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Abstract Global convergence to first-order critical points is proved for a variant 
of the trust-region SQP-filter algorithm analyzed in (Fletcher, Gould, 
Leyffer and Toint) . This variant allows the use of two types of step 
strategies: the first decomposes the step into its normal and tangential 
components, while the second replaces this decomposition by a stronger 
condition on the associated model decrease. 

1. Introduction 

We analyze an algorithm for solving optimization problems where a 
smooth objective function is to be minimized subject to smooth nonlin­
ear constraints. No convexity assumption is made. More formally, we 
consider the problern 

minimize 
subject to 

f(x) 
cc(x) = 0 
CI(x) 2:: Ü, 

(1.1) 
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where f is a twice continuously differentiable real valued function of the 
variables x E IRn and cc:(x) and cr(x) are twice continuously differen­
tiable functions from IRn into IRm and from IRn into JRP, respectively. 
Let c(x)T = (cc(x)T cr(x)T). 

The class of algorithms that we discuss belongs to the class of trust­
region methods and, more specifically, to that of filter methods intro­
duced by Fletcher and Leyffer (1997), in which the use of a penalty 
function, a common feature of the large majority of the algorithms for 
constrained optimization, is replaced by the introduction of a so-called 
"filter". 

A global convergence theory for an algorithm of this class is proposed 
in Fletcher, Leyffer and Toint (1998), in which the objective function is 
locally approximated by a linear function, leading, at each iteration, to 
the (exact) solution of a linear program. This algorithm therefore mixes 
the use of the filter with sequential linear programming (SLP). Simi­
lar results are shown in Fletcher, Leyffer and Toint (2000), where the 
approximation of the objective function is quadratic, leading to sequen­
tial quadratic programming (SQP) methods, but at the price of finding 
a global minimizer of the possibly nonconvex quadratic programming 
subproblem, which is known to be a very difficult task. Convergence 
of SQP filter methods was also considered in Fletcher, Gould, Leyffer 
and Toint (1999), where the SQP step was decomposed in "normal" 
and "tangential" components. Although this latter procedure is compu­
tationally well-defined and considerably less complex than finding the 
global minimum of a general quadratic program, it may sometimes be 
costly, and a simpler strategy, where the step is computed "as a whole" 
can also be of practical interest whenever possible. The purpose of this 
paper, a companion of Fletcher et al. (1999), is to analyze a hybrid algo­
rithm that uses the decomposition of the step into normal and tangential 
components as infrequently as possible. 

2. A Hybrid Trust-Region SQP-Filter 
Algorithms 

For the sake of completeness and clarity, we review briefly the main 
constituent parts of the SQP algorithm discussed in Fletcher et al. 
(1999). Sequential quadratic programming methods are iterative. At 
a given iterate Xk, they implicitly apply Newton's method to solve (a lo­
cal version of) the first-order necessary optimality conditions by solving 
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the quadratic programming subproblem QP(xk) given by 

minimize 
subject to 

fk + (gk, s) + Hks) 
ce(xk) + Ae(xk)s = 0 
cx(xk) + Ax(xk)s 0, 

{2.1) 

where fk = f(xk), 9k = g(xk) \7 xf(xk), where Ae(xk) and Ax(xk) are 
the Jacobians of the constraint functions ce and ex at Xk and where Hk 
is a symmetric matrix. We will not immediately be concerned about how 
Hk is obtained, but we will return to this point in Section 3. Assuming 
a suitable value of Hk can be found, the solution of QP(xk) then yields 
a step sk· If Sk = 0, then Xk is first-order critical for problem {1.1). 

2.1 The filter 
Unfortunately, due to the locally convergent nature of Newton's iter­

ation, the step sk may not always be very good. Thus, having computed 
{in a so far unspecified manner) a step Sk from our current iterate Xk, we 
need to decide whether the trial point Xk + sk is any better than Xk as 
an approximate solution to our original problem {1.1). This is achieved 
by using the notion of a filter, itself based on that of dominance. 

If we define the feasibility measure 

O(x) =max [o, IfE8f lci(x)l, %¥ -ci(x)] , {2.2) 

we say that a point x1 dominates a point x2 whenever 

Thus, if iterate Xk dominates iterate Xj, the latter is of no real interest 
to us since Xk is at least as good as Xj on account of both feasibility and 
optimality. All we need to do now is to remember iterates that are not 
dominated by any other iterates using a structure called a filter. A filter 
is a list F of pairs of the form (Oi, fi) such that either 

oi < oj or fi < Ii 
for i =f. j. Fletcher et al. {1999) propose to accept a new trial iterate 
Xk + Sk only if it is not dominated by any other iterate in the filter and 
Xk· In the vocabulary of multi-criteria optimization, this amounts to 
building elements of the efficient frontier associated with the hi-criteria 
problem of reducing infeasibility and the objective function value. We 
may describe this concept by associating with each iterate Xk its (0, f)­
pair (Ok, fk) and accept Xk + sk only if its (0, f)-pair does not lie, in 
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the two-dimensional space spanned by constraint violation and objective 
function value, above and on the right of a previously accepted pair 
(including that associated with xk)· 

While the idea of not accepting dominated trial points is simple and 
elegant, it needs to be refined a little in order to provide an efficient 
algorithmic tool. In particular, we do not wish to accept Xk + sk if its 
(0, f)-pair is arbitrarily close to that of Xk or that of a point already in 
the filter. Thus Fletcher et al. (1999) set a small "margin" around the 
border of the dominated part of the (0, f)-space in which we shall also 
reject trial points. Formally, we say that a point x is acceptable for the 
filter if and only if 

O(x) < (1- 'Yo)Oj or f(x) < fi- roOj for all (Oj, fi) E :F, (2.3) 

for some 'YO E (0, 1). We also say that x is "acceptable for the filter and 
xk" if (2.3) holds with :F replaced by :F U (Ok, fk). We thus consider 
moving from Xk to Xk + Sk only if Xk + sk is acceptable for the filter and 
Xk. 

As the algorithm progresses, Fletcher et al. (1999) add (0, f)-pairs to 
the filter. If an iterate Xk is acceptable for :F, this is done by adding 
the pair (Ok. fk) to the filter and by removing from it every other pair 
(Oj, fi) such that Oj Ok and fi- roOj fk- roOk. We also refer to 
this operation as "adding Xk to the filter" although, strictly speaking, it 
is the (0, f)-pair which is added. 

We conclude this introduction to the notion of a filter by noting that, 
if a point Xk is in the filter or is acceptable for the filter, then any other 
point x such that 

O(x) (1- ro)Ok and f(x) ik- roOk 

is also be acceptable for the filter and Xk· 

2.2 The composite SQP step 
Of course, the step Sk must be computed, typically by solving, possibly 

approximately, a variant of (2.1). In the trust-region approach, one 
takes into account the fact that (2.1) only approximates our original 
problem locally: the step sk is thus restricted in norm to ensure that 
Xk + sk remains in a trust-region centred at Xk, where we believe this 
approximation to be adequate. In other words, we replace QP(xk) by 
the subproblem TRQP(xk, given by 

mm1m1ze mk(Xk + s) 
subject to ce(xk) + Ae(xk)s = 0, 

and 
cz(xk) + Az(xk)s 0, 
llsll 

(2.4) 
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for some (positive) value of the trust-region radius l:lk, where we have 
defined 

(2.5) 

and where 11·11 denotes the Euclidean norm. This latter choice is purely 
for ease of exposition. We could equally use a family of iteration depen­
dent norms II· Ilk, so long as we require that all members of the family 
are uniformly equivalent to the Euclidean norm. The interested reader 
may verify that all subsequent developments can be adapted to this 
more general case by introducing the constants implied by this uniform 
equivalence wherever needed. 

Remarkably, most of the existing SQP algorithms assume that an 
exact local solution of QP(xk) or TRQP(xk, l:lk) is found, although at­
tempts have been made by Dembo and Tulowitzki (1983) and Murray 
and Prieto (1995) to design conditions under which an approximate so­
lution of the subproblem is acceptable. In contrast, the algorithm of 
Fletcher et al. (1999) is in spirit to the composite-step SQP methods pi­
onneered by Vardi (1985), Byrd, Schnabel and Shultz (1987), and Omo­
jokun (1989) and later developed by several authors, including Biegler, 
Nocedal and Schmid (1995), El-Alem (1995, 1999), Byrd, Gilbert and 
Nocedal (2000a), Byrd, Hribar and Nocedal (2000b), Bielschowsky and 
Gomes (1998), Liu and Yuan (1998) and Lalee, Nocedal and Plantenga 
(1998). It decomposes the step Sk into the sum of two distinct com­
ponents, a normal step nk, such that Xk + nk satisfies the constraints 
of TRQP(xk, l:lk), and a tangential step tk, whose purpose is to obtain 
reduction of the objective function's model while continuing to satisfy 
those constraints. The step Sk is then called composite. More formally, 
we write 

(2.6) 

and assume that 

(2.8) 

and 
ce(xk) + At:(xk)sk = 0, cz(xk) + Az(xk)sk 2: 0. (2.9) 

Of course, this is a strong assumption, since in particular (2.7) or (2.8)/ 
(2.9) may not have a solution. We shall return to this possibility shortly. 
Given our assumption, there are many ways to compute nk and tk. For 
instance, we could compute nk from 

(2.10) 
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where Pk is the orthogonal projector onto the feasible set of QP(xk)· No 
specific choice for nk is made, but one instead assumes that nk exists 
when the maximum violation of the nonlinear constraints at the k-th 
iterate (h O(xk) is sufficiently small, and that nk is then reasonably 
scaled with respect to the values of the constraints. In other words, 
Fletcher et al. (1999) assume that 

(2.11) 

for some constants Ku•c > 0 and On > 0. This assumption is also used by 
Dennis, El-Alem and Maciel (1997) and Dennis and Vicente (1997) in 
the context of problems with equality constraints only. It can be shown 
not to impose conditions on the constraints or the normal step itself that 
are unduly restrictive (see Fletcher et al. (1999) for a discussion). 

Having defined the normal step, we are in position to use it if it falls 
within the trust-region, that is if llnkll :::; !:l.k. In this case, we write 

(2.12) 

and observe that nk satisfies the constraints of TRQP(xk, !:l.k) and thus 
also of QP(xk)· It is crucial to note, at this stage, that such an nk may 
fail to exist because the constraints of QP(xk) may be incompatible, in 
which case Pk is undefined, or because all feasible points for QP(xk) 
may lie outside the trust region. 

Let us continue to consider the case where this problem does not arise, 
and a normal step nk has been found with llnkll :::; !:l.k. We then have 
to find a tangential step tkl starting from xJ: and satisfying (2.8) and 
(2.9), with the aim of decreasing the value of the objective function. As 
always in trust-region methods, this is achieved by computing a step 
that produces a sufficient decrease in mkl which is to say that we wish 
mk(xJ:) - mk(xk + sk) to be "sufficiently large". Of course, this is only 
possible if the maximum size of tk is not too small, which is to say 
that xk is not too close to the trust-region boundary. We formalize this 
condition by replacing our condition that llnkll :::; !:l.k by the stronger 
requirement that 

(2.13) 

for some K!J. E (0, 1), some KJ.L > 0 and some J.Lk E [0, 1). If condition 
(2.13) does not hold, Fletcher et al. (1999) presume that the computation 
of tk is unlikely to produce a satisfactory decrease in mk, and proceed 
just as if the feasible set of TRQP(xk, !:l.k) were empty. If nk can be 
computed and (2.13) holds, TRQP(xk, !:l.k) is said to be compatible for 
J.L· In this case at least a sufficient model decrease seems possible, in 
the form of a familiar Cauchy-point condition. In order to formalize this 
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notion, we recall that the feasible set of QP(xk) is convex, and we can 
therefore introduce the first-order criticality measure 

mm (gk + Hknk, t)i 
Ae(xk)t=O 

(2.14) 

cx(xk)+Ax(xk)(nk 
11t11:9 

(see Conn, Gould, Sartenaer and Toint, 1993). Note that this function 
is zero if and only if xk" is a first-order critical point of the linearized 
"tangential" problem 

m1mm1ze (gk + Hknk, t) + t) 
subject to Ae(xk)t = 0 

cz(xk) + Az(xk)(nk + t) 2: 0, 
(2.15) 

which is equivalent to QP(xk) with s = nk + t. The sufficient decrease 
condition then consists in assuming that there exists a constant ,..,rnd > 0 
such that 

mk(xk") - mk(xk" + tk) 2: l'i:,rndXk !:lk] , (2.16) 

whenever TRQP(xk, !:lk) is compatible, where f3k = 1 + IIHkll· We know 
from Toint (1988) and Conn et al. (1993) that this condition holds if the 
model reduction exceeds that which would be obtained at the generalized 
Cauchy point, that is the point resulting from a backtracking curvilinear 
search along the projected gradient path from xk", that is 

This technique therefore provides an implementable algorithm for com­
puting a step that satisfies (2.16) (see Gould, Hribar and Nocedal, 1998 
for an example in the case where c(x) = ce(x), or Toint, 1988 and More 
and Toraldo, 1991 for the case of bound constraints), but, of course, 
reduction of mk beyond that imposed by (2.16) is often possible and 
desirable if fast convergence is sought. Also note that the minimization 
problem of the right-hand side of (2.14) reduces to a linear program­
ming problem if we choose to use a polyhedral norm in its definition at 
iteration k. 

If TRQP(xk, !:lk) is not compatible for p, that is when the feasible 
set determined by the constraints of QP(xk) is empty, or the freedom 
left to reduce mk within the trust region is too small in the sense that 
(2.13) fails, solving TRQP(xk. !:lk) is most likely pointless, and we must 
consider an alternative. Observe that, if O(xk) is sufficiently small and 
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the true nonlinear constraints are locally compatible, the linearized con­
straints should also be compatible, since they approximate the nonlin­
ear constraints (locally) correctly. Furthermore, the feasible region for 
the linearized constraints should then be close enough to Xk for there 
to be some room to reduce mk, at least if !:lk is large enough. If the 
nonlinear constraints are locally incompatible, we have to find a neigh­
bourhood where this is not the case, since the problem (1.1) does not 
make sense in the current one. Fletcher et al. (1999) thus rely on a 
restoration procedure, whose aim is to produce a new point Xk + rk for 
which TRQP(xk + rk, Llk+1 ) is compatible for some Llk+l > 0-another 
condition will actually be needed, which we will discuss shortly. 

The idea of the restoration procedure is to (approximately) solve 

min fJ(x) 
xEIRn 

(2.17) 

starting from Xk, the current iterate. This is a non-smooth problem, but 
there exist methods, possibly of trust-region type (such as that suggested 
by Yuan, 1994), which can be successfully applied to solve it. Thus we 
will not describe the restoration procedure in detail. Note that we have 
chosen here to reduce the infinity norm of the constraint violation, but 
we could equally well consider other norms, such as £1 or £2, in which case 
the methods of Fletcher and Leyffer (1998) or of El-Hallabi and Tapia 
(1995) and Dennis, El-Alem and Williamson (1999) can respectively be 
considered. Of course, this technique only guarantees convergence to a 
first-order critical point of the chosen measure of constraint violation, 
which means that, in fact, the restoration procedure may fail as this 
critical point may not be feasible for the constraints of (1.1). However, 
even in this case, the result of the procedure is of interest because it typ­
ically produces a local minimizer of fJ(x), or of whatever other measure 
of constraint violation we choose for the restoration, yielding a point of 
locally-least infeasibility. 

There seems to be no easy way to circumvent this drawback, as it is 
known that finding a feasible point or proving that no such point exists is 
a global optimization problem and can be as difficult as the optimization 
problem (1.1) itself. One therefore has to accept two possible outcomes 
of the restoration procedure: either the procedure fails in that it does 
not produce a sequence of iterates converging to feasibility, or a point 
Xk + rk is produced such that fJ(xk + rk) is as small as desired. 

2.3 An alternative step 
Is it possible to find a cheaper alternative to computing a normal 

step, finding a generalized Cauchy point and explicitly checking (2.16)? 
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Suppose, for now, that it is possible to compute a point Xk + sk directly 
to satisfy the constraints of TRQP(xk, and for which 

(2.18) 

and 1fk = 1r(xk), where 1r is a continuous function of its argument that is 
a criticality measure for TRQP(xk, Such ask could for instance be 
computed by applying any efficient method to this latter problem (we 
might think of interior point methods of the type described in Conn, 
Gould, Orban and Toint, 2000) for instance, and its performance could 
be assessed by computing 

1r(x) = min llg(x)- A(xf Yll· 

Of course, nothing guarantees that such an Sk exists (depending on our 
choice of 1r(x)) or is cheaply computable for each Xk, which means that 
we may have to resort to the normal-tangential strategy of Fletcher et 
al. (1999) if such problems arise. However, if we can find Sk at a fraction 
of the cost of computing nk and tk, can we use it inside an SQP-filter 
algorithm and maintain the desirable convergence to first-order critical 
points? 

Obviously, the answer to that question depends on the manner in 
which the use of Sk is integrated into a complete algorithm. 

2.4 A hybrid SQP-filter Algorithm 
We have now discussed the main ingredients of the class of algorithms 

we wish to consider, and we are now ready to define it formally as 
Algorithm 2.1: 

Algorithm 2.1: Hybrid SQP-filter Algorithm 

Step 0: Initialization. Let an initial point xo, an initial trust­
region radius > 0 and an initial symmetric matrix Ho be 
given, as well as constants 'Yo < 'Yl ::; 1 ::; 12, 0 < 'f/1 ::; 'f/2 < 1, 
'YO E (0, 1), "'O E (0, 1), "'t::. E (0, 1], r;,/-l > 0, f.l E (0, 1), 
'1/J > 1/(1 + f.l), "'" > 0 and "'•md E (0, 1]. Compute f(xo) 
and c(xo). Set :F = 0 and k = 0. 
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Step 1: Test for optimality. If (h = 0 and either Xk = 0 or 1rk = 
0, stop. 

Step 2: Alternative step. If 

(2.19) 

set /1-k = p. and go to Step 3. Otherwise, attempt to compute 
a step Sk that satisfies the constraints of TRQP(xk, and 
(2.18). If this succeeds, go to Step 4. Otherwise, set /1-k = 0. 

Step 3: Composite step. 
Step 3a: Normal component. Attempt to compute a nor­

mal step nk. If TRQP (xk, is compatible for !J.k, go to 
Step 3b. Otherwise, include Xk in the filter and compute 
a restoration step rk for which TRQP(xk + rk, is 
compatible for some > 0, and Xk + rk is acceptable 
for the filter. If this proves impossible, stop. Otherwise, 
define Xk+l = Xk + rk and go to Step 7. 

Step 3b: Tangential component. Compute a tangential 
step tk and set sk = nk + tk. 

Step 4: Tests to accept the trial step. 

• Evaluate c(xk + sk) and f(xk + sk)· 

• If xk+sk is not acceptable for the filter and Xk, set Xk+l = 
xk, choose E set nk+l = nk if Step 3 
was executed, and go to Step 7. 

• If 
(2.20) 

and 

(2.21) 

again set Xk+l = Xk, choose E set 
nk+l = nk if Step 3 was executed, and go to Step 7. 

Step 5: Test to include the current iterate in the filter. If 
(2.20) fails, include Xk in the filter :F. 
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Step 6: Move to the new iterate. Set Xk+l 

choose 1 such that 
Xk + sk and 

Step 7: Update the Hessian approximation. Determine 
Hk+l· Increment k by one and go to Step 1. 

This algorithm differs from that of Fletcher et al. (1999) in that it 
contains the alternative step strategy, but also because it allows the 
normal step to satisfy (2.13) with J-t = 0 whenever (2.19) holds, that 
is whenever the current iterate is sufficiently feasible. (As we will see 
later, (2.13) with J-t > 0 can be viewed as an implicit technique to impose 
(2.19).) 

As in Fletcher and Leyffer (1997) and Fletcher and Leyffer (1998), 
one may choose 't/J = 2 (Note that the choice 't/J = 1 is always possible 
because J-t > 0). Reasonable values for the constants might then be 

'YO = 0.1, 'Y1 = 0.5, 'Y2 = 2, 'T/1 = 0.01, 'T/2 = 0.9, 'YO = 10-4, 
K,t:,_ = 0. 7, "'J.L = 100, J-t = 0.01, "'B = 10-4 , and "'•md = 0.01. 

but it is too early to know if these are even close to the best possible 
choices. 

As in Fletcher et al. (1999), some comments on this algorithm are 
now in order. Observe first that, by construction, every iterate xk must 
be acceptable for the filter at the beginning of iteration k, irrespective 
of the possibility that it is added to the filter later. Also note that 
the restoration step rk cannot be zero, that is restoration cannot simply 
entail enlarging the trust-region radius to ensure (2.13), even if nk exists. 
This is because Xk is added to the filter before rk is computed, and xk+rk 

must be acceptable for the filter which now contains Xk. Also note that 
the restoration procedure cannot be applied on two successive iterations, 
since the iterate Xk + rk produced by the first of these iterations is both 
compatible and acceptable for the filter. 

For the restoration procedure in Step 3a to succeed, we have to eval­
uate whether TRQP(xk + rk, is compatible for a suitable value 
of This requires that a suitable normal step be computed which 
successfully passes the test (2.13). Of course, once this is achieved, this 
normal step may be reused at iteration k + 1, if the composite step 
strategy is used. 
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As it stands, the algorithm is not specific about how to choose 
during a restoration iteration. On one hand, there is an advantage to 
choosing a large 1, since this allows a large step and one hopes good 
progress. It also makes it easier to satisfy (2.13). On the other, it may be 
unwise to choose it to be too large, as this may possibly result in a large 
number of unsuccessful iterations, during which the radius is reduced, 
before the algorithm can make any progress. A possible choice might 
be to restart from the radius obtained during the restoration iteration 
itself, if it uses a trust-region method. Reasonable alternatives would be 
to use the average radius observed during past successful iterations, or 
to apply the internal doubling strategy of Byrd et al. (1987) to increase 
the new radius, or even to consider the technique described by Sartenaer 
(1997). However, we recognize that extensive numerical experience will 
remain the ultimate measure of any suggestion at this level. 

The role of condition (2.20) may be interpreted as follows. If this 
condition fails, then one may think that the constraint violation is sig­
nificant and that one should aim to improve on this situation in the 
future, by inserting the current point in the filter. Fletcher and Leyffer 
(1997) use the term of "0-step" in such circumstances, to indicate that 
the main preoccupation is to improve feasibility . On the other hand, 
if condition (2.20) holds, then the reduction in the objective function 
predicted by the model is more significant than the current constraint 
violation and it is thus appealing to let the algorithm behave as if it were 
unconstrained. Fletcher and Leyffer (1997) use the term of "f-step" to 
denote the step generated, in order to reflect the dominant role of the 
objective function f in this case. In this case, it is important that the 
predicted decrease in the model is realized by the actual decrease in the 
function, which is why we also require that (2.21) does not hold. In 
particular, if the iterate Xk is feasible, then (2.19) and (2.11) imply that 
Xk = xk" and we obtain that 

r;,o()t = 0 ::::; mk(xk") - mk(Xk + sk) = mk(xk) - mk(xk + sk)· (2.22) 

As a consequence, the filter mechanism is irrelevant if all iterates are 
feasible, and the algorithm reduces to a classical unconstrained trust­
region method. Another consequence of (2.22) is that no feasible iterate 
is ever included in the filter, which is crucial in allowing finite termina­
tion of the restoration procedure. Indeed, if the restoration procedure is 
required at iteration k of the filter algorithm and produces a sequence 
of points { Xk,j} converging to feasibility, there must be an iterate Xk,j 
for which 

ek,j ()(xk,j) ::::; min [(1 - 'Yo)e;;in, "'D. min[1, ' 
Kusc 
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for any given > 0, where 

and 
Z = { k I Xk is added to the filter}. 

Moreover, ek,j must eventually be small enough to ensure, using our as­
sumption on the normal step, the existence of a normal step nk,j from 
Xk,j· In other words, the restoration iteration must eventually find an it­
erate xk,j which is acceptable for the filter and for which the normal step 
exists and satisfies (2.13), i.e. an iterate Xj which is both acceptable and 
compatible. As a consequence, the restoration procedure will terminate 
in a finite number of steps, and the filter algorithm may then proceed. 
Note that the restoration step may not terminate in a finite number of 
iterations if we do not assume the existence of the normal step when the 
constraint violation is small enough, even if this violation converges to 
zero (see Fletcher, Leyffer and Toint, 1998, for an example). 

Notice also that (2.20) ensures that the denominator of Pk in (2.21) 
will be strictly positive whenever ek is. If ek = 0, then xk = xk', and the 
denominator of (2.21) will be strictly positive unless Xk is a first-order 
critical point because of (2.16). 

The attentive reader will have observed that we have defined nk+l in 
Step 4 in the cases where iteration k is unsuccessful (just before branch­
ing back to Step 2), while we may not use it if the alternative step of 
Step 2 is then used at iteration k + 1. This is to keep the expression 
of the algorithm as general as possible: a more restrictive version would 
impose a branch back to Step 3b from Step 4 if iteration k is unsuc­
cessful, but this would then prevent the use of an alternative step at 
iteration k + 1. We have chosen not to impose that restriction, but we 
obviously require that nk+l is used in Step 3a whenever it has been set 
at iteration k, instead of recomputing it from scratch. 

Finally, note that Step 6 allows a relatively wide choice of the new 
trust-region radius While the stated conditions are sufficient for 
the theory developed below, one must obviously be more specific in 
practice. For instance, one may wish to distinguish, at this point in the 
algorithm, the cases where (2.20) fails or holds. If (2.20) holds, the main 
effect of the current iteration is not to reduce the model (which makes 
the value of Pk essentially irrelevant), but rather to reduce the constraint 
violation (which is taken care of by inserting the current iterate in the 
filter at Step 5). In this case, Step 6 imposes no further restriction on 

In practice, it may be reasonable not to reduce the trust-region 
radius, because this might cause too small steps towards feasibility or an 
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unnecessary restoration phase. However, there is no compelling reason to 
increase the radius either, given the compatibility of A 
reasonable strategy might then be to choose = If, on the other 
hand, (2.20) holds, the emphasis of the iteration is then on reducing the 
objective function, a case akin to unconstrained minimization. Thus a 
more detailed rule of the type 

seems reasonable in these circumstances. 

if Pk E [171, 172), 
if Pk 172 

3. Convergence to First-Order Critical Points 
We now prove that our hybrid algorithm generates a globally con­

vergent sequence of iterates, at least if the restoration iteration always 
succeeds. For the purpose of our analysis, we shall consider 

the set of (indices of) successful iterations, 

{ 
k I Step 3 is executed and 

R = either TRQP(xk, has no feasible point 
or link II > min[1, }· 

the set of restoration iterations, 

A = { k I the alternative step is used at iteration k}, 

and 
C = {k I Sk = nk + tk}, 

the set of iterations where a composite step is used (with I-Lk 0). Note 
that (2.19) implies that 

(3.1) 

for every k E A. Also note that {1, 2, ... } = AU CUR and that R Z. 
In order to obtain our global convergence result, we will use the as­

sumptions 

ASl: f and the constraint functions C£ and cr are twice continuously 
differentiable; 

AS2: there exists "'umh > 1 such that 
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AS3: the iterates {xk} remain in a closed, bounded domain XC rn.n. 
If, for example, H k is chosen as the Hessian of the Lagrangian function 

at Xk, in that 

P(x,y) = f(x) + (Ye,ce(x)) + (yz,cx(x)) 

Hk = \1 xxf(xk) + L [Yk]i\1 xxCi(Xk), 
iE£UI 

(3.2) 

where [Yk]i denotes the i-th component of the vector of Lagrange mul­
tipliers yf = (yf k y'f k), then we see from AS1 and AS3 that AS2 is 
satisfied when mtiltipliers remain bounded. The same is true if the 
Hessian matrices in (3.2) are replaced by bounded approximations. 

A first immediate consequence of AS1-AS3 is that there exists a con­
stant ,._ubh > 1 such that, for all k, 

(3.3) 

A proof of this property, based on Taylor expansion, may be found, 
for instance, in Toint (1988). A second important consequence of our 
assumptions is that AS1 and AS3 together directly ensure that, for all 
k, 

! min < f(x ) < !max and 0 < 0 < omax - k- - k_ (3.4) 

for some constants jmin, fmax and Omax > 0. Thus the part of the (0, f)­
space in which the (0, f)-pairs associated with the filter iterates lie is 
restricted to the rectangle 

whose area, surf(Mo), is clearly finite. 
We also note the following simple consequence of (2.11) and AS3. 

Lemma 1 Suppose that Algorithm 2.1 is applied to problem (1.1). 
Suppose also that (2.11) and AS3 hold, that k E C, and that 

Ok On. 

Then there exists a constant ,._Isc > 0 independent of k such that 

(3.5) 
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Proof. Since k E C, we first obtain that nk exists (as a consequence 
of (2.11)), and define 

vk {j E £ I (h = lcj(Xk)l} u {j E I I (h = -Cj(Xk)}, 

that is the subset of most-violated constraints. From the definitions 
of (h in (2.2) and of the normal step in (2.7) we obtain, using the 
Cauchy-Schwartz inequality, that 

for all j E Vk· But AS3 ensures that there exists a constant lb1.c > 0 
such that 

def 1 
max IIVxcj(x)ll = -. 

JE£UI xEX lb1sc 

We then obtain the desired conclusion by substituting this bound in 
(3.6). 0 

Our assumptions and the definition of Xk in (2.14) ensure that (h and 
Xk can be used (together) to measure criticality for problem {1.1). 

Lemma 2 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1 
and AS3 hold, and that there exists a subsequence {ki} g R such 
that 

.lim (}k; = 0, lim Xk; = 0 and lim 'lrk; = 0. (3. 7) 
t---700 1.---+00 1-+00 

k;EC k;EA 

Then every limit point of the sequence { Xk;} is a first-order critical 
point for problem (1.1). 

Proof. Consider x*, a limit point of the sequence {xkJ, whose 
existence is ensured by AS3, and assume that { kl} { ki} is the index 
set of a subsequence such that {xkJ converges to x*. If {kl} contains 
infinitely many indices of A, the definition of 'lrk implies that x* is a 
first-order critical point for problem (1.1). If this is not the case, the 
fact that k£ R implies that nkt satisfies (2.11) for sufficiently large .e 
and converges to zero, because { (}kt} converges to zero and the second 
part of this condition. As a consequence, we deduce from (2.12) that 
{ xkf} also converges to x*. Since the minimization problem occuring 
in the definition of Xkt (in (2.14)) is convex, we then obtain from 
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classical perturbation theory (see, for instance, Fiacco, 1983, pp. 14-
17), AS1 and the first part of (3.7) that 

mm (g*, t)i = 0. 
A&(x.)t=O 

cx(x. )+Ax(x.)t2':0 
11t119 

This in turn guarantees that x* is first-order critical for problem (1.1). 
D 

We start our analysis by examining what happens when an infinite num­
ber of iterates (that is, their (0, f)-pairs) are added to the filter. 

Lemma 3 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1 
and AS3 hold and that IZI = oo. Then 

lim ok = 0. 
k-+oo 
kEZ 

Proof. Suppose, for the purpose of obtaining a contradiction, that 
there exists an infinite subsequence {ki} Z such that 

(3.8) 

for all i and for some E > 0. At each iteration ki, the (0, f)-pair 
associated with Xk;, that is (Ok;, fkJ, is added to the filter. This 
means that no other (0, f)-pair can be added to the filter at a later 
stage within the square 

or with the intersection of this square with M 0 . But the area of each 
of these squares is Thus the set Mo is completely covered by at 
most a finite number of such squares. This puts a finite upper bound 
on the number of iterations in { kj}, and the conclusion follows. D 

We next examine the size of the constraint violation before and after a 
"composite iteration" where restoration did not occur. 
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Lemma 4 Suppose that Algorithm 2.1 is applied to problem (1.1). 
Suppose also that AS1 and AS3 hold and that nk satisfies (3.5) for 
k E C. Then there exists a constant li:ubt > 0 such that 

(3.9) 

and 
(3.10) 

for alll n. 

Proof. Assume first that k E C with I-Lk = p. Since k R, we have 
from (3.5) and (2.13) that 

(3.11) 

which gives (3.9). On the other hand, (3.1) implies that an inequality 
of the form (3.9) holds for k E A or k E C with I-Lk = 0. Now, for any 
k, the i-th constraint function at Xk + sk can be expressed as 

fori E £ U I, where we have used AS1, the mean-value theorem, and 
where belongs to the segment [xk, Xk + sk]· Using AS3, we may 
bound the Hessian of the constraint functions and we obtain from 
(2.9), the Cauchy-Schwartz inequality, and (2.8) we have that 

lci(Xk + sk)l ::; maxx ll\7 xxCi(x)llllskll 2 ::; 
xE 

if i E £,or 

if i E I, where we have defined 

This gives the desired bound for any 

0 
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We next assess the model decrease when the trust-region radius is suffi­
ciently small. 

Lemma 5 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3 and (2.16) hold, that k E C, that, for some E > 0, 

(3.12) 

Suppose furthermore that 

(3.13) 

where l'i:ubg maxxEX IIY'xf(x)ll· Then 

mk(xk)- mk(Xk + sk) 2: 

This last inequality also holds if k E A, if (3.13) holds and 

'lrk 2: . (3.14) 

Proof. Assume first that k E C. We note that, by (2.16), AS2, 
(3.12) and (3.13), 

mk(xk")- mk(Xk + sk) 2: l'i:tmdXk min [ Xk , ..6.k] 2: l'i:tmd ..6.k. (3.15) 

Now 
mk(xk") = mk(xk) + (gk, nk) + Hknk) 

and therefore, using the Cauchy-Schwartz inequality, AS2, (2.13) and 
(3.13) that 

lmk(xk)- mk(xk")l < llnkllllgkll + 
< l'i:ubsllnkll + 

A l+tt 1 2 2 A 2(1+tt) < /';;ubgl'i:AI'i:ttl....l.k + 2/';;umh/';;A/'i:Jtl....l.k 
< 2 A l+tt l'i:ubgl'i:AI'i:ttl....l.k 
< 

We thus conclude from this last inequality and (3.15) that the desired 
conclusion holds for k E C. If we now assume that k E A (that 
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is iteration k uses an alternative step), then (2.18), (3.13) and the 
inequality "'umh 1 directly yields that 

as desired. D 

We continue our analysis by showing, as the reader has grown to expect, 
that iterations have to be very successful when the trust-region radius 
is sufficiently small. 

Lemma 6 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3, (2.16) and (3.12) hold, that k fl. n, and that 

A < · [x (1 - "72)/'\,tmdf.] x 
L.l.k _ min um, - Up· 

2/'\,ubh 
(3.16) 

Then 

Proof. Using (2.21), (3.3), Lemma 5 and (3.16), we find that 

from which the conclusion immediately follows. D 

Note that this proof could easily be extended if the definition of Pk in 
(2.21) were altered to be of the form 

(3.17) 

provided ek is bounded above by a multiple We will comment in 
Section 4 why such a modification might be of interest. 

Now, we also show that the test (2.20) will always be satisfied when 
the trust-region radius is sufficiently small. 
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Lemma 7 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3, (2.16) and (3.12) hold, that k rt R, that nk satisfies (3.5) if 
k E C, and that 

(3.18) 

Then 

Proof. This directly results from the inequalities 

where we successively used Lemma 4, (3.18) and Lemma 5. D 

We may also guarantee a decrease in the objective function, large enough 
to ensure that the trial point is acceptable with respect to the (0, f)-pair 
associated with Xk, so long as the constraint violation is itself sufficiently 
small. 

Lemma 8 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3, (2.16), (3.12) and (3.16) hold, that k rt R, that nk satisfies 
(3.5) if k E C, and that 

(3.19) 

Then 

Proof. Applying Lemmas 4-6-which is possible because of (3.12), 
(3.16), k rt R and nk satisfies (3.5) for k E C-and (3.19), we obtain 
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that 

f(xk) - f(xk + sk) > 'T72[mk(xk) - mk(Xk + sk)] 
> 

1 

> r+l' 
> 1rlh 

and the desired inequality follows. 0 

We now establish that if the trust-region radius and the constraint vi­
olation are both small at a non-critical iterate Xk, TRQP(xk, t:..k) must 
be compatible. 

Lemma 9 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose that AS1-AS3, 
(2.11), and (3.12) hold, that (2.16) holds fork n, and that 

(3.20) 

Suppose furthermore that 

(3.21) 

Then k (/. 'R. 

Proof. If an alternative step is used at iteration k, then k (/. n. 
Assume therefore that k (/.A. Because fh 8n, we know from (2.11) 
and Lemma 1 that (2.11) and (3.5) hold. Moreover, since fh 86 , 

we have that (3.19) also holds. Assume, for the purpose of deriving a 
contradiction, that k E 'R, which implies that 

(3.22) 

where we have used (2.13) and the fact that 1 
because of (3.20). In this case, the mechanism of the algorithm then 
ensures that k -1 (/. n. Now assume that iteration k -1 is unsuccess­
ful. Because of Lemmas 6 and 8, which hold at iteration k - 1 (/. 'R 
because of (3.20), the fact that fh = fh_ 1 , (2.11), and (3.19), we 
obtain that 
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Hence, given that Xk_ 1 is acceptable for the filter at the beginning of 
iteration k - 1, if this iteration is unsuccessful, it must be because 

O(xk-1 + sk-1) > (1- Te)Ok-1 = (1- Te)Ok. 

But Lemma 4 and the mechanism of the algorithm then imply that 

(1- TeWk K;ub,D.L1 K;u;· 

TO 

Combining this last bound with (3.22) and (2.11), we deduce that 

A 1+JL II II < (} < K;uscK;ubt A 2 
K;f.1K;JLuk < nk - K;usc k - 2( ) uk 

TO 1- TO 

and hence that 

Since this last inequality contradicts (3.20), our assumption that it­
eration k - 1 is unsuccessful must be false. Thus iteration k - 1 is 
successful and (}k = O(xk-1 + Sk-1). We then obtain from (3.22), 
(2.11) and (3.10) that 

A 1+JL II II < (} < A 2 < K;uscK;ubt A 2 K;f.1K;JLuk < nk - K;usc k - K;uscK;ubtuk-1 - 2 uk, 
TO 

which is again impossible because of (3.20) and because (1- TO) < 1. 
Hence our initial assumption (3.22) must be false, which yields the 
desired conclusion. D 

We now distinguish two mutually exclusive cases. For the first, we con­
sider what happens if there is an infinite subsequence of iterates belong­
ing to the filter. 

Lemma 10 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3 and (2.11) hold and that (2.16) holds for k tt R. Suppose 
furthermore that IZI = oo. Then there exists an infinite subsequence 
{kj} Z such that 

and 

lim Ok· = 0 
j-+oo J 

lim Xk· = 0 and lim 7rk- = 0. 
j-too 1 j-too 1 

(3.23) 

(3.24) 
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Proof. Let {ki} be any infinite subsequence of Z. We observe that 
(3.23) follows from Lemma 3. Suppose now that, for some E2 > 0. 

(3.25) 

for all i such that ki E C and 

(3.26) 

for all i such that ki E A. Suppose furthermore that there exists 
E3 > 0 such that, for all i 2:: io, 

(3.27) 

If ki (3.23) and (2.11) ensure that nki exists fori 2:: io, say, and 
also that 

_lim llnki II = 0. 
z-+oo 

(3.28) 

Thus (3.27) ensures that (2.13) holds for sufficiently large i and ki 
n. We may then decompose the model decrease in its normal and 
tangential components, that is 

mki (xk;)-mki (xki +sk) =mki (xk)-mki (xk"J+mki (xk") -mki (xki +skJ. 
(3.29) 

Consider the normal component first. As we noted in the proof of 
Lemma 5, 

lmki(xk;)- mki(xk"JI::; + 
which in turn, with (3.28), yields that 

lim [mk.(Xk-)- mk.(xNk_)] = 0. 
i---+-oo ' ' t , 

(3.30) 

If we now consider the normal component, (3.25), (3.27) (2.16) and 
AS2 yield that 

mki (xk"J - mki (xki + sk;) 2:: E3] 81 > 0. (3.31) 
Kurnh 

Substituting (3.30) and (3.31) into (3.29), we find that, for ki E C, 

mki (xk;) - mki (xki + skJ 2:: 81 > 0. 

If, on the other hand, ki E A, then (3.26), (3.27) and (2.18) give that 

mki(xk;)- mki(xki + skJ 2:: minh, E3] 82 > 0. 
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Thus 

We now observe that, because Xk; is added to the filter at iteration ki, 
the mechanism of the algorithm imposes that either iteration ki E R 
or (2.20) must fail. Since we already verified that ki rf_ n for i i0 

sufficiently large, we obtain that (2.20) must fail for such i, that is 

(3.33) 

Combining this bound with (3.32), we find that fh; is bounded away 
from zero fori sufficiently large, which is impossible in view of (3.23). 
We therefore deduce that (3.27) cannot hold and obtain that there is 
a subsequence {k£} {ki} for which 

lim tlk1 = 0. 
l-+oo 

We now restrict our attention to the tail of this subsequence, that is to 
the set of indices ke that are large enough to ensure that (3.18), (3.19) 
and (3.20) hold, which is possible by definition of the subsequence and 
because of (3.23). For these indices, we may therefore apply Lemma 9, 
and deduce that iteration ke rf_ R for £ sufficiently large. Hence, as 
above, (3.33) must hold for£ sufficiently large. However, we may also 
apply Lemma 7, which contradicts (3.33), and therefore (3.25) and 
(3.26) cannot hold together, yielding the desired result. 0 

Thus, if an infinite subsequence of iterates is added to the filter, Lemma 2 
ensures that it converges to a first-order critical point. Our remaining 
analysis then naturally concentrates on the possibility that there may be 
no such infinite subsequence. In this case, no further iterates are added 
to the filter for k sufficiently large. In particular, this means that the 
number of restoration iterations, IRI, must be finite. In what follows, 
we assume that ko 0 is the last iteration for which Xko-l is added to 
the filter. 
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Lemma 11 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3 and (2.11) hold and that (2.16) holds for k R. Then we have 
that 

lim fh = 0. 
k-too 

(3.34) 

Furthermore, nk exists and satisfies (3.5) for all k ?: ko sufficiently 
large. 

Proof. Consider any successful iterate with k ?: ko. Then we have 
that 

f(xk)- f(xk+I) ?: 17I[mk(xk)- mk(xk + sk)] ?: 17I""Bet ?: 0. (3.35) 

Thus the objective function does not increase for all successful iter­
ations with k ?: ko. But AS1 and AS3 imply (3.4) and therefore we 
must have, from the first part of this statement, that 

lim f(xk) - f(xk+l) = 0. 
kES 

k-too 

(3.36) 

(3.34) then immediately follows from (3.35) and the fact that (}j = (}k 

for all unsuccessful iterations j that immediately follow the successful 
iteration k, if any. The last conclusion then results from (2.11) and 
Lemma 1. D 

We now show that the trust-region radius cannot become arbitrarily 
small if the (asymptotically feasible) iterates stay away from first-order 
critical points. 

Lemma 12 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3 hold and that (2.16) holds fork R. Suppose furthermore that 
(3.12) hold for all k ?: ko. Then there exists a ..6..min > 0 such that 

for all k. 

Proof. Suppose that k1 ?: ko is chosen sufficiently large to ensure 
that (3.21) holds and thus that (2.11) also holds for all k ?: k1, which 
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is possible because of Lemma 11. Suppose also, for the purpose of ob­
taining a contradiction, that iteration j is the first iteration following 
iteration k1 for which 

where 
()F def . () =min . 

iEZ t 

(3.37) 

is the smallest constraint violation appearing in the filter. Note also 
that the inequality D..j /oD..kp which is implied by (3.37), ensures 
that j 2:: k1 + 1 and hence that j - 1 2:: k1 and thus that j - 1 rl. n. 
Then the mechanism of the algorithm and (3.37) imply that 

1 
D..j-1 -D..j 8s 

/0 
(3.38) 

and Lemma 6, which is applicable because (3.37) and (3.38) together 
imply (3.16) with k replaced by j- 1, then ensures that 

Pi-1 2:: 'f/2· (3.39) 

Furthermore, since n- j- 1 satisfies (2.11), Lemma 1 implies that 
we can apply Lemma 4. This together with (3.37) and (3.38), gives 
that 

(3.40) 

We may also apply Lemma 8 because (3.37) and (3.38) ensure that 
(3.16) holds and because (3.19) also holds for j - 1 2:: k1. Hence we 
deduce that 

j(Xj-1 + Sj-I} f(xj_I)- /O()j-1· 

This last relation and (3.40) ensure that Xj-1 + Sj-1 is acceptable 
for the filter and Xj-1· Combining this conclusion with (3.39) and 
the mechanism of the algorithm, we obtain that D..j 2:: D..j_ 1 . As a 
consequence, and since (2.20) also holds at iteration j -1, iteration j 
cannot be the first iteration following k1 for which (3.37) holds. This 
contradiction shows that D..k 2:: 1o88 for all k > k1, and the desired 
result follows if we define 

D 
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We may now analyze the convergence of Xk itself. 

Lemma 13 Suppose that Algorithm 2.1 is applied to problem (1.1) 
and that finite termination does not occur. Suppose also that AS1-
AS3, (2.11) hold, and that (2.16) holds fork rf. n. Then there exists 
a subsequence { kj} such that 

liminfXk· = 0 and liminf1rk· = 0. (3.41) 
j-+oo 3 j-+oo 3 

Proof. We start by observing that Lemma 11 implies that the second 
conclusion of (2.11) holds for k sufficiently large. Moreover, as in 
Lemma 11, we obtain (3.35) and therefore (3.36) for each k E S, 
k 2:: ko. Suppose now, for the purpose of obtaining a contradiction, 
that (3.12) and (3.14) hold. Assume first that k E C. In this case, 
and notice that 

mk(xk)- mk(Xk + sk) = mk(xk)- mk(xJ:) + mk(xk)- mk(Xk + sk). 
(3.42) 

Moreover, note, as in Lemma 5, that 

lmk(xk)- mk(xJ:)I ,;uhsllnkll + ,;umhllnkll 2 , 

which in turn yields that 

lim [mk(xk)- mk(xJ:)] = 0 
k--+oo 

because of Lemma 11 and the second conclusion of (2.11). This limit, 
together with (3.35), (3.36) and (3.42), then gives that 

lim [mk(xJ:)- mk(Xk + sk)] = 0. 
k--+oo 
kES 

(3.43) 

But (2.16), (3.12), AS2 and Lemma 12 together imply that, for all 
k 2:: k0 

mk(xJ:)-mk(xk+sk) 2:: ,;,mdXk min t::.k] 2:: ,;,mdE min [,;u:h, !::.min] , 
(3.44) 

immediately giving a contradiction with (3.43). 

On the other hand, if k E A, then (3.14) and (2.18) immediately 
imply that 
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which, together with (2.21) and the fact that k E S, contradicts the 
boundedness of f. Hence (3.12) and (3.14) cannot hold together and 
the desired result follows. D 

We may summarize all of the above in our main global convergence 
result. 

Theorem 14 Suppose that Algorithm 2.1 is applied to prob­
lem (1.1) and that finite termination does not occur. Suppose also 
that AS1-AS3 and (2.11) hold, and that (2.16) holds fork n. Let 
{xk} be the sequence of iterates produced by the algorithm. Then 
either the restoration procedure terminates unsuccessfully by con­
verging to an infeasible first-order critical point of problem (2.17), 
or there is a subsequence {kj} for which 

lim Xk· =X* 
j-too J 

and x* is a first-order critical point for problem (1.1). 

Proof. Suppose that the restoration iteration always terminates 
successfully. From AS3, Lemmas 10, 11 and 13, we obtain that, for 
some subsequence {kj }, 

.lim fh. = lim Xk· = lim 7rk· = 0. 
J-+00 J j-+oo J j-+oo J 

kjEC kjEA 

(3.45) 

The conclusion then follows from Lemma 2. D 

Can we dispense with AS3 to obtain this result? Firstly, this assump­
tion ensures that the objective and constraint functions remain bounded 
above and below (see (3.4)). This is crucial for the rest of the analy­
sis because the convergence of the iterates to feasibility depends on the 
fact that the area of the filter is finite. Thus, if AS3 does not hold, we 
have to verify that (3.4) holds for other reasons. The second part of 
this statement may be ensured quite simply by initializing the filter to 
(Bmax, -oo ), for some (}max > Bo, in Step 0 of the algorithm. This has the 
effect of putting an upper bound on the infeasibility of all iterates, which 
may be useful in practice. However, this does not prevent the objective 
function from being unbounded below in 
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and we cannot exclude the possibility that a sequence of infeasible iter­
ates might both continue to improve the value of the objective function 
and satisfy (2.20). If C(Omax) is bounded, AS3 is most certainly satisfied. 
If this is not the case, we could assume that 

(3.46) 

for some values of fm;n and fmax and simply monitor that the values f(xk) 
are 
reasonable-in view of the problem being solved-as the algorithm pro­
ceeds. To summarize, we may replace ASl and AS3 by the following 
assumption. 

AS4: The functions f and c are twice continuously differentiable on an 
open set containing C(Omax), their first and second derivatives are 
uniformly bounded on C(Omax), and (3.46) holds. 

The reader should note that AS4 no longer ensures the existence of 
a limit point, but only that (3.45) holds for some subsequence {kj}· 
Furthermore, the comments following the statement of (2.11) no longer 
apply if limit points at infinity are allowed. 

4. Conclusion and Perspectives 
We have introduced a hybrid trust-region SQP-filter algorithm for 

general nonlinear programming, that mixes composite steps with poten­
tially cheaper alternative steps, and we have shown this algorithm to be 
globally convergent to first-order critical points. This hybrid algorithm 
has the potential of being numerically more efficient than its version that 
only uses composite steps, as analyzed in Fletcher et al. (1999). How­
ever, the authors are well aware that this potential must be confirmed 
by numerical experiments. 
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