prove that κk increases monotonically,7 albeit in practice it appears to.

We need to be very cautious here as although such bounds accurately predict the worst
possible case [8,22], they are often very pessimistic in general, a point stressed in [27]. We
shall return to this in §4. Nevertheless, if one is interested in the worst-case, bounds such
as (25), (44) and (48) are relevant.

We tried two other approaches to derive useful bounds on the norm of the residual, (32).
The first aims to use the known decrease in the model objective given by Corollary 3.2
to deduce a similar bound on ‖rk‖. Since xm from (4) is a critical point of (1), we have
that

g + Hxm + μmxm = 0, (50)

and hence

rk := g + Hxk + μkxk = −Hxm − μmxm + Hxk + μkxk
= (H + μmI)(xk − xm)+ (μk − μm)xk. (51)

Elementary manipulation of these (see Appendix 1) then leads to the bound

(λmax
+ + μm)

−1‖rk‖2 ≤ 2
[
q(xk)− q(xm)

]+ ρk, where

ρk := μk(‖xk‖2 − ‖xm‖2)− (μm − μk)‖xm − xk‖2 + (μm − μk)
2xTk (H + μmI)−1xk,

(52)
which exposes the dependence on the model objective decrease q(xk)− q(xm). Unfortu-
nately, aside from the case whereμm = 0 for which ρk = 0, we are not able to find a useful
bound on ρk; ideally we would like to show that ρk ≤ 0. Of course, even had we had suc-
ceeded in bounding ρk, the overall bound we would have obtained via Corollary 3.2 for
the q(xk)− q(xm) term would not have been substantially different from those given in
Corollaries 3.6 and 3.8.

Our second approach tried to mimic that taken for the CGmethod for positive-definite
linear systems.However, the argument relating theA-normof the error to theA−1-normof
the residual and the subsequent min-max characterization depends crucially on the def-
initeness of A, and thus this line of attack is not obvious for our case where H may be
indefinite. Nevertheless it is easy to derive the bound

‖rk‖ ≤ max
j∈I+

|ψk(λj + μk)|‖g‖, where ψk(λj + μk) =
k∏

i=1

(θi,k − λj)

(θi,k + μk)
. (53)

on the residual (32) (see Appendix 2). Although we do not know how to derive a useful
bound onψk(λj + μk), as we see in §4, to do so might provide a much closer match to the
true residual than provided by Corollaries 3.6 and 3.8.
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4. Experiments

We consider nine examples that aim to illustrate our analysis; all nine are available as part
of the CUTEst [21] set of test problems. Each is of the form

q(x) = 1
2

n∑
i=1

dlx
2
i +

n∑
i=1

xi,

but vary according to the diagonal Hessian elements, di. Specifically we have examples

Diagpqt: di = −i2/n + n + 1/n,
Diagpqe: di = i,
Diagpqb: di = i2/n,
Diagiqt: di = −i2/n + n/2 + 1/n,
Diagiqe: di = i − n/2,
Diagiqb: di = i2/n − n/2 + 1/n,
Diagnqt: di = −i2/n,
Diagnqe: di = i − n − 1, and
Diagnqb: di = i2/n − n − 1/n,

for i = 1, . . . , n; in our tests we let n = 1000, and ignore the additional simple-bound con-
straints specified in the CUTEst examples. The first three are convex with Hessian spectra
that bunch towards the bottom of the range, that are equispaced, and that coalesce towards
the top of the range respectively. The second three shift the spectra of the first three down-
wards by roughly n/2, leading to indefinite Hessians, while the last three concave examples
shift downwards by more or less n + 1/n.

In Figure 1 we compare the true residual against bounds derived in Section 3 when
running GALAHAD’s [19] GLTR package [18] to solve the trust-region subproblem (1) on
the first three test examples. Almost identical plots have been obtained for the remaining
examples for the trust-region case since the residual

rk = Hxk + μkxk + g = (H − ωI)xk + (μk + ω)xk + g

shows that shifting the Hessian downwards by ω is compensated by shifting the multiplier
upwards by the same amount once the trust-region constraint is active.

We observe that although Theorem 3.4 and Corollary 3.5 provide bounds on the resid-
ual, they may be far from sharp, especially when the spectrum is equispaced or bunched
towards the top end. In particular, the bounds do not capture the superlinear behaviour
of the residuals in these cases; the slopes best mimic those from the earlier iterations.
This largely agrees with the observations made and conclusions drawn in the linear-
equation case [27]. The inferiority of the bound in Corollary 3.5 compared to that in
Theorem 3.4 merely reflects the weakening that results when approximating unknown
quantities (i.e. θk,k + μk) by known ones (i.e. H, g, δ). By contrast, the bound provided by
(53) is quantitatively far better, but, of course, this requires full knowledge of the spectrum.

Figures 2–4 compare the estimates (38), (46) and (53) against the true residual when
running GALAHAD’s GLRT package [9] to solve the regularization subproblem (2) on all
nine test examples; unlike for the trust-region case, a translation of the Hessian does not
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Figure 1. log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLTR as applied to the convex
problems DIAGPQT (top plot), DIAGPQE (middle) and DIAGPQB (bottom) with a trust-region radius
δ = 1. Each figure shows the residual (33) (solid line), and the estimates (38) (dotted line), (41) (dashed
line) and (53) (dash-dot line).
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Figure 2. log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT as applied to the con-
vex problems DIAGPQT (top plot), DIAGPQE (middle) and DIAGPQB (bottom) with a regularization
weight σ = 1000 and p = 3. Each figure shows the residual (33) (solid line), and the estimates (38)
(dotted line), (46) (dashed line) and (53) (dash-dot line).
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Figure 3. log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT as applied to the indef-
inite problemsDIAGIQT (top plot),DIAGIQE (middle) andDIAGIQB (bottom) with a regularization
weight σ = 1000 and p = 3. Each figure shows the residual (33) (solid line), and the estimates (38)
(dotted line), (46) (dashed line) and (53) (dash-dot line).
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Figure 4. log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT as applied to the con-
cave problemsDIAGNQT (top plot),DIAGNQE (middle) andDIAGNQB (bottom) with a regularization
weight σ = 1000 and p = 3. Each figure shows the residual (33) (solid line), and the estimates (38)
(dotted line), (46) (dashed line) and (53) (dash-dot line).
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Figure 5. log10 of the residual (y-axis) as the iteration proceeds (x-axis) for GLRT as applied to the
concave problem DIAGNQT with different values of σ when p = 3. Specifically σ = 100 (top plot),
σ = 1000 (middle) and σ = 10000 (bottom). Each figure shows the residual (33) (solid line), and the
estimates (38) (dotted line), (46) (dashed line) and (53) (dash-dot line).
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produce essentially identical plots when moving from the convex via the indefinite to the
concave cases.

Once again, we observe that the bounds (38), (46) may be far from sharp, and can fail
to reflect the later superlinear convergence of the residuals. The behaviour is most extreme
for the concave examples, and for those whose spectra coalesce at the top of their ranges.
As before, (53) provides a much more faithful bound.

Finally Figures 5 illustrate the effect of changing the regularizationweight, σ , when solv-
ing (2) for the example DIAGNQT, on the residual estimates. The subproblems become
increasingly hard as σ shrinks, and the estimates correspondingly poorer. Indeed, the
decrease predicted by (38) when σ = 100 barely indicates convergence, while although
the rates for the actual residual and the prediction (53) are initially slow, they later
accelerate.

5. Conclusions

We have derived bounds for the objective errors and gradient residuals when finding
approximations to the solution of common regularized quadratic optimization problems
within evolving Krylov spaces. Those for the objective errors are trivial extensions of
existing ones [8], while those for the gradient residuals generalize well-known ones for
conjugate-gradient methods applied to definite linear systems. Quantitatively the bounds
behave just as in the conjugate-gradient case, but reflect additional complication of the
subproblems, particularly the potential indefiniteness of the matrices involved.

We express some caution since in exceptional cases Krylov methods may not find the
global solutions to our problems. If this is the goal, then additional precautions [8,18] that
are not covered by our boundsmay be necessary. If our goal is simply to find an approxima-
tion that yields a small gradient residual—and this is often the case when the subproblem
occurs as component of a more general optimization calculation—then our bounds are
appropriate, and provide upper bounds on the number of iterations required to achieve a
given stated accuracy.

Our bounds do not reflect the ‘superlinear’ behaviour that is sometimes observed in
practice that results from annihilation of extreme eigenvalues by the Krylov process. A
more sophisticated analysis, akin to that by Axelsson, Kaporin and others [3,4], might
provide this, but we have not attempted it.

Notes

1. That the ‘arg min’s in (4) and (5) are unique follows from Theorems 2.1 and 2.2, since g lies in
Kk by construction.

2. The precise details of the implementations of GLTR and GLRT are, of course, important, but of
no consequence in the bounds that we derive. Such bounds apply equally for any method that
use the iterates (4) or (5).

3. This is equivalently the grade of H with respect to g
4. It will only be a local minimizer of μ+∗ > −λ2 [29].
5. Strictly [8, Corollary 3] only considers the case p = 3, but theirmethod of proof holds in general.
6. Another thing we know but we have not used.: 0 ≤ μ1 ≤ μk ≤ μm for k = 1, . . . ,m [28].
7. The result would follow if we could show that θ1,k + μk decreasesmonotonically with growing k.
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Appendices

Appendix 1

Using (50) to compare the model decrease from xk to xm, we deduce that

q(xk)− q(xm) = 1
2x

T
k Hxk + gTxk − 1

2x
T
mHxm − gTxm

= 1
2x

T
k Hxk − 1

2x
T
mHxm + gT(xk − xm)

= 1
2x

T
k Hxk − 1

2x
T
mHxm + (xm − xk)THxm + μm(xm − xk)Txm

= 1
2 (xm − xk)T(H + μmI)(xm − xk)+ 1

2μm(‖xm‖2 − ‖xk‖2). (A1)

Since (15) shows that H + μmI is positive definite onKm, and as rk ∈ Km, it follows that

(H + μmI)−1rk = (xk − xm)+ (μk − μm)(H + μmI)−1xk,

and hence, taking the inner product with rk from (51),

rTk (H + μmI)−1rk = (xm − xk)T(H + μmI)(xm − xk)

+ 2(μm − μk)(xm − xk)Txk + (μm − μk)
2xTk (H + μmI)−1xk

= 2[q(xk)− q(xm)] − μm[‖xm‖2 − ‖xk‖2]
+ 2(μm − μk)(xm − xk)Txk + (μm − μk)

2xTk (H + μmI)−1xk

= 2[q(xk)− q(xm)] + μk(‖xk‖2 − ‖xm‖2)
− (μm − μk)‖xm − xk‖2 + (μm − μk)

2xTk (H + μmI)−1xk (A2)

using (A1). As rk ∈ Km, referring back to (7), we have that

rk = U+r̂k = U
(
r̂k
0

)
,

for some r̂k, and thus

rTk (H + μmI)−1rk = r̂Tk (�+ + μmI)−1r̂k ≥ ‖r̂k‖2
(λmax+ + μm)

= ‖rk‖2
(λmax+ + μm)

where we recall the definition of λmax+ from (21). Hence (A2) leads directly to (52).
We recall that [10,37]

‖xk‖ ≤ ‖xm‖ (A3)
and [10,28]

0 ≤ μk ≤ μm, (A4)
and hence μk(‖xk‖2 − ‖xm‖2) ≤ 0.
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Suppose that μm = 0. Then (A4) implies that μk = 0, while (50) gives Hxm = −g and
thus (1), (7), (8) and (21) combine to give

q(0)− q(xm) = 1
2
ḡT+�

−1
+ ḡ+ ≤ ‖ḡ+‖2

(λmin+ + μm)
= ‖g‖2
(λmin+ + μm)

. (A5)

Combining (22) (52) and (A5) gives

‖rk‖2 ≤ 2(λmax
+ + μm)[q(xk)− q(xm)] ≤ 72κm

(
e−4/

√
κm
)k ‖g‖2,

i.e.

‖rk‖ ≤ 6
√
2
√

κm

(
e−2/

√
κm
)k ‖g‖. (A6)

We note that obtaining an error bound via (50)–(A2) is similar to the approach taken by [36, §3.2]
in the absence of a trust region.

Unfortunately, it is unclear how to proceed when μm > 0—there are two sub-cases μk = 0 and
μk > 0, but we cannot see a way for either. The issue, of course, is the extra term

− (μm − μk)‖xm − xk‖2 + (μm − μk)
2xTk (H + μmI)−1xk (A7)

in (52). Ideally, we would like to show that this is negative in which case a bound of the form (A6)
would follow. We also have a bound

xTk (H + μmI)−1xk = (xk − xm)T(H + μmI)−1(xk − xm)

+ 2xTk (H + μmI)−1xm − xTm(H + μmI)−1xm

≤ (xk − xm)T(H + μmI)−1(xk − xm)− 2gTxk

on the second term in (A7), but that doesn’t seem to help. Another possibility is to show that the
two terms in (A7) decay exponentially, although we see no reason why in particular (μm − μk)
would—onemight for example haveμk = 0 for all k = 1, . . . ,m − 1 (i.e. the trust-region constraint
is inactive), but μm > 0 (the constraint becomes active).

Appendix 2

Our second attempt to find a useful bound on the residual is based on the relationships (26)–(27),
and uses the following identity.

Lemma A.1: For any scalar λ, we have

VT
k (H + λI)jVke1 = (Tk + λI)je1 (A8)

for j = 1, . . . , k.

Proof: We first show that

(H + λI)jVk = Vk(Tk + λI)j + γk

j−1∑
i=0
(H + λI)j−i−1vk+1e

T
k (Tk + λI)i (A9)

for all k ≥ 1. This follows follow immediately when j = 1 as

(H + λI)Vk = Vk(Tk + λI)+ γkvk+1e
T
k (A10)
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from (26). Suppose that (A9) holds for some j> 1. Then multiplying byH + λI and using (A10), we
have

(H + λI)j+1Vk = (H + λI)Vk(Tk + λI)j + γk

j−1∑
i=0
(H + λI)j−ivk+1eTk (Tk + λI)i

= (Vk(Tk + λI) + γkvk+1e
T
k )(Tk + λI)j + γk

j−1∑
i=0
(H + λI)j−ivk+1e

T
k (Tk + λI)i

= Vk(Tk + λI)j+1 + γkvk+1e
T
k (Tk + λI)j + γk

j−1∑
i=0
(H + λI)j−ivk+1e

T
k (Tk + λI)i

= Vk(Tk + λI)j+1 + γk

j∑
i=0
(H + λI)j−ivk+1e

T
k (Tk + λI)i,

and thus (A9) holds for j+ 1. Hence (A9) holds for all j ≥ 1 by induction.
Now observe that (Tk + λI)e1 only has nonzeros in positions 1 and 2, (Tk + λI)2e1 = (Tk +

λI)((Tk + λI)e1) only has nonzeros in positions 1 to 3, and in general (Tk + λI)j−1e1 = (Tk +
λI)((Tk + λI)j−2e1) only has nonzeros in positions 1 to j. Thus from (A9) and the orthogonality
of the columns of Vk, we have

VT
k (H + λI)jVke1 = VT

k Vk(Tk + λI)je1 + γk

j−1∑
i=0

VT
k (H + λI)j−i−1vk+1e

T
k (Tk + λI)ie1

= (Tk + λI)je1 + γk

j−2∑
i=0

VT
k (H + λI)j−i−1vk+1e

T
k (Tk + λI)ie1 + γkVT

k vk+1e
T
k (Tk + λI)j−1e1

= (Tk + λI)je1

as required, since eTk (Tk + λI)ie1 = 0 for i = 0, . . . , j − 2 and j = 1, . . . , k, and VT
k vk+1 = 0. �

Since xk ∈ Kk = span{Hig}k−1
i=0 ≡ span{(H + μkI)ig}k−1

i=0 , we have

xk =
k−1∑
j=0

ηj(H + μkI)jg

for coefficients ηj, j = 0, . . . , k − 1, and thus

rk = g + (H + μkI)
k−1∑
j=0

ηj(H + μkI)jg = g +
k−1∑
j=0

ηj(H + μkI)j+1g

= g +
k∑

j=1
ηj−1(H + μkI)jg

= ψk(H + μkI)g (A11)

for some

ψk(λ) =
k∑

j=0
ωjλ

j ∈ Pk = {polynomials ψ of degree k for which ψ(0) = 1}.
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But then

VT
k rk = VT

k ψk(H + μkI)g =
k∑

j=0
ωjVT

k (H + μkI)jg

= ‖g‖
k∑

j=0
ωjVT

k (H + μkI)jVke1 = ‖g‖
k∑

j=0
ωj(Tk + μkI)je1

= ‖g‖ψk (Tk + μkI) e1 (A12)

using (30) and (A8). Since Tk is irreducible, it has distinct eigenvalues θi,k, i = 1, . . . , k, and as (31)
indicates that VT

k rk = 0, (A12) implies that ψk is a scalar multiple of the minimum polynomial

φk(λ) =
k∏

i=1
(λ− θi,k − μk)

of the irreducible matrix Tk + μkI. Indeed, ψk(λ) = φk(λ)/φk(0) since we require that ψk(0) = 1.
Referring back to (7) and (8), we have that H = U�UT and g = Uḡ for matrices U of eigenvec-

tors and� of eigenvalues. Then (A11) gives

rk = ψk

(
U(�+ μkI)UT

)
Uḡ = Uψk(�+ μkI)ḡ = U+ψk(�+ + μkI)ḡ+,

and hence

‖rk‖2 = ‖ψk(�+ + μkI)ḡ+‖2 =
∑
j∈I+

ψ2
k (λj + μk)ḡ2j

≤ max
j∈I+

ψ2
k (λj + μk)

∑
j∈I+

ḡ2j = max
j∈I+

ψ2
k (λj + μk)‖ḡ∗‖2

= max
j∈I+

ψ2
k (λj + μk)‖g‖2.

This then provides the estimate (53).
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