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1 Introduction

We consider the solution of the general smooth feasibility problem, that is the problem

of finding a vector x ∈ IRn such that

cE(x) = 0, (1.1)

and

cI(x) ≥ 0, (1.2)

where cE(x) and cI(x) are smooth functions from IRn into IRm and IRq, respectively. If

such a point cannot be found, it is desirable to find a local minimizer of the constraint

violations. We choose here to consider the Eucliden norm of these violations, that is

to find a local minimizer of the function

min
x

1

2
‖θ(x)‖2, (1.3)

where we define

θ(x)
def
=

(

cE(x)

[cI(x)]−

)

∈ IRp, (1.4)

with ‖ · ‖ denoting the Euclidean norm, with p = m+ q and [cI(x)]− = min[0, cI(x)],

the minimum being taken componentwise. An important special case of this problem is

when q = 0,m = n and thus E = {1, . . . , n}, which gives systems of smooth nonlinear

equations. The problem under consideration is therefore not only fairly general, but also

practically important because a large number of applications can be cast in this form.

Moreover, solving the feasibility problem may also occur as a subproblem in practically

more complicated contexts, such as the the “restoration” phase in the solution of the

nonlinear programming problem using filter methods (see Fletcher and Leyffer, 2002,

Fletcher and Leyffer, 1998, Fletcher, Leyffer and Toint, 2002b, Gonzaga, Karas and

Vanti, 2002 or Fletcher, Gould, Leyffer, Toint and Wächter, 2002a, amongst others).

The method of choice for solving (1.1)–(1.2) or (1.3) is Newton’s method, because of

its fast convergence properties. However, as is well-known, Newton’s method must be

safeguarded to ensure that it converges to a solution even from starting points that are
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far from the solution, a feature that is not automatic otherwise. Various safeguarding

techniques are known, including the use of linesearches (see Ortega and Rheinboldt,

1970, Dennis and Schnabel, 1983, Toint, 1986, Toint, 1987, . . . ) or trust regions (see

Moré and Sorensen, 1984, Nocedal, 1984, or Chapter 16 of Conn, Gould and Toint,

2000). More recently, Gould, Leyffer and Toint (2003a) and Gould and Toint (2003)

have proposed a method that combines the basic trust-region mechanism with filter

techniques: not only did they prove global convergence for the algorithm, but they

also reported very encouraging numerical experience. The objective of this note is to

outline this method.

2 The filter algorithm and its algorithmic options

2.1 The objective function, its models and the step

We consider an algorithm which aims at minimizing

f(x) = 1

2
‖θ(x)‖2.

For simplicity of exposition, we assume that the problem only contains nonlinear equa-

tions (q = 0). In this case, we may build two distinct local quadratic models of f(x)

in the neighbourhood of a given iterate xk. The first is the Gauss-Newton model, and

is given by

mGN

k (xk + s) = 1

2
‖cE(xk) + JE(xk)s‖2, (2.1)

where JE(xk) is the Jacobian of cE(x) at xk. The second is the full second-order Newton

model

mN

k (xk + s) = mGN

k (xk + s) + 1

2

∑

j∈E

cj(xk)〈s,∇2cj(xk)s〉, (2.2)

which includes an additional term involving the curvature of the equality constraints.

In our method, we have chosen to compute the step sk by minimizing one of these

models in some region surrounding the current iterate xk, defined by the constraint

‖sk‖k ≤ τk∆k, (2.3)

where ∆k is a trust-region radius which is updated in the usual trust-region manner

(see Chapters 6 and 17 of Conn et al., 2000, for instance). The parameter τk ≥ 1 allows

for steps that potentially extend much beyond the limit of the trust region itself, in

the case where convergence seems satisfactory. The precise mechanism for determining

τk will be discussed in more detail below. The ‖ · ‖k norm appearing in (2.3) is a

preconditioned Euclidean norm, that is ‖s‖2k = 〈s, P−1

k s〉, where Pk is a symmetric

positive-definite preconditioning matrix that is used at the k-th iteration. The solution

of the subproblem of minimizing mGN

k (xk+s) ormN

k (xk+s) subject to (2.3) is computed

approximately using the Generalized Lanczos Trust-Region (GLTR) method of Gould,

Lucidi, Roma and Toint (1999) as implemented in the GLTR module of GALAHAD (see

Gould, Orban and Toint, 2003b). Besides using Pk = I (i.e. no preconditioning at all),
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our package, named FILTRANE, can also be instructed to use a diagonal preconditioning

which is obtained by extracting the diagonal of the matrix Hk
def
= JE(xk)JE (xk)

T ,

or a banded preconditioning matrix of semi-bandwidth 5 obtained by extracting the

corresponding part ofHk and modifying it if necessary to ensure its positive definiteness

(see Conn, Gould and Toint, 1992 for details of that procedure). It also allows a user-

defined preconditioning via its reverse communication interface.

2.2 The filter-trust-region mechanism

Once the step sk has been computed, we define the trial point x+

k = xk + sk and

consider the question of deciding whether or not it is acceptable as our next iterate

xk+1. We use a so-called filter to answer this question.

In order to define our filter, we first say that a point x1 dominates a point x2

whenever

|θi(x1)| ≤ |θi(x2)| for all i ∈ E .
Thus, if iterate xk1

dominates iterate xk2
, the latter is of no real interest to us since

xk1
is at least as good as xk2

for each i. All we need to do now is to remember iterates

that are not dominated by other iterates using a structure called a filter. A filter is a

list F of m-tuples of the form (θ1,k|, . . . , |θm,k|) such that, for k 6= ℓ,

|θi,k| < |θi,ℓ| for at least one i ∈ E .

Filter methods then accept the new trial iterate x+

k if it is not dominated by any other

iterate in the filter. While the idea of not accepting dominated trial points is simple

and elegant, it needs to be refined a little in order to provide an efficient algorithmic

tool. In particular, we do not wish to accept a new point x+

k if θ+k
def
= θ(x+

k ) is too close

to being dominated by another point already in the filter. To avoid this situation, we

slighly strengthen our acceptability condition. More formally, we say that a new trial

point x+

k is acceptable for the filter F if and only if

∀θℓ ∈ F ∃ i ∈ E |θi(x+

k )| <
[

|θi,ℓ| − γθ‖θℓ‖
]

+

(2.4)

where γθ ∈ (0, 1/
√
m) is a small positive constant and [w]+ = max[0, w].

In order to avoid cycling, and assuming the trial point is acceptable in the sense

of (2.4), we may wish to add it the to the filter, so as to avoid other iterates that are

worse, that is we perform the simple operation F ← F ∪{θk}. This may however cause

an existing filter value θℓ to be strongly dominated in the sense that

∃ θq ∈ F ∀j ∈ {1, . . . , p} |θj,ℓ| ≥ |θj,q| − γθ‖θℓ‖. (2.5)

If this happens, we simplify later comparisons by removing θℓ from the filter.

If the trial point is not acceptable for the filter, it may nevertheless be acceptable

for the usual trust-region mechanism. This requires that ‖sk‖ ≤ ∆k and that

ρk =
f(xk)− f(x+

k )

mk(xk)−mk(x
+

k )
(2.6)
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is sufficiently positive. Our algorithm therefore combines the filter and trust-region

acceptability criteria to allow a potentially larger set of trial points to be accepted.

Inequality constraints are treated in way entirely similar to that used for equalities:

as already mentioned in (1.4) we define θ to measure the violation of the inequality

constraints. Although the ℓ2-penalty function (1.3) has discontinuous second deriva-

tives on the boundary of the set of vectors satisfying the inequality constraints, this

does not seem to create numerical difficulties when using the Gauss-Newton model.

2.3 An outline of the algorithm and a glimpse on numerical

performance

We now outline the FILTRANE algorithm using the ideas developed above. This outline

is presented as Algorithm 2.1, page 77. Clearly, this description leaves a number of

points unspecified and not fully explained. A more detailed discussion is beyond the

scope of this note, and we refer the reader to Gould and Toint (2003) for an in-depth

analysis.

We simply attempt to motivate the reader to investigate further by showing per-

formance profiles comparing the classical trust-region framework to that including the

filter technique (using the Gauss-Newton model (2.1)) introduced above on a set of 122

problems from the CUTEr collection (see Gould et al., 2003b). Given a set of test prob-

lems and a set of competing algorithms, the i-th performance profiles pi(α) indicates

the fraction of problems for which the i-th algorithm is within a factor α of the best

for a given metric (see Dolan and Moré, 2002 for a formal definition of performance

profiles and a discusion of their properties) Comparisons of both iteration counts and

CPU times indicate that the filter technique results in a considerably improved per-

formance compared to the more classical technique, and this is true both in reliability

(on the right of the profiles) and in efficiency (on their left).

3 Conclusion

We have briefly outlined the main ideas and the algorithm that are behing the FIL-

TRANE package, which is available in the GALAHAD library of optimization programs

(see Gould et al., 2003b and http://galahad.rl.ac.uk/galahad-www/). We have also

indiacted that FILTRANE appears to be remarkably robust and efficient. We hope the

supplied pointers will encourage the reader to pursue this subject of research, maybe

with the help of the two more detailed papers on the subject, namely Gould et al.

(2003a) and Gould and Toint (2003).
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Algorithm 2.1: Outline of the Filter-Trust-Region Algorithm

Step 0: Initialization.

An initial point x0 and an initial trust-region radius ∆0 > 0 are given, as

well as constants 0 < γ0 ≤ γ1 < 1 ≤ γ2, γθ ∈ (0, 1/
√
p), 0 < η1 < η2 < 1.

Compute c0 = c(x0) and θ0. Set k = 0, F = ∅, and select τ0 ≥ 1.

Step 1: Test for termination.

If either θk or ‖∇f(xk)‖ is sufficiently small, stop.

Step 2: Choose a model and a norm.

Choose a norm ‖ · ‖k for (2.3). Set mk to be either mGN

k or mN

k .

Step 3: Determine a trial step.

Compute a step sk using the GLTR algorithm. If the model is found to be

nonconvex and τk > 1, reenter the GLTR algorithm with τk = 1. Compute

the trial point x+

k = xk + sk.

Step 4: Evaluate the residual at the trial step.

Compute c(x+

k ) and θ+k = θ(x+

k ). Define ρk according to (2.6).

Step 5: Test to accept the trial step.

• If x+

k is acceptable for the current filter:

Set xk+1 = x+

k , select τk+1 ≥ 1 and add θ+k to F if either ρk < η1 or

‖sk‖ > ∆k.

• If x+

k is not acceptable for the current filter:

If ‖sk‖ ≤ ∆k and ρk ≥ η1, set xk+1 = x+

k and select τk+1 ≥ 1. Else, set

xk+1 = xk and τk+1 = 1.

Step 6: Update the trust-region radius.

If ‖sk‖ ≤ ∆k, update the trust-region radius by choosing

∆k+1 ∈











[γ0∆k, γ1∆k] if ρk < η1,

[γ1∆k,∆k] if ρk ∈ [η1, η2)

[∆k, γ2∆k] if ρk ≥ η2;

otherwise, set ∆k+1 = ∆k. Increment k by one and go to Step 1.

by EPSRC grants GR/R46641 and GR/S02969/01.
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