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Abstract We compare and contrast a number of recent sequential quadratic pro­
gramming (SQP) methods that have been proposed for the solution 
of large-scale nonlinear programming problems. Both line-search and 
trust-region approaches are studied, as are the implications of interior­
point and quadratic programming methods. 

1. INTRODUCTION 

1.1. PERSPECTIVES 
By the start of the 1980s, it was generally accepted that sequen­

tial quadratic programming (SQP) algorithms for solving nonlinear pro­
gramming problems were the methods of choice. Such a view was based 
on strong convergence properties of such algorithms, and reinforced in 
the comparative testing experiments of [41], in which SQP methods 
clearly outperformed their competitors. Although such claims of supe­
riority were made for implementations specifically aimed at small-scale 
problems,-that is, those problems for which problem derivatives can 
be stored and manipulated as dense matrices-there was little reason 
to believe that similar methods would not be equally appropriate when 
the problem matrices were too large to be stored as dense matrices, but 
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rat her required sparse storage formats. Remarkably then, it is only in 
the latter part of the 1990s that SQP methods for sparse problems have 
started to appear in published software packages, while sparse variants 
of the methods that SQP was supposed to have superseded (for instance 
MINOS, see [50], and LANCELOT, see [16]) have been used routinely 
and successfully during the intervening years. 

In our opinion, this curious divergence between what logically should 
have happened in the 1980s, and what actually came to pass may be 
attributed almost entirely to a single factor: quadratic programming 
(QP) methods (and their underlying sparse matrix technology) were not 
then capable of solving large problems. Witness the almost complete 
lack of software for solving large-scale (non-convex) quadratic programs 
even today, especially in view of the large number of available codes for 
the superficially similar linear programming problem. 

The purpose of this paper is to survey modern SQP methods, and 
to suggest why it is now reasonable to accept the widely-held view that 
SQP methods really are best. There have been a number of surveys 
of SQP methods over the past 20 years, and we refer the reader to 
[1, 17, 56, 57, 61]. Much of the material in this paper is covered in full 
detail in our forthcoming book on trust-region methods [19], which also 
contains a large number of additional references. 

1.2. THE PROBLEM 
We consider the problem of minimizing a (linear or nonlinear ) function 

J of n real variables x, for which the variables are required to satisfy 
a set of (linear or nonlinear) constraints Ci(X) 0, i = 1, ... , m. For 
simplicity, we ignore the possibility that some of the constraints might 
be equations, since these are easily incorporated in what follows, nor 
shall we consider any special savings that can be made if so me or all of 
the constraints have useful structure (e.g., might be linear). We remind 
the reader that if x* is a local solution to the problem, and so long as a 
so-called constraint qualification holds to exclude pathological cases, it 
follows that the first-order criticality conditions 

g(x*) = AT(x*)y*, c(x*) 0, y* 0 and y; c(x*) = 0 (1) 

will hold. Here c(x) is the vector whose components are the Ci(X), 
g(x) = 'VxJ(x) is the gradient of J, A(x) = 'Vxc(x) is the Jacobian of 
c, and y* are appropriate Lagrange multipliers. Notice that the first re­
quirement in (1) is that the gradient 'VxC(x*,y*) ofthe Lagrangian func­
tion C(x, y) = f(x) - yT c(x) should vanish. For future reference, we also 
denote the Hessian ofthe Lagrangian function by H(x,y) = 'VxxC(x,y), 
and will let c_ be the vector whose i-th component is min(ci(x),O), 
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Throughout this paper, we shall make a blanket assumption that 

Al. fand the Ci have Lipschitz-continuous second derivatives (in the 
region of interest). 

Throughout 11 . 11 will denote a generic norm. While there may be 
good practical reasons for choosing a specific norm, and while some of 
the given results have only been established in such a case, we suspect 
there are very few places where general results in arbitrary norms are 
not possible. 

1.3. GENERIC SQP METHODS 
For a most transparent derivation of the basic SQP method, we note 

that the final requirement in (1) (the complementarity condition) implies 
that Lagrange multipliers corresponding to inactive constraints (those 
for which Ci(X*) > 0) must be zero. Thus, so long as the given inequali­
ties hold, (1) may equivalently be written as 

(2) 

where the subscript A* indicates the components corresponding to the 
active set A* = {i 1 Ci(x*) = O}. Of course A* depends on X*, but 
suppose for the time being that we know A*. We then note that, if A* 
has mA. elements, (2) is a set of n + mA. nonlinear equations in the 
n + mA. unknowns x and YA •. 

The best-known method for solving such systems (when it works) 
is Newton's method, and the basic SQP method is simply Newton's 
iteration applied to (2). This leads to an iteration of the form 

where 

) ( Sk ) = _ ( g(Xk) - ) 
o -( Vk)A. CA.(Xk) ' 

(3) 
to correct the guess (Xk, (Yk)A.). Here Hk is a "suitable" approximation 
of H(Xk, Yk), where the nonzero components of Yk are those of (Yk)A •. 
Since this is a Newton iteration, we expect a fast asymptotic convergence 
rate in many cases, so long as Hk is chosen appropriately. Interestingly, 
fast convergence does not require Hk to converge to H(x*, y*), and con­
siderable effort over the past 25 years has been devoted to obtaining 
minimal conditions, along with practical choices of Hk, which permit 
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satisfactory convergence rates. We refer the interested reader to any of 
the previously mentioned surveys, and the papers cited therein, for more 
details. 

Most revealingly, we may rewrite (3) as 

which are the first-order criticality conditions for the (equality con­
strained) quadratic programming problem 

with (Yk+l)A. being its Lagrange multipliers. Notice that the constraints 
here are simply linearizations of the active constraints about the current 
estimate of the solution. Further , this suggests that to avoid having 
to estimate A* in advance, it suffices to consider linearizations of all 
of the constraints, and to solve the (inequality constrained) quadratic 
programming problem 

This provides the basic SQP method: given an estimate (Xk, Yk) and a 
suitable Hk, solve (4) to find Bk, update Xk+l = Xk + Bk, and (if neces­
sary) adjust Yk+l to provide convergence to y*. Remarkably, [60] showed 
that, so long as Xo is sufficiently elose to X*, Ho is sufficiently elose to 
H(x*, y*), and Hk = H(xk, Yk) for k 2:: 1, as weIl as 

A2. the Jacobian of active constraints AA. (x*) is of full rank, 
A3. second-order necessary optimality conditions hold at (x*, y*), 

and 
A4. strict complementarity slackness occurs (Le., [Y*]i > 0 if Ci(X*) = 

0), 

the SQP iteration converges Q-superlinearly, and the set of constraints 
which are active in (4) is precisely the set A* for all sufficiently large 
k. If Yk+l are chosen to be the Lagrange multipliers for (4), the rate is 
actually Q-quadratic. 

The important assumption here is A2, since this ensures that the La­
grange multipliers at x *, as weIl as those for (4) for sufficiently large 
k, are unique. If AA. (x*) is not of full rank, the limiting multipliers 
may not be unique, and the SQP method using the estimates obtained 
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from (4) may not converge Q-quadratically. Of course A2 is a relatively 
strong first-order constraint qualification, and [67J shows that it is pos­
sible to replace this assumption by a weaker one due to [45J while still 
obtaining Q-quadratic convergence. To do so, the subproblem (4) must 
be modified slightly to ensure that its Lagrange multipliers are (locally) 
unique. In fact, Wright's subproblem is equivalent to minimizing an 
augmented Lagrangian function for (4) with respect to x and simulta­
neously maximizing with respect to y while ensuring that y 2': 0. To 
ensure a Q-quadratic rate, the penalty parameter for the augmented 
Lagrangian must approach zero as 0 (max[llxk - x*ll, IIYk - y*IIJ). Bon­
nans and Launay [4J and Hager [38J show that it is also possible to 
remove A4 if A3 is strengthened. 

Since the above iteration is essentially Newton's method, we must, 
of course, be cautious since in general such methods are not globally 
convergent. There have been traditionally two types of globalization 
schemes, linesearch and trust-region methods, and it is these that we 
now consider. 

2. LINESEARCH METHODS 
A traditionallinesearch SQP method computes Sk by solving (4), c:md 

then obtains Xk+l = Xk + (J:kSk for some appropriately chosen stepE,ize 
(J:k. The stepsize is selected so that Xk+l is closer in some way to a 
critical point than its predecessor, and linesearch methods achieve this 
by requiring that cp(xk+d is significantly smaller than cp(Xk) for some 
so-called merit function cp. A highly desirable property of any merit 
function is that critical points of the merit function correspond to critical 
points for the underlying nonlinear programming problem. The most 
widely-used merit functions are non-smooth penalty functions of l;he 
form 

cp(X, 0') = f(x) + 0' Ilc(x)-II, (5) 

which depends on a positive penalty parameter 0', and also smooth exact 
penalty functions of the form 

cp(X, Z, 0') = f(x) - yT(x)(c(x) - z) (6) 

+0' (c(x) - zf (A(x)AT(x) + Zr l (c(x) - z), 

where Z is a diagonal matrix with entries Zi 2': 0, and where y(x) lS 

defined by 
(A(x)AT(x) + Z) y(x) = A(x)\7x f(x). 

Relevant references include [2, 21, 23, 44, 59J. Note that none of these 
functions is actually ideal, since they may sometimes have critical points 
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at values which do not correspond to those for the underlying nonlinear 
programming problem-these rogue values usually occur at points which 
are locally least infeasible. However, it can be shown that critical points 
for the two problems coincide so long as those for the merit function are 
feasible, and so long as the penalty parameter is larger than a problem­
dependent critical value-for smooth exact penalty functions, a further 
requirement like assumption A2 may also be required. 

It is crucial that the SQP step S k and the merit function cp( x) be 
compatible, in the sense that the directional derivative (slope in the 
smooth case) must be negative, for otherwise the linesearch may fail. In 
many cases, this condition is guaranteed when the penalty parameter is 
sufficiently large, and when sr HkSk O. While the latter condition is 
likely to hold asymptotically, there is little reason why it should be true 
far from the solution, unless Hk is itself positive definite. For this reason, 
most active-set SQP methods work under the blanket assumption that 
Hk is positive definite, which is of course a far stronger assumption than 
A3. 

When the function (5) is used, the penalty parameter may have to 
satisfy (J' > IIYk+lIID, where Yk+l are the Lagrange multipliers for (4) 
and 11 . liD is the norm dual to 11 . 11. Such a condition is consistent 
with the problem-dependent critical value alluded to earlier, namely that 
(J' > Ily* IID. An apriori bound on the size of the penalty parameter for 
(6) is harder to obtain, since it depends on the eigenvalues of Hk. 

2.1. SECOND-ORDER CORRECTION 
The main disadvantage of functions like (5)-indeed, of any merit 

function which simply tries to balance f against constraint infeasibility-­
is that there is no guarantee that the SQP step together with a unit 
stepsize O;k = 1 will lead to a reduction of the merit function, however 
close the iterates are to a critical point. Thus the full Newton (SQP) step 
may not be taken, and the iterates fail to converge at the anticipated 
Q-superlinear rate. Indeed, a famous example due to [46] shows that 
this defect can actually occur. The Maratos effect happens because the 
linearization of the constraints fails to take adequate account of their 
nonlinear behaviour. 

The idea of using a second-order correction to cope with the Maratos 
effect first appeared in a number of contemporary papers (see [12, 25, 
47]). The idea is to aim to replace the update Xk+l = Xk + Sk by a 
corrected update 

(8) 
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where sk corrects for the "second-order" effects due to the constraint 
curvature. Let Ak be the set of active constraints at the solution to (4). 
Then a general second-order correction is the solution sk to the system 

( Hk (Xk + Pk) ) ( sk ) _ ( 91. ') 
AAk (Xk + Pk) ° -yfS - - CAk (Xk + Sk) , 

(9) 
for some appropriate Hk' Pk and 91.. In order that the resulting step is 
suitable, we require that 91. and Pk are both small, indeed that 

91. = 0 (1lxk - x*1I max[llxk - x*lI, IIYk - y*ll]) and Pk = O(llxk - x*II)· 
(10) 

Moreover, we also require that Hk is uniformly positive definite on the 
null-space of AAk (Xk +Pk) for all (X:k, Yk) dose to (x*, Y*). Provided that 
these conditions are satisfied, and so long as A2-A4 hold, it is possible 
to show that the corrected update (8) is guaranteed to reduce the merit 
function (5) dose to (x*, y*). Two popular choices are 

Pk = 0, 91. = 0, and Hk = Hk, 

which gives the traditional second-order correction championed by [12, 
25, 47], and 

which corresponds to a se co nd SQP step, and provides the basis for 
the "watchdog technique" suggested by [l1J. Note that other authors 
(for example, [53]) have also shown that a small number (> 1) of SQP 
steps ensure that (5) decreases, but couch their proposal in the language 
of the non-monotone descent methods made famous for unconstrained 
minimization by [37J. In the linesearch context, a search should be made 
along the arc xk+ask+a2sk' with the expectation that ultimatelyak = 1 
and (8) will occur. 

2.2. BOGGS, KEARSLEY AND TOLLE'S 
APPROACH 

The Maratos effect does not occur for (6), and herein lies the popular­
ity of methods based on this function. Traditionally such functions have 
been viewed somewhat unfavourably by most researchers since at a first 
glance they require a Jacobian value and the solution ofthe linear system 
(7) each time a function value is required-this may be very expensive 
if a number of different trial steps are required during the linesearch. 
This difficulty may be avoided by replacing (6) locally by a surrogate 
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(approximation) merit function in which y(x) and A(x) are replaced by 
an appropriate y and A; it can be shown that such an approximation 
is valid, and that with care global convergence properties are retained. 
See [2] for details. 

Boggs, Kearsley and Tolle [3] provide an implementation and positive 
practical experience with such a method. Of particular note is that 
instead of trying to solve (4) directly, they pick three promising estimates 
of the required solution, and subsequently find the best approximation 
to this solution in the subspace spanned by these three vectors, at least 
one of the three directions being chosen to be adescent direction for 
the merit function. A trust-region (see Section 3) is used to limit the 
steps in the tests performed, and updated appropriately, but as yet this 
enhancement has no theoretical underpinning-the current theory for 
the linesearch version requires that Hk be positive definite. 

2.3. SNOPT 
SNOPT is a state-of-the-art linesearch-based SQP method for large­

scale nonlinear programming due to [34]. At present, SNOPT uses a 
positive-definite approximation Hk to the Hessian of the Lagrangian, 
which exploits the fact that frequently many variables only appear lin­
early in the problem formulation, and retains information about previ­
ously encountered curvature via a limited-memory secant update formula 
- we understand that a new version capable of using the exact Hessian 
of the Lagrangian is being tested. Special techniques are used to ensure 
that subsequent updates to Hk maintain positive definiteness. Feasibil­
ity with respect to linear constraints is attained from the outset. An 
augmented Lagrangian merit function is used to assess steps in both x 
and the Lagrange multiplier estimates y. The method is designed to be 
flexible, in that in theory it can use any quadratic programming algo­
rithm, although by default it uses a null-space based active set method, 
which slightly limits the size and type of problems which can be handled. 
In practice, numerical tests have shown SNOPT to be most effective. 

2.4. FEASIBLE POINT APPROACHES 
A particularly appealing idea is to ensure that all iterates remain fea­

sible, since then the objective function is itself a suitable merit function, 
and additionally the linearized constraints are sure to be consistent as 
S = 0 lies in the set {s I C(Xk) + A(Xk)S O}. In a sequence of papers, 
[5, 40, 52, 54] show that this is possible provided precautions are taken. 
It is easy to show that the SQP direction Sk from (4) at a feasible point 
Xk is adescent direction for f(x) provided that Hk is positive definite. 
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However, it may not be a feasible descent direction, i.e., it may not lie 
in the set 

{s I sT g(Xk) < 0 and sT ai(:rk) < 0 for all i E A(Xk)} , (11) 

since sr ai(Xk) may be zero for one or more i E A(Xk)' Thus an arbi­
trarily small step along Sk may violate one or more of the (nonlineu) 
constraints active at Xk. To avoid this difficulty, any feasible descent 
direction sk', and the "tilted" direction sr = (1 - Pk)Sk + pksf, for 
some Pk E (0,1), are determined. The tilted direction is itself a feasible 
descent direction, and, so long as Pk converges to zero sufficiently fast, 
retains the fast asymptotic convergence properties of the original SQP 
direction. However, since these properties only arise if an asymptotic 
unit step is taken, a second-order correction rat her like sk from (9) may 
be necessary. The FSQP algorithm of [54] is based on these ideas, and 
can be shown to be globally convergent under suitable assumptions on 
Hk, and the requirement that (11) is non-empty, which amounts to a 
constraint qualification. Further, Q-superlinear convergence is achieved 
under the additional assumptions A3 and A4. Although this method 
has only been considered for small problems, it is not difficult to imag­
ine how to generalize it by taking approximate solutions to the various 
subproblems. As with most linesearch methods, the requirement that 
Hk be positive definite is its major weakness. 

3. TRUST-REGION METHODS 
The second important dass of methods designed to ensure global con­

vergence of locally convergent minimization algorithms are trust-region 
methods. Rather than controlling the step taken along the SQP direc­
tion (having computed the direction), trust-region methods aim to con­
trol the step at the same time as computing the search direction. Such 
methods hold a distinct advantage over linesearch methods, in that Hk 
is not required to be positive definite. 

To simplify our discussion, consider first the unconstrained minimiza­
tion of a nonlinear smooth function f. At the k-th iteration, a model 
mk(xk + s) of f(Xk + s) is used. This model is merely required to re­
semble f increasingly accurately as s approaches zero, and is believed to 
be a good approximation for all s within a trust region Ilsllk :s: ßk for 
some appropriate, possibly iteration-dependent, norm 11 . Ilk and radius 
ßk > O. If this is the case, an approximate minimizer of mk should 
provide a good estimate of the minimizer of f within the same region. 
The first stage of a trust-region method is thus to compute a suitable 
approximate minimizer Sk of mk within the trust region. If our hypoth­
esis is correct, we would then expect mk(xk) - mk(xk + Sk) to be a good 
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approximation to f(Xk) - f(Xk + Sk); if this confidence is repaid, we set 
Xk+l = Xk + Sk, and possibly increase the radius. On the other hand, 
when mk(xk) - mk(xk + Sk) and f(Xk) - f(Xk + Sk) are very different, 
our hypothesis is invalid, that is to say ßk is too large. In this case, we 
set Xk+l = Xk, and ensure that ßk+l significantly less than D..k. This 
extremely simple framework is imbued with very powerful global conver­
gence properties under extremely modest assumptions (see, for example, 
[19]). In practice, all that is required of the step is that it reduces the 
model by at least a fixed fraction of the reduction that can be obtained 
by approximately minimizing the model within the trust-region along a 
gradient-related direction (such as - 9 (x k) ). This one-dimensional mini­
mization problem is often trivial; the resulting point, the Cauchy point, 
plays a key role in the convergence theory for trust-region methods. A 
most important result is that if a Newton model-the first three terms of 
a Taylor expansion-is used, and if the model is minimized sufficiently 
accurately, the trust region constraint will become inactive asymptot­
ically, and the resulting full Newton step will provide a Q-superlinear 
convergence rate. 

Turning now to the constrained case, it is reasonable to expect to 
replace the objective function by a suitable merit function, and to build 
a model of this merit function. However, if we try to impose a trust­
region constraint Ilsllk ::; D..k on top of the linearized constraints C(Xk) + 
A(Xk)S 0, we immediately see a difficulty. Simply, if C(Xk) is nonzero, 
the intersection of linearized constraints with the trust region will be 
empty if ßk is too small. Thus, the strategy outlined in the previous 
paragraph, in which the radius is reduced until the model of the merit 
function proves to be adequate, is flawed in the constrained case. 

In this section, we consider a number of ways of avoiding potential 
devastation from this discovery. 

3.1. Sil QP-LIKE APPROACHES 
This approach avoids the incompatibility issue altogether. Simply, 

rather than considering an SQP method directly, we instead aim to 
minimize the unconstrained, non-smooth penalty function (5). Since 
(5) is non-smooth, we cannot appeal directly to trust-region theory for 
smooth unconstrained minimization. However, the basic idea remains 
valid. We model cp(Xk + s, a) as 

1 
mk(xk+s) = f(xk)+sTg(xk)+2sTHks+all (C(Xk) + A(Xk)sL 11, (12) 

where Hk reflects the curvature in both fand c, and aim to approxi­
mately minimize this model within the trust region. All that is really 
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required is to change the definition of the Cauchy point, since the gra­
dient may not exist at Xk. Instead of the negative gradient, it suffices to 
consider the steepest descent direction 

d(Xk) = - arg min 11911, 
gEäcp(Xk ,0") 

where Ö<p(Xk, 0") is the generalized gradient of <p(x, 0") at Xk. Because of 
the polyhedral convex structure of the non-differentiable term min(c, 0) 
in the definition of <p, this generalized gradient may be found by solving a 
linear or convex quadratic program in the commonly occurring cases that 
use the J\, f 2 or f oo norm. While computing the Cauchy point is thus 
undoubtedly more expensive than in the smooth case, the alternative 
of exactly minimizing (12) within the trust region is usually even more 
expensive, since the latter problem may be non-convex (depending on 
Hk)' The original idea here is due to [24] and [26], Section 14.4, who 
proposed minimizing (12) using the Cl norm within an foo-norm trust 
region. The resulting so-called f l QP subproblem can be converted to an 
ordinary QP (with a given initial feasible point) by adding additional 
variables, but is probably best solved as iso A significant advantage of 
this method over almost all of its competitors is that an independence 
assumption like A2 is not required to assure global convergence to a 
critical point of the merit function. 

Asymptotically, so long as the penalty parameter is large enough, the 
SQP and Cl QP directions coincide, and thus we might expect a fast 
asymptoticconvergence rate provided that the trust-region constraint is 
inactive. However, as we noted in Section 2, the SQP direction may suf.­
fer from the Maratos effect, and the same is true of the SCl QP directioL._ 
Thus, the SCl QP direction may not be acceptable, and consequently the 
trust-region radius will be reduced to exclude this step_ The cure is 
exactly as before, namely a second-order correction should be added to 
correct for constraint curvature_ In view of (9), an appropriate correction 
is obtained by minimizing 

within the trust region Iisk + sCllk ::; ßk' A fairly intricate algorithm, 
based on such a correction and proposed by [25], was shown by [72] to 
ensure that the trust-region radius is asymptotically inactive, and thUB 
the iterates can converge Q-superlinearly under assumptions A2-A4. 
Perhaps more simply, all that is required is that the trust region radius 
is reset to at least a fixed positive value whenever a successful step is 
taken, for then the trust-region will not ultimately interfere with the next 
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step Sk and, if needed, the correction sk. Thus either Sk or Sk + sk will 
ultimately be accepted, and the radius is subsequently bounded away 
from zero. Convergence to a second-arder critical point-one for which 
(weak) second-order necessary conditions hold-may also be guaranteed, 
so long as significant negative curvature is exploited in the model, and 
that this negative curvature is reflected in the true problem-this is the 
case, far example, if Hk converges to H(x*, y*). 

To date, it is unc1ear whether it is better to update a as the iteration 
proceeds, or to wait until a critical point of 'P(x, a) has been found before 
doing so. The advantage of the former is that a sequence of problems 
will not be solved, while the disadvantage is that any automatie value 
which aims to predict the correct value may also over-estimate it, leading 
to a poorer conditioned penalty function. 

3.2. VARDI-LIKE APPROACHES 
The remaining approaches to be considered may be termed composite­

step methods. A composite step Sk is computed as the sum of two com­
ponents qk and tk, each of which has different aims. The (quasi-) normal 
component qk is simply intended to improve the linearized infeasibility 
as much as possible while satisfying the trust region constraint. Thus 
the merit function is ignored in this part of the computation. By con­
trast, the tangential component tk aims not to degrade the improved 
infeasibility obtained in the normal step, while now concentrating on 
reducing a model of the merit function. 

For simplicity, we shall suppose in this and the next two sections, that 
our constraints are equations, c( x) = O-we shall return to the inequality 
case in Section 3.5. Recognising that the set 

may be empty, Vardi [66] and Byrd, Schnabel and Shultz [8] instead 
replace the linearized constraints by akc(xk) + A(Xk)q = 0 for some 
o < ak :s; 1, where ak is chosen so that 

is non-empty. Clearly Fk(O) is non-empty, and any value ak :s; a max is 
also suitable, where a max is the greatest a in (0,1] such that 

As finding a max may be expensive,-it may require the computation of 
the projection qC(Xk) of the origin onto the set {q I C(Xk) + A(Xk)q = 
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O} - in practice an approximation qk to qC(Xk) that satisfies C(Xk) + 
A(Xk)qk = 0 may be computed instead, and ak subsequently found so 
that qk = akqk lies within the trust region. In fact, this last condition 
is strengthened so that qk lies strictly within the trust region, allowing 
some "elbow room" for the subsequent tangential step. Notice, however, 
the implicit requirement that the linearized constraints be compatible, 
which is the weakest point of the whole approach. 

Having found the normal step, the tangential step is chosen to reduee a 
model of the merit function. Specifically, if we consider a merit function 
of the form 

cp(X, 0") = f(x) + O"IIc(x) 11, 

and model cp(Xk + s, 0") by mk(xk + s) = mk(xk + s) + O"mk(xk + s), 
where 

mk(Xk + s) = f(xk) + sT g(Xk) + Hks 

and mk(xk + s) = Ilc(Xk) + A(Xk)sll , 

we see that following the normal step, mk(xk + qk) will have decreased, 
but mk(xk + qk) may have increased. To cope with this, we pick the 
tangential step so that 

mk(xk + qk + tk) = mk(xk + qk) and mk(xk + qk + tk) mk(xk + qk) 

(the latter inequality being strict unless g(Xk) + Hkqk = 0) by approxi­
mately solving the problem 

minimize tT(g(Xk) + Hkqk) + -21tTHkt 
tEIRn 

subject to A(Xk)t = 0, and IItil tl.k - IIqkll. 

A suitable Cauehy point for this problem is readily available. So long 
as the linearized constraints are compatible, both normal and tangential 
steps satisfying the above requirements may be computed using suitable 
conjugate-gradient methods, the accuracy required being measured by 
suitable measures of the violation of the criticality conditions for the 
underlying problem. 

Note that there is no apriori guarantee that the separate choices of qk 
and tk provide mk(xk + qk + tk) < mk(xk). However, since mk(xk + qk + 
tk) < mk(xk), one way of ensuring that the model of the merit function 
does decrease is to increase 0" if necessary as the iteration proceeds. A 
simple rule is to increase the parameter to ensure that 

mk(Xk) - mk(xk + qk + tk) TO"(mk(xk) - mk(xk + qk + tk)), 

where the value T E (0,1) is arbitrary but preferably very small. These, 
then, are the essential ingredients in the algorithm, which otherwise 
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follows the standard trust-region paradigm. Any limit point of such an 
algorithm can be shown to be first-order critical. Moreover, the penalty 
parameter cannot grow arbitrarily large. 

Of course, as usual in methods based upon the non-smooth merit 
function rp, it does not follow automatically that a desirable rate of 
convergence occurs. The cure, as alway, is to include a second-order 
correction s'k, satisfying (9), when needed. A suitable rule is to consider 
a second-order correction only when the normal step qk lies well within 
the trust region,-by implication this step is feasible for the linearized 
constraints-and when the original step Sk = qk + tk does not provide 
a sufficient reduction in the merit function. In fact, the actual form 
of second-order correction required depends on the form of Sk. If Sk is 
the standard SQP step (3), then any second-order correction for which 
(10) holds is permitted. On the other hand, if the standard SQP step 
lies outside the trust-region, a specific second-order correction for which 
9'k = 0 is advised-since the first-order criticality conditions for the 
model are not satisfied, there is little sense in trying to correct for them, 
but it is still important to try to correct for constraint curvature. It can 
then be shown that with the usual assumptions A2-A4, the algorithm 
sketched above converges Q-superlinearly so long as the SQP step is 
attempted (asymptotically) whenever possible, so long as the second­
order correction is discarded if it lies too far outside the trust region, 
and so long as the trust-region radius is not reduced when the SQP step 
is acceptable but has a "small" component qk. The same conditions 
suffice to ensure convergence to at least one second-order critical point 
x* under assumption A2 if Hk = H(xk, Yk) and Yk converges to the 
corresponding Y*. 

3.3. BYRD-OMOJOKUN-LIKE 
APPROACHES 

A different composite-step approach is due to (Byrd and) Omojokun 
[6, 51]. It forms the basis of the NITRO, ETR and BECTR algorithms 
of [7, 43, 55], respectively. This approach has a major advantage over 
that in the previous section in that there is no requirement that the 
linearized constraints be compatible, but is otherwise quite similar. 

The major, and essentially only, difference is in the computation of 
the (quasi-) normal step. Rather than shifting the linearized constraint, 
another possibility is to compute qk to approximately 
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for some 0 < eN < 1. This problem may have a large number of 
solutions-the minimum-norm solution will give a component which is 
normal to tk. Since computing an exact solution may be expensive, a 
cheaper option is to find a q that gives a reduction in Ilc(Xk) + A(x.\;)qll 
that is at least a fr action of that achievable at a suitable Cauchy point 
for this problem, such a point being 

where 

As before, such a requirement is satisfied at the first iteration of a 
suitable conjugate-gradient method, and subsequent conjugate-gradient 
steps may be used to furt her reduce the violation. From a theoretical 
point of view, the normal step needs to have a non-trivial component in 
the above-mentioned minimum-norm solution. 

The resulting algorithm offers essentially the same guarantees as its 
predecessor. So long as A(Xk) is of full rank, it follows that limk.-too 
AT(Xk)C(Xk) = 0, indicating that, at worst, limit points are locally least 
infeasible. If the limiting Jacobian is also of full rank, we deduce not 
only limk-+oo C(Xk) = 0, but also that the remaining first-order criticality 
conditions hold, and the penalty parameter remains finite. 

Turning to the issue of fast convergence, essentially the same precau­
tions as before may be used. Since we are ultimately interested in using a 
full SQP step, we shall require that eventually either the normal step lies 
on the "shrunken" trust-region boundary, Le., Ilqkll = eN ßk, or that a 
step that satisfies the linearized constraints, and lies within the shrunken 
trust-region, is possible, Le., C(Xk) + A(Xk)qk = 0 and IIqkll eN ßk. In 
the latter case, if the standard SQP step (3) does not provide a sufficient 
reduction in the merit function, a second-order correction is attempted. 
As before, the exact form depends upon whether the SQP step satisl1es 
the trust-region constraint, in which case a general correction is allowed, 
or if the SQP step lies outside, in which case a restricted correction in 
which 9k = 0 is used. The resulting algorithm then converges at a Q­
superlinear rate under exactly the same conditions as its predecessor, 
and at least one limit point X* is second-order critical if additionally 
Hk = H(xk, Yk) and Yk converges to the corresponding Y*· 
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3.4. CELIS-DENNIS-TAPIA-LIKE 
APPROACHES 

A third way of dealing with the possibility that the linearized con­
straints and the trust region have no common feasible point is to replace 
the former by 

(15) 

where Bk is chosen so that (15) and the trust region bound I/sllk D.k 
can both be satisfied by some s. Clearly, since we wish to reduce the 
infeasibility, we should insist at the very least that 

while another possibility is to require 

min I/C(Xk) + A(Xk)sll Bk min I/C(Xk) + A(Xk)sl/, (17) 
Ilsllk::::6t:..k Ilsllk::::6t:..k 

where 0 < 6 6 < 1. Since solving problems of the form 

min I/C(Xk) + A(Xk)sl/ 
Ilsllk 

for some 0 < 1, which are needed to ensure that B satisfies (16) 
or (17), may be expensive, a cheaper possibility is to find any step q 
which lies within the trust region but which also significantly reduces 
I/C(Xk) + A(Xk)qll· The most popular choice is, of course, the Cauchy 
step (14), but any step which furt her decreases IIC(Xk) + A(Xk)qll is also 
possible. 

Although the computation of a suitable shift q to reduce the infea­
sibility is reminiscent of the composite step methods considered, qk is 
actually only used to find 

(18) 

where the inequality in (18) is strict unless C(Xk) = O. The overall step 
is computed as an approximate solution to the problem 

minimize sT g(Xk) + Hks (19a) 
sEIRn 

for some appropriate Lagrange multiplier estimates Yk and approxima­
tion, Hk, to the Hessian of the Lagrangian. Methods based on these 
suggestions have been proposed by Celis, Dennis and Tapia [10] and 
Powell and Yuan [58]. Notice that by considering the whole feasible 
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region (19b) rather than successive normal and tangential components, 
there is potential for greater reductions in the objective function (19a) 
than with the previous two approaches. Unfortunately, this advantage 
mayaiso be regarded as its Achilles' heel. 

The main disadvantage of these approaches is apparent if one con­
siders (19). If polyhedral norms are used, this subproblem reduces to 
a (possibly non-convex) inequality-constrained quadratic program which 
may prove rat her expensive to solve. On the other hand, if we choose 
the f2 norm, the subproblern involves two quadratic constraints. Thus 
it is unc1ear if or how the powerful techniques which have been devel­
oped for the simpler sub problem involving a single quadratic constraint 
(see, for example, [36, 48]) may or can be applied. In particular, it is 
far from evident how to compute the model minimizer, nor is it obvious 
how to derive a useful approximation-some results for convex models 
have been obtained by [39, 73] and others. Indeed, given that global and 
local convergence theories matching those of the other methods we have 
considered in this section can be developed, we can only surmise that 
the lack of any reported implementation based on the approach taken 
here may be attributed to this disadvantage. We mention in passing that 
all of the methods we are aware of that use this approach use smooth 
exact penalty functions like (6) to force global convergence, but methods 
based on (5) seem to be equally possible. 

3.5. INEQUALITY CONSTRAINTS 
We now return to the case where the constraints are inequalities, 

c(x) O. There are two basic approaches. The first is to extend l;he 
model problem to inc1ude inequalities. As we have already noted, it may 
be that the set 

Fk = {s I C(Xk) + A(Xk)S 0 and Ilsllk ::; ßd 
is empty when ßk is small. Thus, we may instead have to be content 
with a step which moves us towards a solution of the model problem. 
The methods we have considered in the three previous sections have 
achieved this by decomposing the step as Sk = qk + tk, where the (quasi-) 
normal step qk is chosen to reduce the (linearized) infeasibility, and 
the tangential step tk is then determined to reduce the model without 
worsening the infeasibility attained during the normal step. For the 
general problem, much the same approach is valid. 

There are obvious variants of all of the three main approaches we 
have discussed. Consider first the normal step. To extend the Vardi-like 
methods, sketched in Section 3.2, we need to compute a trial step 
which satisfies the linear constraints C(Xk) + A(Xk)S 0, and which is 
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not significantly longer than the projection onto the linearized feasible 
region. We then take a step G:k in this direction as far, or almost as 
far, as we can within the trust region, and set qk = G:kq'{ For the 
Byrd-Omojokun-like approaches of Section 3.3, the normal step should 
be calculated by finding qk to approximately 

minimize 11 (C(Xk) + A(Xk)q) _ 11 subject to Ilqll ::s flk, (20) 
qElRn 

for so me 0 < < 1, essentially as we did in (13). Note that, when the 
problem is defined in terms of the I, 2 or oo norm, and if a polyhe­
dral trust-region is used, (20) can be reformulated as a linear or convex 
quadratic program, and thus, in principle, there are effective methods for 
(approximately) solving it. Finally, to extend the Celis-Dennis-Tapia­
like approaches of Seetion 3.4, we merely need the normal step to give 
us at least as much reduction in 11 (C(Xk) + A(Xk)qL 11 as a step to a 
generalized Cauchy point for this problem. 

Thrning to the tangential step, extensions to both the Vardi- and 
Byrd-Omojokun-like approaches require that the step solves approxi­
mately 

mmlmlze tT(9(Xk) + Hkqk) + 
tElRn 

subject to A(Xk)t > - max [C(Xk) + A(Xk)qk, OJ and 

Iltllk < fl k - Ilqk Iik-
Notice that the linearized infeasibility is made no worse, and attention 
turns instead to reducing the model value. In theory, all that is re­
quired is that the reduction in the model at tk is a positive fraction of 
that attainable at a generalized Cauchy point, such as that proposed by 
[15]. For Celis-Dennis-Tapia-like approaches, the tangential step must 
be calculated to approximately 

minimize sT 9(Xk) + HkS 
sElRn 

subject to 11 (C(Xk) + A(Xk)sL 11 < Bk and (21) 

Ilsll < fl k , 

where Bk = II(c(xk) + A(xk)qk)-II. As before, this approach is less at­
tractive in practice than its predecessors as effective methods for ap­
proximately minimizing (21) are not known. Other details extend in 
an obvious way. In particular, the same merit functions as before are 
appropriate, provided we replace every mention of c( x) by c( x ) _ . 

The second way of moving from the equality-constrained to the general 
problem is to handle inequalities using barrier jinterior-point methods 
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(see, for example, [14, 22, 32, 33, 62, 63, 65)). That is to say, we embed 
the inequality problem within a sequence of barrier problems of the form 

minimize f(x) + b(c(x), Jlk), 
x 

where b(c(x), Jl) is a barrier term like -Jl L::llog Ci(X), and {Jld is a 
sequence of barrier parameters which converge to zero from above. For 
this dass of methods, we ins ist on starting from a strictly feasible point 
for the inequality constraints, that is that c(x) > 0, and we require all 
subsequent iterates to remain strictly feasible for these constraints. 

A typical trust-region method for such a problem models the bar­
rier term using either a Newton (primal) or quasi-Newton (primal-dual) 
approximation. However, since such quadratic models have little influ­
ence in dissuading the iterates from violating one or more of inequality 
constraints, it is crucial to either adjust the shape of the trust region 
to keep the iterates feasible, or to add explicit extra constraints to the 
trust-region subproblems to do this (or both). The main difficulty when 
there are nonlinear inequality constraints present is that any additional 
constraints imposed on the trust-region subproblem may be nonlinear. 
For this reason, inequality constraints are often converted to equations 
by introducing slack variables. That is, we replace c(x) 0 by the 
equivalent conditions 

c(x) - v = 0 and v 0, 

and then we solve a sequence of equality constrained minimization prob­
lems 

minimize f(x) + b(v, Jlk) subject to c(x) - v = O. 
X,v 

The advantage of this approach is that we believe that the methods given 
throughout Section 3.2-3.4 are weH-able to deal with nonlinear equality 
constraints, while any ofthe barrierjinterior-point, affine scaling, or [13] 
algorithms are especially suited to linear, and particularly simple bound, 
constraints. Indeed, a careful combination of the Byrd-Omojokun and 
Coleman-Li approaches forms the basis of the algorithm proposed by [6] 
and implemented as NITRO by [7], while the method proposed by [71] 
(see also [68, 69, 70)) is essentially a Vardi-like primal-dual method. Both 
of these methods are reported to perform most effectively in practice. 

There are some disadvantages of adding slack variables. Firstly, we 
have most definitely increased the dimension of the problem. To counter 
this, it is important to realize that the dominant cost of most algorithms 
(at least when function values are inexpensive) tends to be that for the 
linear algebra. In practice, significant algebraic savings may be made 
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be recognising that slack variables only occur linearly in the problem 
reformulation, and each slack variable is associated with a single con­
straint. The second disadvantage is that a suitable scaling of the slack 
variables is often difficult to find-in practice, it is more usual to pick 
the slacks so that c(x) -Dv = 0 and v 2: 0, where the diagonal matrix D 
is supposed to reflect "typical" values of c(x), but the very fact that cis 
nonlinear indicates that a uniformly good D may be hard to determine. 
This has furt her repercussions for trust-region methods since it is usual 
to scale the trust-region norm to account for different scalings of the 
variables. We also note that in practice the trust-region scaling needs to 
reflect the interaction between the nonlinear constraints and the simple 
bounds (see [14]). 

We conclude this short section on inequality constraints with the re­
mark that blending good methods for coping with equality constraints 
with good ones for dealing with inequalities is an extremely active area 
of research. For this reason, we shall say no more here, but await further 
developments, and particularly comparisons of the numerous possibili­
ties, with interest. 

3.6. FILTER METHOnS 
The last method we shall consider is the youngest, and certainly one 

of the most promising. The central idea is to dispense with the idea of 
using a merit function as a means of encouraging global convergence as 
far as is practically possible, and instead to use a mechanism which is 
less likely to reject candidate iterates. One such mechanism is a so-called 
filter. 

Suppose B( x) is some measure of the infeasibility of the constraints at 
x, for example B(x) = Ilc(x )_11. A filter is a list of pairs {(f (Xi), B(Xi))}, 
with the property that no member of the filter is dominated by another, 
that is there are no two (f(Xi), B(Xi)) and (f(Xj), B(xj)) (i i- j) for which 

The key point is that the filter may be used as a mechanism to accept 
or reject candidate iterates: a candidate will only be rejected if it gives 
"larger" values of both the function value and constraint violation than 
have been observed before. Contrast this to a merit function, which tries 
to combine these two (conflicting) requirements in a somewhat arbitrary 
way. An SQP-filter method aims to use the filter as a me ans of assessing 
iterates Xk + Sk, where Sk is a suitable approximation to the solution of 
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the trust-region SQP subproblem 

minimize mk(xk+s) subject to c(xk)+A(Xk)s:2: 0 and Ilsllk::; Dok, 
sErn.n 

(22) 
where mk(xk + s) = f(Xk) + sT g(Xk) + The filter evolves as 
new iterates are accepted; the new iterate (or rat her its (j,O) pair) may 
be added to the filter, while the act of adding a new pair can result 
in the removal of previous members which are now dominated by the 
newcomer. 

Of course, the reader may object immediately that such a simple­
minded approach has obvious fiaws. The first is, as always, that (22) 
may not have a solution because either the trust-region radius is too 
small, or because the linearized constraints are inconsistent. The cure 
is simply to abandon temporarily the objective function, and to enter a 
restoration phase, whose sole purpose is to reduce the infeasibility O(x). 
The end of the restoration phase is reached at Xk + rk, at which ei­
ther the set {s I C(Xk + rk) + A(Xk + rk)s :2: 0 and Ilsllk+1 ::; Dok+d is 
non-empty for some Dok+1 > 0 and for which (J(Xk + rk), O(Xk + rk)) is 
acceptable for the filter, or Xk + rk is a critical point for O(x )-in ei­
ther case, such a point may be achieved by (approximately) minimizing 
O(x). The second fiaw is that it is easy to imagine a sequence of iter­
ates each of which is barely acceptable to the (current) filter, but whose 
limit point is not critical-such a potential difficulty arises in most min­
imization methods, and the cure as always is to require that the iterates 
provide a "sufficient" improvement in the filter. A suitable rule is that 
an acceptable iterate must satisfy 

f(Xk + Sk) < f(Xj) - ,O(Xj) or O(Xk + Sk) < (1 - ,)O(Xj) 

for all Xj in the filter, where , E (0,1). 
Fletcher and Leyffer [30J demonstrate that an SQP-filter method based 

on the above, and including a number of other heuristics, is most effec­
tive in practice. The stated goal of requiring minimal interference from 
the filter is vindicated, and evidence is provided to show that other SQP 
methods (specifically the SR I QP method discussed in Section 3.1) fre­
quently suffer more interference from their merit functions. In order to 
prove convergence of an SQP-filter method, specific rules for when to 
include an iterate in the filter, what sort of approximate step may be 
tolerated, and how to adjust the trust-region radius are required. The 
first-such convergence result (for an SLP-filter) was provided by [31J, and 
this has now been extended to the SQP case by [29]. The step is com­
puted as the composite Sk = qk + tk, essentially as we have considered 
in the previous four sections-if an infeasible subproblern is detected 



170 Nicholas I.M. Gould and Philippe L. Toint 

during the normal-step calculation, then the restoration phase is started 
straight away. (A variation in which the step Sk is computed as a whole 
is also possible, although one may have to retreat to the composite step 
under unfavourable circumstances.) Once Sk has been computed, it is 
rejected if either it is unacceptable to the filter or if mdxk + Sk) offers 
a "sufficient" improvement over mk(Xk) but this predicted improvement 
does not translate into an actual improvement in f(x). The trust-region 
radius is reduced whenever a step is rejected. The iterate is added to 
the filter if either it leads to a restoration phase, or if it has been ac­
cepted despite mk(xk + Sk) not giving a "sufficient" improvement over 
mk(Xk). Second-order convergence issues are still open, and are under 
investigation. 

4. QP METHOnS 
Without a doubt, in our opinion, the primary reason SQP methods are 

back in the ascendant is that large-scale quadratic programming (QP) 
methods have matured considerably over the past few years. There are 
a number of reasons for this. At the start of the 1980s, the vast majority 
of QP methods (see the surveys by [26], Chapter 10, and [27], and the 
bibliography in [20]) were of the active set variety, most were specifically 
designed for convex (H positive semi-definite) or even strictly convex (H 
positive definite) problems, and few (if any) were capable of solving even 
medium size problems (for exceptions, see [28, 35]). The latter defect 
was due to two factors. Firstly, the dominant linear algebraic require­
ments usually treated all relevant matrices and associated factorizations 
as dense-while it was easy to anticipate using sparse factorizations, 
this ruled out some of the most successful (orthogonal transformation) 
methods developed for the dense case. Secondly, as problem size in­
creased, the number of iterations rose quite rapidly-in the worst case, 
an exponential number of changes in the active set was possible, and 
while the expected and observed behaviour did not get dose to such 
dire predictions, it was a cause for concern. 

By the turn of the decade, the theoretical (polynomially bounded) 
promise of [42] interior-point linear programming (LP) approach, and 
its successors, had been shown to be realized in practice, and theo­
retical extensions to convex QP were immediate-we note that, as in 
the LP case, only a small fraction of the methods proposed and anal­
ysed have ever been implemented (for exceptions, see [9, 64]). Most 
of the implementations differ from their theoretical counterparts in or­
der to obtain good practical performance, and all of them appear to 
perform considerably better than their worst-case polynomial bound. 
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It is now accepted that interior-point and active-set methods are use­
ful alternatives, but frequently the former are the methods of choice 
when the number of variables is very large. Of course, modern SQP 
methods often require the (approximate) solution of non-convex QPs, 
for which the above-mentioned interior-point methods cannot offer the 
same theoretical guarantees, since non-convex QP is known to be an NP­
hard problem. Nonetheless, it is possible to construct interior-point-like 
methods, which are both globally eonvergent, and whose asymptotic c:on­
vergence behaviour is similar to the loeally convex ease (see, for exam­
pIe, [14, 18, 65]). Early computational experience indicates considerable 
promise for large (say n f"V 105) problems. 

One of the means by which methods for unconstrained minimization 
made the transition from small to large problems was the recognition 
that it is not necessary to solve the relevant model problem very ae­
curately, at least when far from the solution. As we have indicated in 
Section 3, the same is true for SQP methods. However, at present, this 
either requires that the step is computed as a composite, in which two 
Cauchy points are determined (see Sections 3.2, 3.3, and 3.6), or as a 
single step in which an auxiliary computation may be necessary (see 
Section 3.1). As yet, the only method we are aware of that allows a 
direct truncation of the QP subproblem is the active set method of [49]. 
The subproblems in both active-set and interior-point methods may be 
solved by iterative (conjugate gradient-like) methods, although it is cru­
dal, espedally for the latter, to use suitable preconditioners. 

Finally, as to which of the two QP alternatives we suggest is appro­
priate for SQP methods, our answer is both! To justify this, we believe 
that interior-point methods probably hold the advantage for early SQP 
iterations when the active set has far from settled down. By contrast, 
when the active set is essentially known, a few active-set iterations are 
often cheaper than applying an interior-point method, since the laUer 
is difficult to "warm start", i.e., start from a known near optimal (but 
possibly un-centred) vector of variables. Thus we contend that any new 
SQP method for large-scale nonlinear programming should have access 
to both interior-point and active-set non-convex QP algorithms. 

5. CONCLUSIONS 
In this paper, we have surveyed many of the most recent SQP algo­

rithms for nonlinear programming. The majority of them are well-suited 
to large-scale problems, and recent numerical results (see, for exam­
pIe, [30, 71]) indicate that sueh methods are often eonsiderably better 
than state-of-the-art implement at ions of other nonlinear programming 
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algorithms (such as MINOS and, it hurts us to say, LANCELOT). We 
should add that the tests performed are all on medium-sized problems 
(say n rv 103-104 ), but we expect this trend to continue for large ones 
(say n rv 105-106 ) in the near future, provided that options for solving 
core linear systems by iterative (say, preconditioned conjugate-gradient) 
methods are incorporated. It still remains to be seen if the major way in 
which modern SQP algorithms will benefi.t from interior-point technol­
ogy is in the improvements these give to quadratic programming al go­
rithms, or in the ways these suggest for handling inequality constraints. 
It also remains to be seen if new ideas, such as the SQP-filter method 
described in Section 3.6, fulfil their early promise. 
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