
NUMERICAL METHODS FOR LARGE-SCALE
NON-CONVEX QUADRATIC PROGRAMMING

Nicholas I. M. Gould
Computational Science and Engineering Department

Rutheiford Appleton Laboratory

Chilton, Oxfordshire, OX11 OQX, England

n.gould@rl,ac.uk

Philippe L. Taint
Department of Mathematics, FUNDP

Rempart de la Vierge, 8

B-5000 Namur, Belgium

pht@math.fundp.ac.be

Abstract We consider numerical methods for finding (weak) second-order critical points
for large-scale non-convex quadratic programming problems. We describe two
new methods. The first is of the active-set variety. Although convergent from
any starting point, it is intended primarily for the case where a good estimate
of the optimal active set can be predicted. The second is an interior-point trust­
region type, and has proved capable of solving problems involving up to half a
million unknowns and constraints. The solution of a key equality constrained
subproblem, common to both methods, is described. The results of comparative
tests on a large set of convex and non-convex quadratic programming examples
are given.

1. Introduction

In this paper we consider two state-of-the-art algorithms for large-scale
quadratic programming. Our aim is to illustrate the strengths and weaknesses
of the two approaches, and to give the reader some indication of the sizes of
problems that can now be (routinely) solved.

149
A.H. Siddiqi and M. Kocvara (eds.), Trends in Industrial and Applied Mathematics, 149-179.
© 2002 Kluwer Academic Publishers.

150 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

1.1. The generic problem

The quadratic programming (QP) problem is to

minimizeq(x)=gTx+~xTHx subjectto Ax~b. (1.1)
xERn

Here the Hessian matrix H is n by n symmetric, the m by n constraint Jacobian
matrix A has rows af, i = 1, ... ,m, 9 E IRn, b E IRm, and all data is real.
In general, constraints may be bounded on both sides, i.e., bl ::; Ax ::; bU , they
may include equalities Aex = be, simple bounds xl ::; x ::; xu, and a variety
of other interesting (and potentially exploitable) structure (such as those that
arise from networks). For simplicity, we shall concentrate on problems of the
generic forms (1.1) and

minimize q(x) = gT X + ~xT Hx subject to Ax = b and x ~ 0, (1.2)
xERn

and merely remark that modem quadratic programming codes should be (and
often are) capable of coping with any of the above special structures without
prompting from the user. We note that it is easy to convert a problem of the form
(1.1) to that of (1.2), and vice versa, and that this is often done transparently by
QP algorithms.

Our particular concern is for medium to large-scale problems, that is those
involving tens or hundreds of thousands of unknowns and/or constraints. There
is already a vast literature concerned with methods appropriate for small prob­
lems (those involving hundreds or low thousands of variables/constraints), and
a number of excellent software packages (see, for instance, [28], [29], [32], and
the references given by Gould and Toint [41]). In addition, we shall make no
assumption on the number of "degtees of freedom" (roughly, the number of
variables minus the number of (active) constraints) encountered, although we
recognize that there is again good (so-called null-space-based) software geared
towards large problems for which the number of degrees of freedom stays small.

1.2. Applications

Quadratic programs arise naturally in many hundreds of applications, in­
cluding portfolio analysis, support vector machines, structural analysis, VLSI
design, discrete-time stabilization, optimal and fuzzy control, finite impulse re­
sponse design, optimal power flow and economic dispatch. The online bibliog­
raphy of Gould and Toint [41] contains over 1000 QP-related references, exclud­
ing those to the vital application of recursive/sequential/successive quadratic
programming (SQP) methods, by which general constrained optimization prob­
lems are attacked by solving a sequence of suitable approximating quadratic
programming models (see [6], and [42] for a description of SQP methods).

Nicholas I. M. Gould and Philippe L. Toint 151

1.3 Convexity and non-convexity

Quadratic programming problems are normally classified as either being convex or non-convex purely on

the basis of whether H is positive semi-definite or not. Convex QP problems are provably easy in the

sense that there are (many) polynomial time solution algorithms (see, e.g. Vavasis, 1991), the best of these

having polynomial iteration bounds of O(max(m,n)
1
2) times the encoding length of the problem data, and

an observed practical behaviour which appears essentially independent of m and n. Non-convex problems,

on the other hand, are NP-hard (see, e.g., Vavasis, 1990). Furthermore, just finding a local minimizer of a

non-convex QP is NP-hard—there are some methods that can guarantee to be within a certain fraction of

local criticality in polynomial time (see, Ye, 1997)—as is even establishing that a given first-order critical

(constrained stationary) point is a local minimizer (see, e.g., Murty and Kabadi, 1987, and Pardalos and

Schnitger, 1988). This is particularly unfortunate since Newton-SQP models are based on the (naturally)

indefinite Hessian of the Lagrangian, and thus give rise to non-convex QPs. Thus, regrettably, we shall

content ourselves in this paper with methods which aim for what we shall call weak second-order critical

points.

1.4 Optimality

Any point x∗ that satisfies the conditions

Ax∗ ≥ b (primal feasibility)

Hx∗ + g +AT y∗ = 0 and y∗ ≤ 0 (dual feasibility)

(Ax∗ − b)i · y
∗
i = 0 for all i (complementary slackness)

(1.3)

for some vector of Lagrange multipliers y∗ is a first-order critical (or Karush-Kuhn-Tucker) point for the

QP (1.1). The active set at x∗ is

A(x∗) =
{

i | aTi x
∗ = bi

}

,

and the critical point is strictly complementary if and only if y∗i < 0 for all i ∈ A(x∗). Let

C(x∗) =

{

s

∣

∣

∣

∣

aTi s = 0 for all i ∈ A(x∗) such that y∗i < 0 and

aTi s ≥ 0 for all i ∈ A(x∗) such that y∗i = 0

}

. (1.4)

Any first-order critical point x∗ for which additionally

sTHs ≥ 0 (resp. > 0) for all s ∈ C(x∗)

is a second-order (resp. strong second-order) critical point. The importance of the cone (1.4) becomes

apparent in the following theorem.

Theorem 1.1. (Contesse, 1980, Mangasarian, 1980, Borwein, 1982). x∗ is a (an isolated) local

minimizer of the QP (1.1) if and only if x∗ is (strong) second-order critical.

Notice that quadratic programming is highly unusual, as its necessary and sufficient optimality condi-

tions coincide. Since, as we have said, checking a first-order critical point for (local or global) optimality

is NP-hard unless the problem is convex, we cannot hope to ensure second-order criticality, so instead, we

weaken our aim. Let

M(x∗) =
{

s | aTi s = 0 for all i ∈ A(x∗)
}

Any first-order critical point x∗ for which additionally

sTHs ≥ 0 for all s ∈ M(x∗)

152 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

is a weak second-order critical point. Note that a weak second-order critical point may be a maximizer.

However, checking for weak second-order criticality is easy, since now all we are requiring is that H be

positive semi-definite over a manifold (the null-space of the active constraints), rather than the cone (1.4)

required by Theorem 1.1. If, by chance, x∗ turns out to be strictly complementary, the cone and manifold

coincide, and x∗ is a local minimizer.

1.5 Algorithms

The rest of the paper is concerned with algorithms for the solution of (1.1) or (1.2) (as appropriate).

Since the fundamental subproblem we shall encounter in both of our main approaches is one in which

there are only equality constraints Ax = 0, for which right-hand-sides are zero, we shall consider this in

Section 2. Our two main algorithmic contenders for the general problem are active (or working)-set and

interior-point (or barrier) methods. We shall develop an active-set method, applied to the problem (1.1),

in Section 3, and follow this in Section 4 with a description of an interior point method, this time applied

to the problem (1.2). The two approaches will be compared numerically in Section 5, and we conclude in

Section 6.

2 Equality constrained problems

In this section, we concentrate on the equality constrained quadratic programming (EQP) problem

minimize
x∈IR

n

q(x)
def
= gTx+ 1

2
xTHx subject to Ax = 0. (2.1)

We shall assume that the m by n matrix A is of full-rank, and must be prepared to preprocess the problem

to ensure that this is so—in general, this is only an issue for the first of the sequence of problems of the

form (2.1) that our QP algorithms will solve, since subsequent subproblems inherit the property from their

predecessors. Although the determination of rank is a tricky numerical problem, simple techniques like a

sparse LU factorization with suitable pivoting usually succeed.

2.1 Optimality and consequences

The first-order criticality conditions for the EQP problem (2.1) are that there are Lagrange multipliers y

for which
(

H AT

A 0

)(

x

y

)

=

(

−g

0

)

. (2.2)

Second-order necessary optimality requires that sTHs ≥ 0 for all s for which As = 0, while we shall say

that H is second-order sufficient if sTHs > 0 for all s 6= 0 for which As = 0. There are four resulting

possibilities.

Firstly, if (2.2) holds and H is second-order sufficient, it follows that x is the unique solution to (2.1).

Secondly, if (2.2) holds, H is second-order necessary, but there is a vector s for which Hs = 0 and As = 0,

then there is a family of weak minimizers x+αs for any α ∈ IR. Thirdly, if there is an s for which As = 0,

Hs = 0 and gT s < 0 simultaneously hold, it follows that q(·) is unbounded from below along the direction

of linear infinite descent s. Finally, if there is an s for which As = 0, sTHs < 0 and sT g ≤ 0, it follows

that q(·) is unbounded from below along direction of negative curvature s. Our aim is thus to determine

a solution to (2.1) if at all possible, and failing that to find a direction of infinite descent (i.e., negative

curvature or linear infinite descent) along which q(·) is unbounded from below (for a discussion of these

issues, see Conn and Gould, 1984).

Nicholas I. M. Gould and Philippe L. Toint 153

2.2 An algorithm

We shall not go into a taxonomy (see Fletcher, 1987a, or Gill et al., 1981). of different ways to solve (2.1)

here, since many of them are inappropriate when there are large number of variables We can rule out

range- and null-space methods that rely on matrix factorizations as general purpose techniques, and must

be suspicious of methods that aim to factorize the coefficient matrix (the ”KKT” matrix)

(

H AT

A 0

)

(2.3)

of (2.2) since the factors may fill-in significantly. The alternative to factorization-based approaches are

iterative methods, and it is from these that we have selected our candidate. Probably the most obvious

approach is to use the constraints Ax = 0 to eliminate variables, and to apply the conjugate-gradient (CG)

method to the resulting reduced problem.

Formally this is a null-space method, that is we construct a basis N for the null-space of A (i.e., N is

full rank and AN = 0), use the constraints to write x = NxN , and derive the unconstrained problem

minimize
xN∈IR

n−m

x
N
(NT g) + 1

2
xT

N
NTHNx

N
. (2.4)

The CG method is ideal for (2.4), since it is capable of finding a stationary point when that is required,

and a direction of infinite descent when that is available—care has to be taken in the latter case, since the

CG iteration can stall if the associated Krylov space is degenerate, but can be restarted if necessary (see,

for example, Gould, Lucidi, Roma and Toint, 1999).

The disadvantage of this approach, aside from needing a null-space basis, is that it is less than obvious

how to precondition the iteration (but, see, Coleman and Verma, 1998); in practice it is rare to use

CG without some form of preconditioning. The approach we prefer was originally proposed by Polyak

(1969), enhanced by Coleman (1994) and extended by Gould, Hribar and Nocedal (1998). The difference

between this approach and that suggested by (2.4) is that the projection of the iterates into the null-space

is performed implicitly. Moreover preconditioning is performed as part of the projection in, what we

believe is, a natural way. The preconditioned projected conjugate gradient (PPCG) method is given as

Algorithm 2.1.

Algorithm 2.1: Preconditioned Projected Conjugate Gradients

Choose an initial point x satisfying Ax = 0, compute r = Hx + g, v = P [−r] and p = −v. Repeat

the following steps, until a convergence test is satisfied:

α = −rT v/pTHp (2.5)

x ← x+ αp (2.6)

r+ = r + αHp (2.7)

v+ = P [−r+] (2.8)

β = (r+)T v+/rT v (2.9)

p ← v+ + βp. (2.10)

v ← v+ and r ← r+ (2.11)

Notice that r is nothing other than the gradient g+Hx of q at x. Observant readers will recognise this as

the usual (preconditioned) conjugate-gradient iteration for unconstrained quadratic minimization, with a

so-far undefined preconditioning step (2.8).

154 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

Given an input vector g, the all-important preconditioning/projection operation v = P [−r] requires

that the output v satisfies the linear system

(

M AT

A 0

)(

v

y

)

=

(

−r

0

)

, (2.12)

for some “appropriate” symmetric matrix M and some auxiliary vector y. Formally, the only restriction

on M is that it should be second-order sufficient, although early proposers of Algorithm 2.1 made the

simplifying assumption that M be positive definite (Coleman, 1994) or even the identity matrix (Polyak,

1969).

Notice the similarity in form between (2.2) and (2.12). If H is itself second-order sufficient, the choice

M = H is permissible, in which case (2.2) and (2.12) are (essentially) identical, and the PPCG method

will terminate in a single iteration. There are, however, sometimes good reasons to avoid such an obvious

choice. Firstly, there is no a priori reason why H should be second-order sufficient in general. Secondly,

some form of (explicit or implicit) factorization of the coefficient matrix

K =

(

M AT

A 0

)

(2.13)

of (2.12) is required to obtain P [−r]—it is customary to use a sparse variant (see Duff, Reid, Munksgaard

and Neilsen, 1979, Duff and Reid, 1983, Duff, Gould, Reid, Scott and Turner, 1991, or Vanderbei and

Carpenter, 1993) of one of the symmetric-indefinite factorizations originally suggested by Bunch and

Parlett (1971), Bunch and Kaufman (1977) and Fletcher (1976), for which there is good available software

(for example, the HSL, 2000, codes MA27 and MA57). The matrix (2.3) and its factors may have significantly

more nonzeros than (2.13), and thus the cost of the operation (2.8) may be considerably reduced with an

appropriate choice of M—of course, as always with preconditioning, this cost has to be balanced against

an increase in the number of PPCG iterations resulting from a poor choice of M . As an extreme example,

if M is nonsingular, a block elimination of (2.12) reveals that

Mv = −(r +AT y), where AM−1AT y = −AM−1r,

and it follows from the second-order sufficiency of M that AM−1AT is non-singular and has precisely as

many negative eigenvalues as hasM (see Chabrillac and Crouzeix, 1984, and Gould, 1985). If, additionally,

M is diagonal, and thus trivial to invert, and positive definite, AM−1AT is also positive definite and thus

amenable to (sparse) Cholesky factorization.

The precise form of M is an open research topic, although recent work has investigated the influence

of different M on the convergence of the PPCG method (see Keller, Gould and Wathen, 2000), as well

as proposing a number of possible choices for M (see Keller, 2000). Some caution must be exercised

when computing the preconditioning step (2.12), since the entire PPCG method depends crucially on

the relationship Av = 0. In floating point arithmetic, rounding can sometimes significantly violate this

requirement especially when v is small (relative to y), but fortunately judicious use of iterative refinement

or similar methods can control this potential drawback (see Gould et al., 1998).

It is usual to stop when |rT v| ≡ |vTMv| is (relatively and/or absolutely) small, or when a fixed limit

on the number of iterations has been exceeded. If vTMv = 0, it follows that v = 0 since Av = 0 and

M defines a norm on this manifold. In this case, (2.12) implies that r + AT y = 0 = g +Hx + AT y and

Ax = 0, and thus that the auxiliary variables y are actually Lagrange multipliers, c.f. (2.2). While this is

not the case if vTMv 6= 0, we may still regard y as usable Lagrange multiplier estimates so long as vTMv

is small.

2.3 Negative curvature

Of course, as Section 2.1 suggests, Algorithm 2.1 will only solve (2.1) when H is second-order sufficient.

In other cases—principally when H is indefinite on the manifold Ax = 0—the best we can hope from the

Nicholas I. M. Gould and Philippe L. Toint 155

algorithm as stated is that it finds a constrained stationary point. Fortunately, we can do better. The key,

as before, is to recognise that the PPCG method is (a projected) conjugate gradient method in the null-

space of A. If the denominator pTHp in (2.5) is less than (or equal to) zero, the problem is unbounded from

below (or at best has a weak solution) since, by construction, the same p satisfies Ap = 0. Once negative

curvature has been detected, we can do one of two things: stop, or try to find an even “better” direction

of negative curvature, possibly even one which gives the “most-negative” curvature, which corresponds to

the smallest eigenvalue of H restricted to the null-space of A. To obtain “good” negative curvature, we

simply recognise that the (preconditioned) conjugate-gradient and Lanczos methods are actually one-and-

the-same (see, for instance, Golub and Van Loan, 1989, and, particularly, Conn, Gould and Toint, 2000a,

for further details). When the problem is unbounded from below, we shall require that the “solution”

obtained is just such a direction of infinite descent.

2.4 Trust-region constraints

A related, and (for us) vitally important, variant of problem (2.1) is the constrained trust-region subprob-

lem

minimize
x∈IR

n

q(x)
def
= gTx+ 1

2
xTHx subject to Ax = 0 and ‖x‖M ≤ ∆, (2.14)

where ‖x‖2M = xTMx, for some given “radius” ∆ > 0 and second-order sufficient symmetric matrix M .

Notice that although ‖ · ‖M is not a norm—it is a semi-norm—it is a norm on the manifold Ax = 0. If we

explicitly transform into the null-space of A via x = NxN , the trust-region subproblem (2.14) becomes

minimize
xN∈IR

n−m

x
N
(NT g) + 1

2
xT

N
NTHNx

N
subject to ‖x

N
‖NTMN ≤ ∆. (2.15)

We can (approximately) solve (2.15) using either the Steihaug (1983)–Toint (1981) truncated conjugate-

gradient method (this stops on the boundary of the trust-region ‖x
N
‖NTMN ≤ ∆ if it gets that far) or

the generalized Lanczos trust-region (GLTR) method of Gould et al. (1999) (which continues around the

trust-region boundary if necessary). It will come as no surprise that precisely the same methods can

be performed implicitly, exactly as in Algorithm 2.1: the PPCG iteration is performed so long as the

iterates lie within the trust-region ‖x‖M ≤ ∆, but once an iterate encounters the trust-region boundary,

the method either halts (Steihaug-Toint) or moves around the boundary while continuing to reduce q(x)

(GLTR). Notice here that it is the same matrix M which appears both in the definition of the trust region,

and in form of the preconditioner. Since (at least in finite-dimension), it matters little from a theoretical

viewpoint precisely which norm defines the trust-region, it is usual to first choose the preconditioner, and

then assign the shape of the trust-region on this basis. The GLTR algorithm (which includes that of

Steihaug-Toint as special case) is available as the package HSL VF05 in the HSL (2000).

3 An active-set method

Active (or as they are perhaps more correctly called, working) set methods aim to find a critical point of

the general problem (1.1) by solving a (potentially long) sequence of related EQPs

minimize
x∈IR

n

q(x)
def
= gTx+ 1

2
xTHx subject to AWx = bW , (3.1)

where the working set W is a prediction of the indices of those constraints which will be active at the

desired critical point—the set subscript W here indicates the submatrix/vector whose rows/components

are indexed by the setW . The defining features of an active set method are: (i) the working set is a subset

of the indices of constraints which are active at the current estimate xC for which AW is of full rank, (ii)

the subproblem (3.1) is actually solved to obtain a search direction sC from xC , and (iii) the next estimate

x+ is obtained as xC + αsC where α is chosen to reduce q(x) or the current infeasibilty (or both).

156 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

Properties (i) and (ii) together imply that the search direction subproblem may be rewritten as

minimize
s∈IR

n

fC + gCT s+ 1
2
sTHs subject to AWs = 0 (3.2)

where gC = g +HxC is the gradient of q at xC , and the constant term fC = gTxC + 1
2
xCTHxC may be

ignored. Thus (3.2) is of the form (2.1) (for the given data), and the methods we discussed in Section 2

may be applied. Recall that by “solving” (3.2), we mean finding a direction of infinite descent (if there is

one) or a weak second-order critical point.

3.1 Generic active-set methods

For simplicity, we suppose that xC is feasible, and that we wish successive iterates to inherit this property.

In practice, feasibility can be achieved by solving a “phase-1” problem, or (as actually happens in our

implementation) feasibility may be relaxed and a composite penalty problem (trading infeasibility against

objective decrease) solved instead (see Section 3.3).

If sC = 0 is the “solution” of (3.2), the associated vector yC of Lagrange multipliers (c.f., (2.2)) may

be used to determine whether q may be further reduced by removing an element from the current working

set (and thereby allowing a step to be taken into the interior of the feasible region for the corresponding

constraint). In particular, if yC

i > 0, the objective function may be further reduced by removing the ith

element ofW , while if yC ≤ 0 (and all the constraints feasible), xC is a weak second-order critical point (c.f.

(1.3)), since the fact that sC = 0 is the “solution” rules out the possibility of infinite-descent directions

from xC.

If sC 6= 0, the objective function may be decreased as α increases from 0, and progress will only be

interupted when an initially feasible constraint, say the jth, becomes active (and thus infeasible for any

larger α). Since, for this constraint aTj s
C 6= 0 while AWsC = 0, aTj must be linearly independent of the

constraints indexed by the current working set. Thus it is safe (at least in theory—caution is needed in

practice to guard against “nearly” dependent working constraints) to setW+ =W
⋃

{j}. If sC points to a

weak second-order critical point of (3.2), and α reaches 1 without interference, xC + sC is optimal for the

current working set; we have reached the position described in the previous paragraph, and thus will need

to remove an index from the working set at the next iteration if we are to make further progress. If sC is

a direction of infinite descent for (3.2), and no constraint interferes as α increases, the original problem is

unbounded from below, and we terminate with this information.

In summary, a working set method is simply a mechanism by which a sequence of EQPs are solved

depending on a given working set; the working set at one iteration differs from its predecessor by the

introduction or removal of a single element. Progress is always possible if nonzero steps α are taken. If

this is the case, termination is finite (but not necessarily rapid or polynomially bounded), since there are

only a finite number of active sets, and each is investigated at most once. The possibility of zero steps arises

when constraints are degenerate, that is active but not in the working set. Many so-called anti-degeneracy

rules have been proposed to deal with this worrying possibility, and by far the easiest in our experience

is to randomly perturb the right-hand-sides of the constraints, and only restore (and refine) the solution

when optimal for the perturbed version—a randomly perturbed problem can “never” be degenerate.

Active set methods for both convex and non-convex QP are considered in more detail by Fletcher

(1987a, 1987b), Gill et al. (1981) and Nocedal and Wright (1999), and the papers contained therein. The

vast majority of existing methods use explicit or implicit (updated) factors of (2.3) to find a stationary

point of EQP. As we have mentioned, this may not be appropriate for large problems, nor is it immediately

obvious how to find directions of infinite descent when they exist. An important class of inertia controlling

methods avoid the second of these potential defects by careful choice of the initial working set (important

examples are those given by Fletcher, 1971 and Gill and Murray, 1978; see the review by Gill, Murray,

Saunders and Wright, 1991), but this can be inconvenient when a user wishes to prescribe this set rather

than letting the algorithm generate it. We believe that the method outlined in Section 2 avoids both of

the above disadvantages.

Nicholas I. M. Gould and Philippe L. Toint 157

3.2 Solving sequences of closely-related EQPs

The main novelty in our approach is in how to solve the sequence of closely related EQP subproblems

that arise in the above generic active-set method when using the method we outlined in Sections 2.2–

2.3. The crucial aspect is that the only significant difference between successive subproblems is that the

preconditioning step (2.12) depends upon different but closely-related AW for each subproblem.

158 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

3.2.1 The Schur complement update method

The overall algorithm we propose is divided into a sequence of major iterations. At the start of each major

iteration, a factorization of the preconditioning matrix

Kk =

(

Mk AT
k

Ak 0

)

,

involving the set of constraints in the current working set, is found—we shall call the set of these constraints

at the start of a major iteration the reference set. As we have already said, the symmetric matrix Mk is

chosen so that it is second-order sufficient, but is otherwise arbitrary. We stress that although it is desirable

to choose a good approximation of H , the overriding concern is that Mk be second-order sufficient. If

Mk is second-order sufficient, we shall say that the augmented matrix Kk is standard. Otherwise, it is

nonstandard.

Having determined the factors of Kk, all subsequent linear systems during the current major iteration

are solved using the Schur complement method. That is to say, if we require the solution of a system
(

Mℓ AT
ℓ

Aℓ 0

)(

sℓ
tℓ

)

= −

(

gℓ
cℓ

)

, (3.3)

for ℓ ≥ k, and if

Mk = Mℓ,

the solution is obtained using the factors of Kk and an appropriate Schur complement involving Mk, Ak

and Aℓ—notice here that thus far we do not allow Mℓ to change during the course of a major iteration.

To be specific, suppose without loss of generality, that

Ak =

(

AC

AD

)

, Aℓ =

(

AC

AA

)

and cℓ =

(

cC
cA

)

, (3.4)

that is that the rows AC are common to Ak and Aℓ, but that the rows AD in Ak are replaced by the rows

AA in Aℓ. In this case, the solution to (3.3) also satisfies the expanded system
















Mk AT
C

AT
D

AC 0 0

AD 0 0

AT
A

0

0

0

0

I

AA 0 0

0 0 I

0

0

0

0































sℓ
tC
tD
tA
uℓ















= −















gℓ
cC
0

cA
0















, (3.5)

where we recover

tℓ =

(

tC
tA

)

.

Notice that the leading 3 by 3 block of the coefficient matrix of (3.5) is simply Kk, and thus that the

system may be written as
(

Kk BT
ℓ

Bℓ 0

)(

vℓ
wℓ

)

= −

(

hℓ

dℓ

)

, (3.6)

for the appropriately repartitioned data

Bℓ =

(

AA 0 0

0 0 I

)

, vℓ =





sℓ
tC
tD



 and wℓ =

(

tA
uℓ

)

,

and right-hand side

hℓ =





gℓ
cC
0



 and dℓ =

(

cA
0

)

.

Nicholas I. M. Gould and Philippe L. Toint 159

Thus (3.6) can be solved in the standard way using the factors of Kk and those of the Schur complement

Sl = −BlK
−1
k BT

ℓ . Crucially, the factors of Sℓ may be updated rather than recomputed every time a

constraint is added to or removed from the working set. It is usual to store the growing matrix Sℓ and its

factors as dense matrices; as a consequence each major iteration is concluded when the dimension of Sℓ

exceeds a given upper limit (or when the cost of continuing to enlarge the Schur complement method is

believed to exceed that of refactorizing Kℓ).

This method was first suggested by Bisschop and Meeraus (1977), and championed by Gill, Murray,

Saunders and Wright (1990, 1991). We have implemented such a method as part of the package MA39 in the

HSL (2000)—the package is actually designed to handle updates in the unsymmetric case, but is capable

of exploiting both symmetry and even a priori knowledge that Sℓ is definite. In principle, a symmetric

indefinite factorization of Sℓ is both possible, and possible to update. However, the details are complicated

(see Sorensen, 1977), and we have chosen instead to use a nonsymmetric (QR) factorization since updates

are then relatively straightforward.

3.2.2 Inertia control

It is important to be able to check that Kℓ is standard at every iteration. Fortunately this is easy.

Specifically, a very minor modification of Gill et al. (1991, Lemma 7.2) gives the following:

Theorem 3.1. Suppose that the most recent reference iteration is k, and that both Kk and Kℓ

(ℓ ≥ k) are standard. Then

In(Sℓ) = (σ−, σ+, 0), (3.7)

where the inertia In(Sℓ) gives the number of positive, negative and zero eigenvalues of Sℓ respectively,

σ+ constraints have been added since the start of the major iteration, and σ− have been deleted.

Since we require that Kk is standard, it follows that if, at any stage, the inertia of Sℓ does not agree with

(3.7), it must be because Kℓ is nonstandard. It is easy to check this condition since the inertia of Sℓ may

be recurred as its factors are updated (in our case, since we are using the non-symmetric QR factors, we

record the determinants Sℓ on subsequent iterations—a change in sign when a single row and column are

added or deleted indicates an extra negative eigenvalue, while a repeated sign indicates an extra positive

one—directly from the products of those of Q and R. We ensure by construction that detQ = 1, while the

eigenvalues of R are merely its diagonal entries.). We now consider the implication of adding and deleting

constraints for the inertia of Sℓ.

3.2.3 Adding a constraint

If Kℓ is standard, and we add a constraint to the working set, Kℓ+1 is also standard provided that

Mℓ+1 = Mℓ. This follows immediately, since as we have already said Kℓ being standard is equivalent to

NT
ℓ MℓNℓ being positive definite, where the columns of Nℓ form am orthonormal basis for the null-space

of the full-rank matrix Aℓ, the fact that

Nℓ =

(

Nℓ+1

nT

)

V

for some vector n and orthonormal matrix V (see Gill, Golub, Murray and Saunders, 1974), and the obser-

vation that NT
ℓ+1Mℓ+1Nℓ+1 is then a principal submatrix of the positive definite matrix V NT

ℓ Mℓ+1NℓV
T =

V NT
ℓ MℓNℓV

T , and hence is itself positive definite.

160 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

3.2.4 Deleting a constraint

Complications arise when we delete a constraint, since then it does not automatically follow that Kℓ+1 is

standard even if Kℓ was. Fortunately, provided we are prepared to modify Mk when necessary, we can

avoid this potential defect.

Suppose the columns of N form an orthonormal basis for the null-space of the full-rank matrix A, i.e.,

AN = 0. Suppose furthermore that NTMN is positive definite. Let

A =

(

Ā

aT

)

in which case

ĀN = 0 and aTN = 0. (3.8)

Then there is a vector n for which the columns of (N n) form an orthonormal basis for the null-space of

Ā, i.e.,

ĀN = 0, NTn = 0 and Ān = 0. (3.9)

Now consider the matrix M + σaaT for some scalar σ. Then

(

NT

n

)

(M + σaaT)(N n) =

(

NTMN NTMn

nTMN nTMn+ σ(aTn)2

)

, (3.10)

where we have used the fact that NT a = 0 from (3.8). Since the columns of (AT N) form a basis for IRn,

we may write

n = ĀTw + αa+Nv

for some vectors finite w and v and scalar α. Premultiplying by nT , and using (3.9) and the orthonormality

of (N n) yields that 1 = αaTn, from which we deduce that aTn 6= 0. Thus we can ensure that the matrix

(3.10) is positive definite by, if necessary, picking σ sufficiently large.

Of course, we are not basing our method on (3.10), but rather on being able to solve augmented systems

like (3.5). In order to accommodate changes to Mk of the type suggested above, we actually need to solve

systems of the form














Mk AT
C

AT
D

AT
A

0

AC 0 0 0 0

AD 0 0 0 I

AA 0 0 0 0

0 0 I 0 SD





























sℓ
tC
tD
tA
uℓ















= −















gℓ
cC
0

cA
0















, (3.11)

where SD is a diagonal matrix. To see why this is appropriate, on eliminating tD and uℓ and using (3.4),

we obtain
(

Mk +AT
D
SDAD

AT
ℓ

Aℓ 0

)(

sℓ
tℓ

)

= −

(

gℓ
cℓ

)

, (3.12)

which is (3.3) with

Mℓ = Mk + AT
D
SA

D
.

A diagonal entry in SD need only be nonzero if the resultingKℓ would otherwise be nonstandard. Crucially,

as before, the leading 3 by 3 block of (3.11) is simply Kk, and thus that the system may be written as

(

Kk BT
ℓ

Bℓ Dℓ

)(

vℓ
wℓ

)

= −

(

hℓ

dℓ

)

, (3.13)

where

Dℓ =

(

0 0

0 SD

)

.

Nicholas I. M. Gould and Philippe L. Toint 161

Thus (3.13) can be solved in the standard way using the factors of Kk and those of the Schur complement

Sl = Dℓ − BlK
−1
k BT

ℓ , and the factors of the latter can be updated as the working set changes.

To see this, suppose (without loss of generality) that we have added constraint terms whose Jacobian

is AA, and now intend to remove the first row from AD. The resulting Schur complement is then

S(σ) =

(

0 0

0 σ

)

−

(

−BK−1BT −BK−1b

−bTK−1BT −bTK−1b

)

=

(

QR v

vT σ + β

)

=

(

Q 0

0 1

)

HTH

(

R w

vT σ + β

)

= Q̄R̄(σ),

where
B =

(

AA 0 0
)

, bT =
(

0 0 1
)

,

QR = −BK−1BT , v = −BK−1b, β = −bTK−1b and w = QT v,

and the orthonormal matrix

H =
(

H̄ h
)

is a product of plain rotations chosen to eliminate the spike vT (see Gill et al., 1974). But then

R̄(σ) = H

(

R w

vT σ + β

)

=
(

H̄R+ hvT H̄w + βh
)

+ σ
(

0 h
)

= R̄(0) + σ
(

0 h
)

and the introduction of σ simply adds σh to the last row of the updated upper triangular factor R̄(0).

Fortunately, the updated orthonormal matrix is

Q̄ =

(

Q 0

0 1

)

HT =

(

QH̄T

hT

)

,

and hence h is available. We can evaluate the sign of the determinant of R̄(0), and if this indicates that

the new K is nonstandard, add a sufficiently large σ to change the sign of the last diagonal of R̄.

3.2.5 Further improvements

As described above, the dimension of the Schur complement Sl increases every time a change is made to

the working set. It is also possible, and desirable, to note that when a non-reference constraint is chosen

to leave the Schur complement, or when a previously-deleted reference constraint wishes to re-enter, the

same effect may be achieved by removing an appropriate row from Sl. The advantage is that a major

iteration can then span a large number of minor iterations, and this prolongs the usefulness of the current

reference matrix Kk. Further details are given by Gould and Toint (2001a).

3.3 Other details

As we briefly mentioned, rather than use a two-phase method to solve (1.1), our implemented version is

based on a minimization of the ℓ1 exact penalty function

gTx+ 1
2
xTHx+ ρ‖min(Ax− b, 0)‖1, (3.14)

for some appropriately large value of the penalty parameter ρ > 0. Such an approach was first considered

for QP by Conn and Sinclair (1975) and Han (1981), and aside from the step-length selection, is essentially

based on the preceeding algebraic manipulations. Our Fortran 90 package HSL VE19 is close to completion

and will shortly be available as part of HSL (2000); a more basic version, qpa (which differs simply in

that the older-but-widely available HSL matrix factorization routine MA27 is used instead of its more up-

to-date-but-proprietary companion MA57), will ultimately be part of our evolving nonlinear programming

library GALAHAD. The implemented algorithm uses a number of “tricks” not mentioned here, but is

based on that described above. See Gould and Toint (2001a) for more details.

162 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

4 An interior-point method

A second class of methods is based upon the sequential minimization of logarithmic barrier functions

as advocated by Fiacco and McCormick (1968). Although maligned in the 1970s and early 1980s, these

interior-point methods have subsequently proved to be probably the most successful means of solving large-

scale convex optimization problems. The state-of-the-art for convex QP is represented by the methods

proposed by Carpenter, Lustig, Mulvey and Shanno (1993), Vanderbei (1994), Zhang (1994), Wright

and Zhang (1996), Ye (1997) and Altman and Gondzio (1998), most of which have resulted in software

packages—the LOQO package of Vanderbei and others is capable of dealing with non-convex (and even

non-quadratic) problems.

Since we are interested in non-convex problems, we aim to extract the best aspects from the above,

while including precautions to ensure global convergence to a weak second-order critical point. To simplify

matters, we shall consider the alternative version (1.2) of our problem; we could have used the original

(1.1) version, but there are implementational advantages with the alternative.

4.1 The barrier problem and optimality

The barrier function approach replaces (1.2) by a sequential solution of the logarithmic barrier problem

minimize
x∈IR

n

φ(x, µ) = gTx+ 1
2
xTHx− µeT log x subject to Ax = b, (4.1)

where e is the vector of ones, log x is the vector with components log xi, and µ is a strictly positive barrier

parameter. We shall insist that there is a strictly feasible interior point x0, that is that Ax0 = b and

x0 > 0, and that all iterates remain strictly feasible—the logarithmic singularity for the barrier function

φ(x, µ) and the act of minimization makes it impossible for iterates to approach the boundary too closely.

We note that many of the interior-point methods we mentioned above do not require an interior point,

but it is not clear to us then which are the best ways to balance infeasibility against optimality in the

non-convex case.

A first-order critical point x(µ) for (4.1) satisfies

Ax(µ) = b and x(µ) > 0 (strict primal feasibility)

Hx(µ) + g +AT y(µ)− z(µ) = 0 and z(µ) > 0 (strict dual feasibility)

xi(µ) · zi(µ) = µ for all i (perturbed complementary slackness),

(4.2)

where y(µ) are Lagrange multipliers for the equality constraints, z(µ)
def
= µX(µ)−1e, and (generically) X

is the diagonal matrix whose entries are the xi. Comparing this with the first-order criticality conditions

for (1.2),

Ax∗ = b and x∗ ≥ 0 (primal feasibility)

Hx∗ + g +AT y∗ − z∗ = 0 and z∗ ≥ 0 (dual feasibility)

x∗
i · z

∗
i = 0 for all i (complementary slackness),

(4.3)

it is clear that

lim
µ→0+

x(µ) = x∗, lim
µ→0+

y(µ) = y∗ and lim
µ→0+

z(µ) = z∗

under an appropriate non-singularity condition. It is also possible to draw an equivalence between the

weak second-order criticality conditions for the two problems (see Auslender, 1979), although the strong

second-order conditions do not coincide since there are problems for which the limit of a strong-second

order critical point for (4.1) turns out to be a maximizer of (1.2) (see Gould and Toint, 1999). Thus

the most we can expect of an interior-point method based on a (logarithmic) barrier function is that we

achieve a weak second-order critical point.

Nicholas I. M. Gould and Philippe L. Toint 163

4.2 A barrier algorithm

The obvious barrier algorithm comprises an inner iteration, in which an approximate (second-order) critical

point of the barrier (4.1) is determined, and an outer iteration, in which the barrier parameter, and

attendant inner-iteration convergence tolerances, are adjusted (and ultimately reduced to zero).

In order to state our preferred methods, we shall use the following terminology. A scalar valued function

ǫ(α) ≥ 0 is a forcing function if ǫ(α) = 0 if and only if α = 0. Given a second-order sufficient matrix M

and a null-space basis matrix N for A, we define the semi-norm ‖ · ‖[M,N] so that

‖r‖[M,N] = ‖N
T r‖(NTMN)−1 ;

it is straightforward to show that this may be more conveniently calculated as ‖r‖[M,N] = −r
T v, where v

satisfies (2.12). We shall use this semi-norm to measure distance from the null-space of A. In addition,

for any symmetric matrix B, we let

λmin

M,N (B) = λmin((NTMN)−
1
2NTBN(NTMN)−

1
2)

where λmin denotes the smallest (leftmost) eigenvalue of a given matrix.

4.2.1 The inner iteration

In principle, the inner iteration appears straightforward. The subproblem (4.1) is a (non-convex) linearly

constrained optimization problem for which we are given a feasible interior point. Thus, enforcing feasibility

for the linear constraints Ax = b is simply a matter of choosing corrections s for which As = 0. Although

linesearch-based methods for (4.1) are possible, we are attracted by the alternative, trust-region-based

approaches, since their convergence properties are easy to derive—similar properties for linesearch methods

are possible with some care.

Given a strictly interior estimate xC, an iteration of a typical second-order-model trust-region approach

centers on the approximate solution of the model problem

minimize
x∈IR

n

qC(s)
def
= gCTx+ 1

2
sTBCs subject to As = 0 and ‖s‖MC ≤ ∆C, (4.4)

for some appropriate symmetric matrix BC , gradient gC = g + HxC − µ(XC)−1e, radius ∆C and semi-

norm ‖ · ‖MC . A pure primal-Newton method would choose BC to be the Hessian of the barrier function

H+µ(XC)−2, but an alternative Newton derivation based on the nonlinear system (4.2) (see, for instance,

Conn et al., 2000a) and significant numerical experience suggest that the choice

BC = H + (XC)−1ZC

is usually far superior.

Of course, (4.4) is precisely of the form (2.14) (for the given data), and thus the methods developed in

Section 2.4 and its predecessors are appropriate. The obvious choice for the preconditioner is of the form

M = G+ (XC)−1ZC (4.5)

for some approximation G of H , the term (XC)−1ZC being essential to cope with the increasing ill-

conditioning that results when one or more components xi converges to zero.

Having computed a suitable approximation sC to the solution of (4.4) using the PPCG/GLTR method

discussed earlier—a single iteration suffices since this gives a Cauchy point for the model (for this and other

trust-region technicalities, see Conn et al., 2000a) although further iterations are essential for rapid con-

vergence of the overall iteration—the remaining trust-region method is essentially standard. In particular

x+ is set to xC + sC so long as the ratio of actual to predicted reduction,

ρ =
φ(xC + sC, µ)− φ(xC , µ)

qC(sC)
,

164 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

is sufficiently positive, and left at xC otherwise, while the trust-region radius is increased if the step sC

has encountered the current trust region boundary and ρ is close to one, and always decreased when

x+ = xC. There are only two exceptional details. Firstly, any predicted step that lies outside the feasible

region is automatically rejected—a variant in which extra constraints xC + s ≥ η, for some small η > 0

are imposed on the model (4.4) is possible (see, for example, Byrd, Hribar and Nocedal, 1999, and Byrd,

Gilbert and Nocedal, 2000), but the model problem is then far harder to solve. Secondly, dual variables

are updated according to the rather complicated-looking procedure of projecting the primal-dual estimates

µ(XC)−1e− (XC)−1ZCsC into the interval

[

1
2
min

(

e, zC, µ(X+)−1e
)

,
(

2e, zC, 2µ−1e, 2µ(X+)−1e
)]

.

This procedure is designed to allow considerable freedom, and to encourage primal-dual-like steps, while

still allowing a rigorous convergence analysis—the values 1
2
and 2 are not critical, but representative of

numbers smaller and larger than one respectively.

The standard first-order trust-region convergence theory is easily adapted to cope with this slight

modification. In particular Conn, Gould, Orban and Toint (2000b) show that if (i) A is of full rank,

(ii) φ(x, µ) is bounded from below on the feasible region, (iii) B is bounded, (iv) no zi grows faster

than a (possibly huge) constant times the reciprocal of its corresponding xi, (v) the preconditioner M is

uniformly second-order sufficient, and (vi) at least one iteration of the PPCG/GLTR method is taken,

then any limit of the trust-region method sketched above is first-order critical for (4.1). If, in addition,

(vii) B converges to H+X−1Z, (viii) z converges to µX−1e and (ix) PPCG/GLTR is allowed to generate

a suitable eigenpoint, at least one of the limit points satisfies the weak second-order optimality conditions

for (4.1).

4.2.2 The outer iteration

We now turn to the following outer iteration.

Algorithm 4.1: An iteration for the outer minimization

Input. A barrier parameter µC > 0 and the forcing functions ǫC(µ), ǫD(µ) and ǫE(µ) are given.

Inner Minimization. Approximately minimize the log-barrier function φ(x, µC). Stop this inner

algorithm as soon as an inner iterate (x+, z+) is found for which

Ax+ = b, (4.6)

(x+, z+) > 0, (4.7)

‖X+z+ − µCe‖2 ≤ ǫC(µC), (4.8)

‖Hx+ + g − z+‖[M+,N] ≤ ǫD(µC), and (4.9)

λmin

M+,N

[

H + (X+)−1Z+
]

≥ −ǫE(µC), (4.10)

where M+ is a second-order sufficient preconditioning matrix. Choose µ+ < µC, and perform

the next inner minimization.

The aforementioned convergence theory of the inner iteration ensures that the given trust-region method

will provide a suitable (x+, z+) after a finite number of iterations. Measuring convergence in terms of the

semi-norm (4.9) is convenient, since precisely this norm is used as a measure in the PPCG/GLTR iteration.

The Lanczos aspect of this iteration naturally records the eigenvalues of (NTMN)−
1
2NTBN(NTMN)−

1
2 ,

which justifies the rather-strange termination test (4.10).

Nicholas I. M. Gould and Philippe L. Toint 165

The reader might be concerned that the scaling used here might cause difficulties since the matrix (4.5)

will naturally diverge if any component of x approaches the boundary of the feasible region. Fortunately

these difficulties do not arise since this scaling is designed to counteract the same divergent effects as B

approaches H+X−1Z. Indeed, the test (4.8) is weaker than measuring NT (Hx++ g− z+) in an unscaled

norm, and thus the inner iteration may terminate earlier than with such an alternative.

Conn et al. (2000b) show that, under slightly more restrictive assumptions on the forcing functions

ǫC(µ), ǫD(µ) and ǫE(µ), there is at least one subsequence generated by the iteration given in Algorithm 4.1

that converges to a weak second-order critical point for (1.2).

4.2.3 Asymptotic convergence

One further aspect of interest is the ultimate convergence rate of the method we have just summarised.

Gould, Orban, Sartenaer and Toint (2000) consider the case where the convergence forcing functions in

(4.8)–(4.9) have the form ǫC,D(µ) = µ1+αC,D

, and the barrier parameter parameter update is of the form

µ+ = (µC)1+α. They show that it is possible to choose αC,D and α so that the primal-dual iterates con-

verge Q-superlinearly—the rate may be made arbitrarily close to Q-quadratic—to (x∗, z∗) under suitable

regularity and strict complementarity conditions. Perhaps more surprising, the same rate is achieved

componentwise in most cases.

4.3 Other aspects

The method we have described above has been implemented as the HSL (2000) Fortran 90 package

HSL VE12; as before, a more basic version, qpb, will shortly be available as part of our nonlinear pro-

gramming library GALAHAD. Further details are given by Conn et al. (2000b).

Our method requires a strictly feasible initial starting point, and we use another HSL package HSL VE13

(itself a primal-dual infeasible interior-point method for convex quadratic programming with separable

objectives, based on Zhang’s, 1994 method), to find an approximation to the analytic centre of the feasible

region. In the event that the size of the iterate exceeds some prescribed upper bound (as may happen if

there is no analytic centre), the last point with a norm smaller than this bound is taken for the initial point.

In principle, any good interior-point method would suffice, but in any event, this part of the calculation

is usually very efficient.

5 Numerical comparisons

We now compare the two approaches. We should warn the reader that although the interior-point code

HSL VE12 has been released, its active-set competitor HSL VE19 is still under development, so the results

(and any conclusions drawn) should be considered provisional. That said, we do not expect HSL VE19 to

change very dramatically.

There are essentially two uses for a QP code, namely to solve a new problem from scratch without any

knowledge of the final active set (a so-called cold start), and to solve a small perturbation of an existing

problem with full knowledge of the solution of the latter (a warm start). Cold-start problems normally

arise from specific one-off applications, while SQP methods for nonlinear programming are a rich source

of warm-start problems. In this section we shall consider both.

5.1 Cold-start problems

The CUTE test set (see Bongartz, Conn, Gould and Toint, 1995) contains a large number of QP test

examples. We have selected all of the larger, and variable-dimensioned, examples, and applied our two

contending QP packages to them. All of our experiments were performed on a single processor of a Compaq

AlphaServer DS20 with 3.5 Gbytes of RAM.

166 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

The interior-point code HSL VE12 is used with supplied default settings. Since defaults have not yet

been finalized for the active-set package HSL VE19, our runs simply select M as the diagonal of H , with

the remaining modifications of (and simplifications to) K being exactly as described for HSL VE12. An

upper bound of 75 is set on the maximum permitted dimension for the Schur complement S (some exper-

imentation indicates that this is a reasonable value), the initial working set is simply the set of equality

constraints (with dependencies automatically removed), and a variety of tests are performed to guarantee

that the residuals of active constraints really are small. For full details, see Gould and Toint (2001a).

In Table 5.1, we report results for what are, by today’s standards, small problems. We report the

number of iterations (its) and CPU times (rounded to the nearest tenth of a second) for both methods.

For the active-set method, we also include the number of factorizations (facts) of (2.13) required; the

interior-point approach requires one factorization per iteration. The better of the two approaches for each

problem (if it is significant) is indicated in bold typeface. As one has been lead to expect, the interior-point

approach is already starting to show its superiority over the active-set one, although the results are far

from completely one sided. Qualitatively similar results were obtained on the older HSL active-set QP

code VE09 (see Gould, 1991).

HSL VE19 HSL VE12

active-set barrier
Problem n m type its facts time its time
AUG2DCQP 3280 1600 C 454 9 3.3 22 1.4

AUG2DQP 3280 1600 C 573 21 20.4 20 1.3

AUG3DCQP 3873 1000 C 437 8 3.8 22 1.8

AUG3DQP 3873 1000 C 608 19 16.7 21 1.7

BLOCKQP1 2005 1001 NC 4 5 0.6 9 0.5
BLOCKQP2 2005 1001 NC 1005 30 8.9 18 0.9

BLOCKQP3 2005 1001 NC 4 5 0.6 9 0.5
BLOWEYA 2002 1002 NC 22 4 1.5 7 1.3

BLOWEYB 2002 1002 NC 20 4 1.3 1 0.2

BLOWEYC 2002 1002 NC 23 4 2.2 7 1.1

CVXQP1 1000 500 C 802 13 19.0 28 4.8

CVXQP2 1000 250 C 568 10 7.2 19 2.1

CVXQP3 1000 750 C 562 9 24.0 29 6.7

DEGENQP 20 8010 C 110 3 8.0 6 1.8

DUALC1 9 215 C 62 5 0.0 29 0.4
DUALC2 7 229 C 22 3 0.0 27 0.3
DUALC5 8 278 C 14 3 0.0 15 0.3
DUALC8 8 503 C 38 3 0.0 19 0.6
GOULDQP2 5 2 C 9 4 0.0 2 0.0
GOULDQP3 699 349 C 211 5 0.6 5 0.1

KSIP 20 1001 C 1692 21 1.0 13 1.9
MOSARQP1 900 600 C 1681 34 10.1 17 1.0

MOSARQP2 900 600 C 442 17 1.2 14 0.9

NCVXQP1 1000 500 NC 686 18 1.8 56 0.9

NCVXQP2 1000 500 NC 1208 28 3.3 46 0.8

NCVXQP3 1000 500 NC 908 21 4.0 150 7.1
NCVXQP4 1000 250 NC 768 22 1.3 48 0.5

NCVXQP5 1000 250 NC 775 24 1.4 57 0.7

NCVXQP6 1000 250 NC 777 21 1.8 99 2.3
NCVXQP7 1000 750 NC 497 10 2.4 101 23.2
NCVXQP8 1000 750 NC 800 21 4.5 113 5.5
NCVXQP9 1000 750 NC 802 15 8.4 70 5.4

POWELL20 1000 1000 C 1319 22 2.2 83 0.9

PRIMALC1 230 9 C 221 8 0.2 33 0.2
PRIMALC2 231 7 C 240 7 0.2 27 0.4
PRIMALC5 287 8 C 290 7 0.2 36 0.2
PRIMALC8 520 8 C 560 11 0.6 48 0.6
PRIMAL1 325 85 C 81 4 0.2 23 0.5
PRIMAL2 649 96 C 97 5 0.4 13 1.0
PRIMAL3 745 111 C 110 5 0.7 17 2.0
PRIMAL4 1489 75 C 70 4 0.6 18 2.9
QPBAND 1000 500 C 1977 20 5.2 9 0.3

QPNBAND 1000 500 NC 28 4 0.0 10 0.2

Nicholas I. M. Gould and Philippe L. Toint 167

QPCBOEI1 384 351 C 1559 18 1.6 71 1.4
QPCBOEI2 143 166 C 788 21 0.4 63 0.5
QPCSTAIR 467 356 C 653 15 1.1 72 2.5
QPNBOEI1 384 351 NC 7277 109 8.9 92 2.2

QPNBOEI2 143 166 NC 509 13 0.4 75 0.8
QPNSTAIR 467 356 NC 950 12 2.4 78 3.0
SOSQP1 2000 1001 SOS 9 5 0.6 5 0.3

STCQP1 4097 2052 C 355 7 13.0 24 29.3
STCQP2 4097 2052 C 117 4 2.9 17 13.6
STNQP1 4097 2052 NC 603 16 16.9 15 11.4

STNQP2 4097 2052 NC 770 21 10.0 16 1.3

UBH1 909 600 C 6 3 0.1 3 0.1
YAO 2002 2000 C 2258 51 8.6 76 2.7

Table 5.1: Numerical results: small problems. The parameters n and
m are the numbers of variables and general constraints (not including
simple bounds). The types C and NC refer to convex and non-convex
problems, while SOS indicates a problem whose Hessian is second-order
sufficient with respect to all feasible active sets.

In Tables 5.2 and 5.3, we exhibit specimen results for medium and large-scale instances of the variable-

dimensional problems. We include these simply to show that the advantages of interior-point methods

over conventional active-set approaches are now clear. Indeed, no results for the active-set method are

given for the largest problems, simply because the CPU times required are excessive. These results simply

reinforce the impressions given by the preliminary ones presented by Conn et al. (2000b). In addition,

we are now able to give results for non-convex problems involving up to half a million unknowns (and a

similar magnitude of constraints), suggesting that our approach is capable of solving at least some large

problems.

HSL VE19 HSL VE12

active-set barrier
Problem n m type its facts time its time
AUG2DCQP 20200 10000 C 15389 210 837.7 23 10.3

AUG2DQP 20200 10000 C - - > 1800.0 23 10.3

AUG3DCQP 27543 8000 C 5368 70 794.6 17 73.7

AUG3DQP 27543 8000 C - - > 1800.0 18 75.9

BLOCKQP1 20005 10001 NC 4 5 2.8 9 5.2
BLOWEYA 20002 10002 NC 12 5 6.9 8 32.5
DEGENQP 50 1250251 C 356 3 525.6 8 59.6

GOULDQP2 19999 9999 C 8002 101 622.9 2 0.6

KSIP 20 10001 C 346 3 2.8 15 10.6
MOSARQP1 20000 10000 C 15743 252 1727.7 17 25.6

NCVXQP1 10000 5000 NC 18492 323 1165.9 98 68.8

NCVXQP4 10000 2500 NC 7824 207 155.4 78 5.6

NCVXQP7 10000 7500 NC - - > 1800.0 67 348.7

POWELL20 10000 10000 C 13055 175 237.3 185 21.3

QPBAND 10000 5000 C 10435 135 344.2 12 2.3

QPNBAND 10000 5000 NC 10147 202 177.1 14 1.7

SOSQP1 100000 50001 SOS 11 3 85.4 6 6.8

STCQP1 8193 4095 C 881 14 230.4 26 84.1

STCQP2 8193 4095 C 174 6 30.1 15 84.1
STNQP1 8193 4095 NC 1174 47 111.3 18 64.2

STNQP2 8193 4095 NC 1491 57 39.2 19 2.6

UBH1 18009 12000 C 6 3 0.9 6 2.3
YAO 10002 10000 C 46019 592 1169.5 132 19.0

Table 5.2: Numerical results: specimen medium problems. The captions
are as for Tables 5.1.

168 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

HSL VE12

barrier
Problem n m type its time
GOULDQP2 200001 100000 C 17 52

GOULDQP3 200001 100000 C 46 154

POWELL20 100000 100000 C 148 234

QPBAND 100000 50000 C 13 157

QPBAND 200000 100000 C 17 1138

QPBAND 400000 200000 C 17 2304

QPBAND 500000 250000 C 17 2909

QPNBAND 100000 50000 NC 12 32

QPNBAND 200000 100000 NC 13 71

QPNBAND 400000 200000 NC 14 156

QPNBAND 500000 250000 NC 13 181

Table 5.3: Numerical results: specimen large problems. All runs for
HSL VE19 exceeded the time limit of 7200 seconds. The captions are as
for Tables 5.1.

5.2 Warm-start problems

We now turn our attention to problems which are small perturbations of those whose solutions we already

know. To study this case, we consider the same examples we compared in Table 5.2, and use the solution

(and its active set) obtained from the HSL VE12 run. We now perturb all the problem data very slightly (by

uniformly distributed random numbers in the range 0 to 10−8), and resolve the problems starting at the

previously obtained “solution”. This “solution” is easily exploited by the active set method, but ignored

by the interior-point one since HSL VE12 picks its own interior starting point—warm-starting interior-

point methods is notoriously hard (see, however, Gondzio, 1998, and Yildirim and Wright, 2000, for some

progress in this area).

HSL VE19 HSL VE12

active-set barrier
Problem n m type misc its time its time
AUG2DCQP 20200 10000 C 1 5 1.2 30 10.1
AUG2DQP 20200 10000 C 8 14 6.6 26 9.7
AUG3DCQP 27543 8000 C 66 78 16.7 20 77.8
AUG3DQP 27543 8000 C 0 - > 1800.0 18 71.9

BLOCKQP1 20005 10001 NC 0 - > 1800.0 43 16.3

BLOWEYA 20002 10002 NC 0 12 2.8 - > 1800.0
DEGENQP 50 1250251 C 23694 201 669.3 8 57.7

GOULDQP2 19999 9999 C 0 - > 1800.0 2 0.5

KSIP 20 10001 C 9400 350 2.8 14 8.6
MOSARQP1 20000 10000 C 328 284 81.3 21 31.3

NCVXQP1 10000 5000 NC 3905 4971 239.6 38 32.5

NCVXQP4 10000 2500 NC 196 300 4.8 104 7.0
NCVXQP7 10000 7500 NC 3182 6026 547.6 23 124.2

POWELL20 10000 10000 C 0 30 1.6 1364 173.8
QPBAND 10000 5000 C 130 77 1.0 12 2.2
QPNBAND 10000 5000 NC 0 4 0.1 14 1.7
SOSQP1 100000 50001 SOS 0 - > 1800.0 8 11.4
STCQP1 8193 4095 C 0 20 65.1 15 80.2
STCQP2 8193 4095 C 0 10 3.8 12 76.4
STNQP1 8193 4095 NC 0 27 63.0 11 61.7

STNQP2 8193 4095 NC 0 6 2.3 13 1.8

UBH1 18009 12000 C 0 6 0.8 6 2.3
YAO 10002 10000 C 0 8 1.0 166 25.8

Table 5.4: Warm-started active-set versus cold-started interior point
methods: specimen medium problems. The column headed misc gives
the number of constraints which have been misclassified as being active
from the original problem, but inactive in the perturbed version (and
vice versa). The remaining captions are as for Tables 5.1.

Nicholas I. M. Gould and Philippe L. Toint 169

In some cases the benefits of warm-starting the active set method are clear to see in Table 5.4. In

particular significant savings are made, both compared to the interior-point approach, and relative to the

cold-started results (admittedly for the original not the perturbed problem) given in Table 5.2. However

the results are far from uniformly better.

For problems AUG3DQP, BLOCKQP1 and SOSQP1, the perturbation turned the convex or second-order

sufficient problem into a non-convex one with a radically different solution. Similarly for NCVXQP1 and

NCVXQP7, perturbations of the already non-convex and ill-conditioned problem lead to different solutions.

For DEGENQP and GOULDQP2, perturbing problems with highly-degenerate optimal solutions leads to com-

pletely incorrect guesses for the resulting active set. Thus it appears that while it is tempting to believe

that a warm-started active set method is the ideal choice when solving a sequence of closely related prob-

lems, this may not be the case when the problem is either degenerate or nonconvex, and actually the

cold-started interior-point approach is preferable. With hindsight, perhaps we should not be surprised,

but we are certainly disappointed as we had hoped that the active-set method would be the obvious choice

for “warm-started” applications like ”asymptotic” iterations in SQP methods.

Particularly poor behaviour for the barrier approach can be seen for BLOWEYA and POWELL20, where

the constraint regions for the perturbed problems are tiny.

6 Conclusions

We have described two very different methods for nonconvex quadratic programming. The interior-point

approach, exemplified by HSL VE12, proves to be superior in most, but not all, cases when the problems

are reasonably large. When a sequence of closely-related problems are solved, the active-set approach is

sometimes to be preferred, although this is not the case when the problem is degenerate or ill-conditioned.

As we have stressed, these conclusions are somewhat provisional since the active-set code HSL VE19 is

still under development. In particular, sensible ways to update the penalty parameter associated with the

merit function (3.14), and schemes to refine cold-started working sets are still under investigation.

One further aspect that we are currently considering is the idea of presolving the QP (see, Gould and

Toint, 2001b). The idea is to apply inexpensive elementary techniques to the problem, with the aims of

tightening the feasible region, eliminating obviously inactive constraints, removing fixed (or implied fixed)

variables, etc. The QP algorithm is then applied to the presolved problem, and after a solution is found,

the transformations made in the presolve are reversed. Such techniques have proved to be most successful

for linear programming (see Andersen and Andersen, 1995, Andersen, Gondzio, Mészáros and Xu, 1996,

and Gondzio, 1997) and our expectation is that the same will be true for the quadratic case. The resulting

presolve code, along with slightly less-sophisticated versions of HSL VE19 and HSL VE12, named qpa and

qpb (respectively), will ultimately be part of our evolving nonlinear programming library GALAHAD.

Acknowledgments

Nick Gould would like to thank Oxford University Computing Laboratory for providing a tranquil atmo-

sphere in which to write. We both express our gratitude to our collaborators, Andy Conn, Mary Beth

Hribar, Jorge Nocedal, Dominique Orban and Annick Sartenaer, for their priceless contributions to the

work described here, and again to Andy and Annick for their useful comments on this manuscript.

References

A. Altman and J. Gondzio. Regularized symmetric indefinite systems in interior point methods for linear

and quadratic optimization. Logilab Technical Report 1998.6, Department of Management Sciences,

University of Geneva, Geneva, Switzerland, 1998.

E. D. Andersen and K. D. Andersen. Presolving in linear-programming. Mathematical Programming,

Series A, 71(2), 221–245, 1995.

170 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu. Implementation of interior point methods for large

scale linear programming. In T. Terlaky, ed., ‘Interior Point Methods in Mathematical Programming’,

pp. 189–252, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

A. Auslender. Penalty methods for computing points that satisfy second order necessary conditions.

Mathematical Programming, 17(2), 229–238, 1979.

J. Bisschop and A. Meeraus. Matrix augmentation and partitioning in the updating of the basis inverse.

Mathematical Programming, 13(3), 241–254, 1977.

P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica, 4, 1–51, 1995.

I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and unconstrained testing

environment. ACM Transactions on Mathematical Software, 21(1), 123–160, 1995.

J. M. Borwein. Necessary and sufficient conditions for quadratic minimality. Numerical Functional Analysis

and Optimization, 5, 127–140, 1982.

J. R. Bunch and L. C. Kaufman. Some stable methods for calculating inertia and solving symmetric linear

equations. Mathematics of Computation, 31, 163–179, 1977.

J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems of linear equations.

SIAM Journal on Numerical Analysis, 8(4), 639–655, 1971.

R. H. Byrd, J. Ch. Gilbert, and J. Nocedal. A trust region method based on interior point techniques for

nonlinear programming. Mathematical Programming, 89(1), 149–185, 2000.

R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale nonlinear program-

ming. SIAM Journal on Optimization, 9(4), 877–900, 1999.

T. J. Carpenter, I. J. Lustig, J. M. Mulvey, and D. F. Shanno. Higher-order predictor-corrector interior

point methods with application to quadratic objectives. SIAM Journal on Optimization, 3(4), 696–

725, 1993.

Y. Chabrillac and J.-P. Crouzeix. Definiteness and semidefiniteness of quadratic forms revisited. Linear

Algebra and its Applications, 63, 283–292, 1984.

T. F. Coleman. Linearly constrained optimization and projected preconditioned conjugate gradients. In

J. Lewis, ed., ‘Proceedings of the Fifth SIAM Conference on Applied Linear Algebra’, pp. 118–122,

SIAM, Philadelphia, USA, 1994.

T. F. Coleman and A. Verma. A preconditioned conjugate gradient approach to linear equality constrained

minimization. Technical report, Department of Computer Sciences, Cornell University, Ithaca, New

York, USA, July 1998.

A. R. Conn and N. I. M. Gould. On the location of directions of infinite descent for nonlinear programming

algorithms. SIAM Journal on Numerical Analysis, 21(6), 302–325, 1984.

A. R. Conn and J. W. Sinclair. Quadratic programming via a non-differentiable penalty function. Technical

Report CORR 75/15, Faculty of Mathematics, University of Waterloo, 1975.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region methods. SIAM, Philadelphia, 2000a.

A. R. Conn, N. I. M. Gould, D. Orban, and Ph. L. Toint. A primal-dual trust-region algorithm for

non-convex nonlinear programming. Mathematical Programming, 87(2), 215–249, 2000b.

B. L. Contesse. Une caractérisation complète des minima locaux en programmation quadratique. Nu-

merische Mathematik, 34(3), 315–332, 1980.

Nicholas I. M. Gould and Philippe L. Toint 171

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM

Transactions on Mathematical Software, 9(3), 302–325, 1983.

I. S. Duff, N. I. M. Gould, J. K. Reid, J. A. Scott, and K. Turner. The factorization of sparse symmetric

indefinite matrices. IMA Journal of Numerical Analysis, 11, 181–204, 1991.

I. S. Duff, J. K. Reid, N. Munksgaard, and H. B. Neilsen. Direct solution of sets of linear equations

whose matrix is sparse, symmetric and indefinite. Journal of the Institute of Mathematics and its

Applications, 23, 235–250, 1979.

A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization

Techniques. J. Wiley and Sons, Chichester, England, 1968. Reprinted as Classics in Applied Mathe-

matics 4, SIAM, Philadelphia, USA, 1990.

R. Fletcher. A general quadratic programming algorithm. Journal of the Institute of Mathematics and its

Applications, 7, 76–91, 1971.

R. Fletcher. Factorizing symmetric indefinite matrices. Linear Algebra and its Applications, 14, 257–272,

1976.

R. Fletcher. Quadratic programming. In ‘Practical Methods of Optimization’, chapter 10, pp. 229–258.

J. Wiley and Sons, Chichester, England, second edn, 1987a.

R. Fletcher. Recent developments in linear and quadratic programming. In A. Iserles and M. J. D.

Powell, eds, ‘State of the Art in Numerical Analysis. Proceedings of the Joint IMA/SIAM Conference’,

pp. 213–243. Oxford University Press, Oxford, England, 1987b.

P. E. Gill and W. Murray. Numerically stable methods for quadratic programming. Mathematical Pro-

gramming, 14(3), 349–372, 1978.

P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factorizations.

Mathematics of Computation, 28, 505–535, 1974.

P. E. Gill, W. Murray, and M. H. Wright. Quadratic programming. In ‘Practical Optimization’, chapter

5.3.2–5.4.1, pp. 177–184. Academic Press, London, England, 1981.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement method for sparse

quadratic programming. In M. G. Cox and S. J. Hammarling, eds, ‘Reliable Scientific Computation’,

pp. 113–138, Oxford University Press, Oxford, England, 1990.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Inertia-controlling methods for general quadratic

programming. SIAM Review, 33(1), 1–36, 1991.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,

second edn, 1989.

J. Gondzio. Presolve analysis of linear programs prior to applying an interior point method. INFORMS

Journal on Computing, 9(1), 73–91, 1997.

J. Gondzio. Warm start of the primal-dual method applied in the cutting plane scheme. Mathematical

Programming, 83(1), 125–143, 1998.

N. I. M. Gould. On practical conditions for the existence and uniqueness of solutions to the general equality

quadratic-programming problem. Mathematical Programming, 32(1), 90–99, 1985.

N. I. M. Gould. An algorithm for large-scale quadratic programming. IMA Journal of Numerical Analysis,

11(3), 299–324, 1991.

172 TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS

N. I. M. Gould and Ph. L. Toint. A note on the convergence of barrier algorithms to second-order necessary

points. Mathematical Programming, 85(2), 433–438, 1999.

N. I. M. Gould and Ph. L. Toint. A quadratic programming bibliography. Numerical Analysis Group

Internal Report 2000-1, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2000a.

N. I. M. Gould and Ph. L. Toint. SQP methods for large-scale nonlinear programming. In M. J. D.

Powell and S. Scholtes, eds, ‘SystemModelling and Optimization, Methods, Theory and Applications’,

pp. 149–178, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000b.

N. I. M. Gould and Ph. L. Toint. An iterative active-set method for large-scale quadratic programming.

Technical Report in preparation, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England,

2001a.

N. I. M. Gould and Ph. L. Toint. Preprocessing for quadratic programming. Technical Report in prepa-

ration, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2001b.

N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained quadratic problems

arising in optimization. Technical Report RAL-TR-98-069, Rutherford Appleton Laboratory, Chilton,

Oxfordshire, England, 1998.

N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem using the

Lanczos method. SIAM Journal on Optimization, 9(2), 504–525, 1999.

N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Superlinear convergence of primal-dual interior

point algorithms for nonlinear programming. Technical Report RAL-TR-2000-014, Rutherford Apple-

ton Laboratory, Chilton, Oxfordshire, England, 2000. To appear in SIAM Journal on Optimization.

S. P. Han. Solving quadratic programs with an exact penalty function. In O. L. Mangasarian, R. R. Meyer

and S. M. Robinson, eds, ‘Nonlinear Programming, 4’, pp. 25–55, Academic Press, London and New

York, 1981.

HSL. A collection of Fortran codes for large scale scientific computation, 2000.

C. Keller. Constraint preconditioning for indefinite linear systems. D. Phil. thesis, Oxford University,

England, 2000.

C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite linear systems.

SIAM Journal on Matrix Analysis and Applications, 21(4), 1300–1317, 2000.

O. L. Mangasarian. Locally unique solutions of quadratic programs, linear and non-linear complementarity

problems. Mathematical Programming, 19(2), 200–212, 1980.

K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming.

Mathematical Programming, 39(2), 117–129, 1987.

J. Nocedal and S. J. Wright. Quadratic programming. In ‘Numerical Optimization’, Series in Operations

Research, chapter 16, pp. 441–488. Springer Verlag, Heidelberg, Berlin, New York, 1999.

P. M. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic programming is

NP-hard. Operations Research Letters, 7(1), 33–35, 1988.

B. T. Polyak. The conjugate gradient method in extremal problems. U.S.S.R. Computational Mathematics

and Mathematical Physics, 9, 94–112, 1969.

D. C. Sorensen. Updating the symmetric indefinite factorization with applications in a modified Newton

method. Technical Report ANL-77-49, Argonne National Laboratory, Illinois, USA, 1977.

Nicholas I. M. Gould and Philippe L. Toint 173

T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal

on Numerical Analysis, 20(3), 626–637, 1983.

Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. In I. S. Duff, ed.,

‘Sparse Matrices and Their Uses’, pp. 57–88, Academic Press, London, 1981.

R. J. Vanderbei. LOQO: an interior point code for quadratic programming. Technical Report SOR 94–15,

Program in Statistics and Operations,Research, Princeton University, New Jersey, USA, 1994.

R. J. Vanderbei and T. J. Carpenter. Symmetrical indefinite systems for interior point methods. Mathe-

matical Programming, 58(1), 1–32, 1993.

S. A. Vavasis. Quadratic programming is in NP. Information Processing Letters, 36(2), 73–77, 1990.

S. A. Vavasis. Convex quadratic programming. In ‘Nonlinear Optimization: Complexity Issues’, pp. 36–75,

Oxford University Press, Oxford, England, 1991.

S. Wright and Y. Zhang. A superquadratic infeasible-interior-point method for linear complementarity

problems. Mathematical Programming, Series A, 73(3), 269–289, 1996.

Y. Ye. Indefinite quadratic programming. In ‘Interior-Point Algorithm: Theory and Analysis’, chapter

9.4–9.5, pp. 310–331. J. Wiley and Sons, New York, USA, 1997.

E. A. Yildirim and S. J. Wright. Warm-start strategies in interior-point methods for linear programming.

Technical Report MCS-P799-0300, Argonne National Laboratory, Illinois, USA, 2000.

Y. Zhang. On the convergence of a class of infeasible interior-point methods for the horizontal linear

complementarity problem. SIAM Journal on Optimization, 4(1), 208–227, 1994.

