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Abstra
t

Numeri
al methods for solving nonlinear optimization problems have been

developed for over 50 years. Has this �eld rea
hed maturity? What are the


urrent resear
h frontiers and ongoing 
hallenges? These are questions that this

paper attempts to 
larify, if not fully answer. The dis
ussion does not explore

the te
hni
al intri
a
ies of nonlinear optimization te
hniques, but instead fo
usses

on 
on
epts and resear
h pra
ti
e. The �eld's vibrant nature is illustrated by a

number of appli
ations, su
h as adaptive lens design for spe
ta
les, the piloting

of inje
tion of dangerous drugs to patients, the identi�
ation of parameters in

bio
hemi
al models of neurons, food sterilization or animation te
hniques for

video games.

1 Introdu
tion

Numeri
al optimization, that is the 
orpus of methods and te
hniques for the solution of

mathemati
ally posed problems where one wishes to optimize one \obje
tive" subje
t

to a number of \
onstraints", has a ri
h history and 
ontinues to be an a
tive resear
h

�eld. The purpose of the present paper is to 
onsider an important sub�eld, nonlinear

optimization, and to propose some thoughts about its level of maturity, both from the

resear
h and appli
ations points of view.

Nonlinear optimization is 
on
erned with the solution of 
ontinuous problems ex-

pressed in the form

min

x

f(x)

subje
t to 


E

(x) = 0;




I

(x) � 0;

(1.1)

where f : IR

n

! IR, 


E

: IR

n

! IR

e

and 


I

: IR

n

! IR

i

are smooth. This des
ription is

somewhat simpli�ed, as, for instan
e, the level of smoothness of the involved fun
tions

may vary or the 
onstraints may involve 
onvex sets. . . but it is adequate for the purpose

of our dis
ussion. The formulation (1.1) also hides a number of interesting spe
ial


ases and distin
tions, the most important being that between 
onvex and non
onvex

problems. We will dis
uss these issues in due 
ourse. At this point, we simply note that,

ex
ept in a few isolated 
ases, all methods for solving (1.1) are iterative in nature, in
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the sense that they produ
es a potentially in�nite sequen
e of iterates that (hopefully)


onverges to a desired solution.

2 A �eld no longer in infan
y

That nonlinear optimization is no longer a new or young �eld of s
ienti�
 a
tivity

barely needs dis
ussion. Its ri
h history in
ludes, for instan
e, the famous paper by

Cau
hy (1847), in the middle of the 19th 
entury, but is also asso
iated with other

luminaries su
h as Euler, Gauss and Lagrange, for instan
e. It really be
ame a �eld of

its own immediately after World War II, along with the birth of the new �eld of \oper-

ations resear
h". The development of the nonlinear least-squares �tting te
hniques by

Levenberg (1944) may be 
onsidered as seminal from this point of view. The �eld had

(and still has) spe
ial 
onne
tions with linear algebra (the Cau
hy paper being a good

example, as are other important 
ontributions su
h as the Conjugate-Gradient method

by Hestenes and Stiefel, 1952 or the exa
t solution of the trust-region subproblem by

Mor�e and Sorensen, 1983, and many others). Sin
e our purpose is elsewhere, we will

thus simply note that the �eld has a respe
table history, a 
lear sign of being no longer

in infan
y.

At what we think is a more fundamental level, the methodologi
al fo
us has also

evolved from immediate (and vital) needs, su
h as e�e
tively solving small problems,

to more \long-term" questions. For instan
e, the early 
on
ern of designing methods

that are asymptoti
ally fast (that is 
onverge qui
kly when started in a, possibly very

small, neighbourhood of the solution) has progressively shifted to that of methods that

are robustly globally 
onvergent, in the sense that they are guaranteed to 
onverge to

a solution irrespe
tive of the 
hosen starting point.

The �eld has be
ome more 
ons
ious of itself, as new journals published a growing

number of spe
ialized 
ontributions. Although some of the high quality publi
ations

of the early days su
h as Mathemati
al Programming 
ontinue to play an important

role, it is telling that the long asso
iation of nonlinear optimization resear
h with the

SIAM Journal on Numeri
al Analysis has been mostly repla
ed by the highly su

essful

SIAM Journal on Optimization. But, as also happens with teenagers, this growing self

awareness went along with a 
learer and more urgent realization of the dependen
e on

the rest of the world. In parti
ular, the strong and fruitful intera
tion of nonlinear

optimization with a number of s
ienti�
 domains where its te
hniques are applied has

be
ome even more 
ru
ial. The links between good numeri
al optimization methods

and good software have also emerged as an important resear
h topi
. Other new

journals, su
h as, for instan
e, Optimization Methods and Software and Computational

Optimization and Appli
ations, testify to this evolution, along with the 
ontinuing

su

ess of older sour
es like the Journal of Optimization Theory and Appli
ations and

the Transa
tions of the ACM on Mathemati
al Software.

Finally, the fo
us of the problems being solved has evolved from \toy problems",

typi
ally involving a very small number (typi
ally less than 10) of variables and/or
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onstraints, to larger and often more realisti
 instan
es, that 
urrently feature possibly

hundreds of thousands or even millions of variables and 
onstraints. This is not to say

that all small problems are uninteresting or easy, but the in
reasing size of the problems

that 
an realisti
ally be solved is, in our view, indi
ative of the �eld's evolution.

3 Some signs of maturity

We next review some elements that we believe testify of the maturity of nonlinear

optimization.

3.1 An adequate theoreti
al understanding

We �rst look at the state of the theoreti
al understanding of the problems and numeri
al

pro
edures to solve them. It is to us very noti
eable that the role of theory itself has

evolved to o

upy a pla
e whi
h we believe is well balan
ed with pra
ti
e. In what


on
erns the problems themselves, the gap between ne
essary and suÆ
ient optimality


onditions has now been shown to be tiny in general, and non-existent for problems

su
h as quadrati
 programming. When applied to the theory of numeri
al algorithms,

this balan
e manisfests itself in two 
omplementary developments.

We �rst note that most of today's best pra
ti
al algorithms are ba
ked with a

suitable 
onvergen
e theory. This trend is not new, sin
e it started with the 
onvergen
e

studies of variable-metri
 and quasi-Newton algorithms for un
onstrained optimization

in the 1970's (see, for instan
e Powell (1970, 1976) and with the analysis of penalty

methods for 
onstrained problems (see Fia

o and M
Cormi
k, 1968), soon followed

by augmented Lagrangian (see Powell, 1969, Ro
kafellar, 1974 and Tapia, 1977) and

sequential quadrati
 programming (SQP) (see Han, 1977, and Powell, 1978) methods.

Irrespe
tive of what these methods a
tually are, it is enough to say that they were

(and for some, still are) at the leading edge of numeri
al nonlinear optimization at

the time where they were studied. Thus resear
hers in the �eld have 
ome to agree

that providing 
onvergen
e theory for su

essful algorithms is a very important part of

making them even more robust and reliable. We 
ontinue today to hold the view that

su
h a theory is a ne
essary

(1)

, while by no means suÆ
ient, 
ondition for a su

essful

algorithm. Remarkably, today's best algorithms and pa
kages (see next paragraph)

are also supported by an adequate 
onvergen
e theory. In a number of 
ases, this

theory provides results on the 
ru
ial issue of global 
onvergen
e to 
riti
al points,

but also on the ultimate speed at whi
h this 
onvergen
e o

urs. We also note that

the two traditionally distin
t (or, even, 
ompeting) algorithmi
 paradigms, known as

linesear
h and trust-region methods, may today be viewed in a unifying framework

(see Se
tion 10.3 of Conn, Gould and Toint, 2000a), whi
h we also 
onsider as a sign

of maturity.

(1)

Honesty for
es us to a
knowledge a few remarkable ex
eptions to this rule, like the BFGS variable-

metri
 algorithm for non
onvex un
onstrained minimization (Broyden, 1970, Flet
her, 1970, Goldfarb,

1970 and Shanno, 1970) or the MINOS algorithm (Murtagh and Saunders, 1978).
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The se
ond important su
h sign, as far as theory is 
on
erned, is the development

of an improved theory for the simpler but very important sub
lass of 
onvex problems.

For a long time, and although the best available algorithms were often more eÆ
ient

for su
h problems, their supporting theory was typi
ally unable to provide stronger

or �ner results for the 
onvex 
ase. The theory of self-s
aling fun
tions pioneered by

Nesterov and Nemirovsky (1993) has 
hanged this state of a�airs 
onsiderably for the

better. It indeed gives a mu
h better insight on the global speed of 
onvergen
e, that is

even from the early iterations, when the iterates may still be far away from the (in that


ase, unique) solution. This has allowed the development of very eÆ
ient methods that

are spe
i�
 to 
onvex problems. Again we see as a sign of maturity that the arguedly

most important distin
tion between nonlinear problems (
onxevity vs. non-
onvexity)

is now re
e
ted in our theoreti
al understanding. Equally important is that theoreti
al

and pra
ti
al improvements for the 
onvex 
ase are distilling into the non-
onvex world,

a prime example being the global adoption of primal-dual rather than primal models

in interior point algorithms for 
onstrained optimization.

3.2 Improved software testing

A se
ond important element in our analysis is the 
lear improvement in the quality

of software testing, itself resulting in better software reliability. At �rst sight, soft-

ware testing and 
omparision may seem a rather mundane and un
hallenging part of

the algorithmi
 development pro
ess, but fortunately this view has now been widely

repla
ed with the realization of its 
ru
ial nature.

Testing nonlinear optimization software rests on two important and 
omplementary

topi
s: test problems and 
omparison methododogy. Both of these have matured


onsiderably over the past ten years.

When nonlinear optimization was young, and most problems treated were small-

s
ale \toys", ex
hanging the formulation of test 
ases was easy, as one 
ould write

their analyti
 des
ription \on the ba
k of an envelope", or publish them in a paper

(see Ho
k and S
hittkowski, 1981 and Mor�e, Garbow and Hillstrom, 1981 for in
uential

publi
ations of that kind). When larger problems be
ame the norm, the likelihood of

introdu
ing 
oding errors or slight variations in test problems grew and made software


omparison very awkward. An ele
troni
ally transferable format for test problems was

therefore desirable. The �rst su
h widely used format originated as a by-produ
t of

the development of the nonlinear programming pa
kage LANCELOT (see Conn, Gould

and Toint, 1992) in the early 1990s. This format, ambitiously (and, with hindsight,

perhaps rather arogantly) 
alled the Standard Input Format, or SIF, was designed as a

dire
t extension to nonlinear problems of the highly su

essful MPS format for linear

programs. As su
h, it missed several features of more advan
ed modelling languages

(su
h as sets), but had and 
ontinues to have the advantages of merely existing and of


oming with free de
oding programs. A 
omplete testing environment, the Constrained

and Un
onstrained Testing Environment, or CUTE, was made available (without 
ost)

to the resear
h 
ommunity by Bongartz, Conn, Gould and Toint (1995), with a large
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olle
tion of test problems already 
oded in SIF, interfa
ing tools between this format

and a number of existing pa
kages and an extensive set of tools to fa
ilitate testing

of 
odes still at the development stage. These 
ombined adavantages have probably


ontributed to outweight SIF's limitations and the use of the CUTE test problems and

environment qui
kly be
ame ubiquitous. For having talked with pa
kage developers, we

believe that CUTE has in
reased the level of testing of software pa
kages signi�
antly,

helping to tra
k down 
oding bugs and providing a better assessment of 
ode reliability.

It is important to note that the CUTE test problem 
olle
tion has 
ontinued to grow

to in
lude other sets (see Mor�e, 1989, Averi
k and Mor�e, 1992, Bondarenko, Bortz and

Mor�e, 1999, Maros and Meszaros, 1999) and a number of problems arising dire
tly from

appli
ations. It 
urrently 
ontains over a thousand problems of varying size, stru
ture

and diÆ
ulty. The CUTE environment has re
ently been superseded by a substantially

improved avatar, named CUTEr (see Gould, Orban and Toint, 2003b).

Another positive development along this line is the growing su

ess of the more 
om-

plete modelling languages AMPL (see Fourer, Gay and Kernighan, 2003) and GAMS

(see Brooke, Kendri
k and Meeraus, 1988). There is no doubt that their modelling

power 
onsiderably ex
eed that of SIF, but their generalization remains, in our view,

somewhat hampered by their non-trivial 
ost.

The se
ond pilar of nonlinear optimization software testing is the methodology

used for 
omparing algorithms. This has long been a matter of debate, as providing


ombined measures of both reliability (the 
apa
ity of a pa
kage to e�e
tively solve

a problem) and eÆ
ien
y (its speed in obtaining the solution) has always been diÆ-


ult. The initial attempts by the Mathemati
al Programming Committe on Algorithms

(COAL) did not result in any 
onsensus in the 
ommunity, and reporting of numeri
al

experien
e with new algorithms has been adho
 for a long time. It is only re
ently

that Dolan and Mor�e (2001) have proposed the 
on
ept of a performan
e pro�le, whi
h

seems to have gained in
reasing a

eptan
e as a suitable way to 
ompare reliability

and eÆ
ien
y of di�erent algorithms. Suppose that a given algorithm i from a set A

reports a statisti
 s

ij

� 0 when run on example j from a problem test set T , and that

the smaller this statisti
 the better the variant is 
onsidered. Let

k(s; s

�

; �) =

(

1 if s � �s

�

0 otherwise.

Then, the performan
e pro�le of algorithm i is the fun
tion

p

i

(�) =

P

j2T

k(s

i;j

; s

�

j

; �)

jT j

(� � 1);

where s

�

j

= min

i2A

s

ij

. Thus p

i

(1) gives the fra
tion of the number of examples for

whi
h algorithm i was the most e�e
tive (a

ording to statisti
s s

ij

), p

i

(2) gives the

fra
tion of the number for whi
h algorithm i is within a fa
tor of 2 of the best, and

lim

��!1

p

i

(�) gives the fra
tion of the examples for whi
h the algorithm su

eeded.

Thus the performan
e pro�le gives 
omparative information on both eÆ
ien
y and

reliability. We believe that su
h pro�les provide a very e�e
tive means of 
ompar-

ing the relative merits of di�erent algorithms. This is important when designing new
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algorithms or improved variants, and 
learly helps in establishing a more balan
ed

(shall we say mature?) relative appraisal of today's nonlinear optimization pa
kages,

like KNITRO (Byrd, Hribar and No
edal, 2000b), LOQO (Vanderbei and Shanno,

1999), SNOPT (Gill, Murray and Saunders, 2002), IPOPT (W�a
hter, 2002), �lterSQP

(Flet
her and Ley�er, 1998) or the GALAHAD library (Gould, Orban and Toint, 2003
).

This appraisal is further 
lari�ed by independent 
omparative algorithms ben
hmark-

ing, as H. Mittelman's initiative (see http://plato.asu.edu/ben
h.html).

3.3 A world of appli
ations

While giving all the above 
onsiderations their proper pla
e in the argument, the most

obvious sign of maturity of nonlinear optimization remains the vast range of its appli
a-

tions to various bran
hes of s
ienti�
 resear
h. Reviewing them, even brie
y, is totally

impossible here. A limited list of referen
es to appli
ations (of trust-region methods

only) is available in Se
tion 1.3 of Conn et al. (2000a). It is enough to mention here

these appli
ations 
over �elds as diverse as applied mathemati
s, physi
s, 
hemistry, bi-

ology, geology, engineering, 
omputer s
ien
e, medi
ine, e
onomi
s, �nan
e, so
iology,

transportation, . . . and the enumeration is far from being exhaustive.

In what follows, we brie
y outline �ve appli
ations that we �nd interesting. We

do not expe
t the reader to follow every detail of these problems (as we do not supply

it), but their des
ription or mathemati
al formulation is intended to illustrate the

diversity of appli
ations being 
onsidered, as well as the level of 
omplexity that 
an

be ta
kled with today's te
hniques. The interested reader is also invited to 
onsult

Averi
k and Mor�e (1992), Bondarenko et al. (1999) or R. Vanderbei's fa
inating Web

site http://www.prin
eton.edu/~rvdb.

3.3.1 Progressive adaptive lens design

Our �rst appli
ation is the use of nonlinear optimization for the design of \progressive

adaptive lenses" (PAL). In its simplest form, the PAL problem is to design the surfa
e

of a lens whose opti
al power must be smooth and is spe
i�ed in di�erent parts of

the lens (low for far vision in the middle and high for near vision in the bottom part,

see Figure 3.1), while at the same time minimizing astigmatim. Di�erent formulations

of the problem are possible (
onstrained or un
onstrained), but they are all strongly

nonlinear and non
onvex. Indeed, if the equation of the lens surfa
e is given as the

smooth fun
tion z(x; y), then the opti
al power at (x; y) is given by

p(x; y) =

N(x; y)

3

2

" 

1 +

�

�z

�x

(x; y)

�

2

!

�

2

z

�y

2

(x; y) +

 

1 +

�

�z

�y

(x; y)

�

2

!

�

2

z

�x

2

(x; y)

�2

�z

�x

(x; y)

�z

�y

(x; y)

�

2

z

�x�y

(x; y)

�

;
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where N(x; y) is the z 
omponent of the ve
tor normal to the surfa
e, that is

N(x; y) =

1

r

1 +

h

�z

�x

(x; y)

i

2

+

h

�z

�y

(x; y)

i

2

:

The surfa
e astigmatism at (x; y) is then given by

a(x; y) = �2

v

u

u

t

p(x; y)�N(x; y)

4

 

�z

�x

(x; y)

�z

�y

(x; y)�

�

�

2

z

�x�y

(x; y)

�

2

!

;

whi
h is even more nonlinear than the opti
al power.

✔➻í↔ÿ✐ö➓äæç ✚ ü ✯ ❜ ✠øí↔é➼èæäæí➡ê➓ö❭è➊í➡ã✳âøã✐õ✏äæç③õ❦ä➊ï✐ì③è➊í➢ù✳ç
ñ❱ã⑥û❥ç❫ä➇ã✳â✜ï ❅✝❇❉❈

a) astigmatismpower b)

✔➻í↔ÿ✐ö➓äæç ✚ ü✫✓ ❜ ï ✘✁�➇ç③õ❦ä➊ï✐ì③è➊í➡ù✐ç❩ñ❱ã⑥û❥ç❫ä❫ü➨ê✂✘■ýøñ❭èæí✦✧
ì❸ï✐ò✢ç❵äæäæã✐ä ✖♠ï✐é➼èæí↔ÿ✳÷➫ï❇èæí↔éæ÷ ✘③ü✫✞◆ò➡ö➓ç◗í↔â➓å➓í➡ì❸ï❇èæç❫é❳ò↔ã⑥û❥ç❫é➛è
ù❇ï✐ò↔ö➓ç❵é➻õ❦ã✳ä❂ä➼ç❵õ❦äæï✐ì❵èæí➡ù✳ç◆ñ❱ã⑥û❥ç❫ä ✖✷ï ✘➻ï✐â➓å➔ã✳ñ✏è➊í↔ì❫ï✐ò✽ç❫ä ✧
äæã✳ä➼é❆✖♠ê✰✘✩äæç❵éæñ❣ç❫ì③è➊í➡ù✐ç❫ò➢ó✳ô❂ä➼ç❫å■í↔â❭å➓í↔ì❫ï❇è➊ç❵éq÷➫ï✛✑✏í↔÷➫ï✐ò
ù❇ï✐ò↔ö➓ç❵é❫ü

✔➻í↔ÿ✐ö➓äæç ✚ ü✫✓ é➼ð➓ã⑥ûsé❊èæð➓ç❢õ❦ä➼ã✳â⑩è❊õ♠ï❇ì❫çúã✐õ➔ï è➈ó✽ñ➓í↔ì❫ï✐ò❛÷➆ö➓ò➢è➊í✦✧❬õ❦ã✏ì❫ï✐ò➽ò➡ç❫â➓é❵ü �➒ð➓ç ä➼ç❵õ❦äæï✐ì❵èæí➡ù✳ç❢ñ❣ãPû❥ç❫ä✜í↔é
å➓í↔é➼ñ➓ò➍ï❸ó✐ç❫å➲ì❫ã✳ò➡ã✳ä❏ç❫â➓ì❵ã✏å➓ç❵å➲ã✳â♣è➊ð➓ç➽ò↔ç❵õ➏è❫ü ✞❥ò↔ö➓ç✹í↔â➓å➓í➡ì❸ï❇èæç❫é➂ò➡ã⑥û◆ç❵ä❫ô❭ä➼ç❫å❀ð➓í➡ÿ✳ð➓ç❵ä❥ù❇ï✐ò↔ö❭ç❫é➂ã✐õ❳ñ❣ã⑥û◆ç❵ä❫ü �➒ð❭ç
ñ❱ã⑥û❥ç❫ä➆í➡â➓ì❫ä➼ç❸ï✐é➼ç❫é➆é➼÷➫ã✽ã✐èæð➓ò➡ó☞õ❦ä➼ã✳÷ è➊ð➓ç✗ö➓ñ➓ñ❣ç❫ä✙õ♠ï❇ä✩ù✽í↔é➼í↔ã✳â ï✐äæç❫ï❊è➊ã❊è➊ð➓ç➫ò↔ã⑥û◆ç❵äqâ➓ç❫ï✐ä✙ù✽í➡éæí↔ã✐â✚ï✐ä➼ç❸ï❭ü
ýøñ❭è➊í➡ì❸ï✐ò❥ç❫äæä➼ã✳äæé ✖✷ï✐é➛è➊í↔ÿ✐÷✗ï❇èæí↔é➼÷ ✘❛ï✐ä➼ç♣éæð➓ã⑥ûsâ ã✳â✚è➊ð❭ç♣äæí➡ÿ✳ð⑩è➔ã✐õ ✚ ü✫✓✏ü✏✉✵ä➼äæã✳ä➼é➨ï❇èqèæð➓ç♣õ♠ï✐ä➆ï❇â➓å â➓ç❸ï✐ä
ù✽í↔éæí➡ã✳â➫ï✐äæç❫ï✙ï✐â❭å♣ï✐ò➡ã✳â➓ÿ❛è➊ð➓ç➇÷➫ï✐í↔â➔ù✽í↔ç③ûsí↔â➓ÿ✩ò↔í➡â➓çsï✐äæç➒ù✐ç❫ä➼ó▲é➼÷✗ï✐ò➡ò❬ü ✔➯í↔ÿ✳ö➓ä➼ç ✚ ü ✯✙é➼ð➓ã⑥ûsé❥è➊ð❭ç➇ù❇ï✐ä➼í➍ï❇èæí↔ã✳â
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Figure 3.1: Opti
al power and astigmatism in a typi
al PAL design, with a smooth

transition from low values in blue to high values in red (sour
e: Loos et al., 1997)

3.3.2 Controlled drug inje
tion

Dis
retized optimal 
ontrol problem also 
onstitute a growing sour
e of appli
ations

for nonlinear optimization. Problems that involve 
onstraints on the state variables

(as opposed to 
onstraints on the 
ontrol variables only) are of spe
ial interest.

The 
ontrolled drug inje
tion problem, whose full des
ription 
an be found in of

Maurer and Wiegand (1992), is a 
ontrol problem based on the kineti
 model of Aarons

and Rowland for drug displa
ement, whi
h simulates the intera
tion of the two drugs

(warfarin and phenylnutazone) in a patient bloodstream. The state variable are the


on
entrations of unbound warfarin and phenylbutazone. The problem is to 
ontrol the

rate of inje
tion of the pain-killing phenylbutazone so that both drugs rea
h a spe
i�ed

steady-state in minimum time and the 
on
entration of warfarin does not rise above a

given toxi
ity level. This last 
onstraint therefore applies to the state variables of the

problem, making the use of nonlinear programming te
hniques attra
tive. The di�er-

ential equation des
ribing the evolution of the drug 
on
entrations in the bloodstream

is dis
retized using a simple trapezoidal rule. The intrinsi
 nonlinearities of the model

are non-
onvex.
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3.3.3 Food sterilization

Another interesting dis
retized 
ontrol problem is that of piloting the pro
ess of food

sterilization in industrial auto
laves, as des
ribed in Kleis and Sa
hs (2000), where a

full dis
ussion of the problem and its solution 
an be found.. The idea is that the

food to be sterilized is pla
ed in 
losed auto
laves (see Figure 3.2) where it is heated

(typi
ally by hot water or steam).

Figure 3.2: An auto
lave for food sterilization

The question is then to optimize this heating in order to minimize the loss of vita-

mins but subje
t to the 
onstraint that a 
ertain fra
tion of undesired mi
ro-organisms

are killed and that every part of the food must rea
h a minimum temperature and

not ex
eed a maximal one. The destru
tion of mi
ro-organims and other nutrients of

interest is des
ribed by

�C

�t

(x; t) = �K[�(x; t)℄C(x; t);

where C(x; t) is the 
on
entration of living mi
ro-organisms or nutrients and �(x; t) is

the absolute temperature, at point x and time t. We also have that the fun
tion K

depends on the temperature via the Arrhenius equation, that is

K[�℄ = K

1

e

�K

2

(

1

�

�

1

�

r

)

;

where K

1

, K

2

and �

r

are suitable 
onstants. The evolution of temperature in the food


ontainer within the auto
lave is des
ribed by a nonlinear heat equation of the form

�
(�)

��

�t

= r � [k(�)r�℄;

with suitable boundary 
onditions. Due to symmetry of the auto
laves, this 3D-

problem 
an be redu
ed to 2D. The heat equation is dis
retized using �nite elements

for the spatial variables and the ba
kward Euler method for time. This problem is also

mentioned in Sa
hs (2003), where the reader will �nd an interesting dis
ussion of PDE


onstrained optimization. There is an in
reasing awareness in the PDE 
ommunity
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of the power of optimization, and an ongoing proje
t to foster further links in this

dire
tion (see http://plato.asu.edu/pde
on.html).

3.3.4 Biologi
al parameters estimation

We next 
onsider a biologi
al parameter identi�
ation problem dis
ussed in Toint and

Willms (2003). The problem is to identify parameters in a model of the voltage a
ross

a neuron membrane in the presen
e of a single passive 
urrent and a single voltage-

a
tivated 
urrent with Hodgkin-Huxley 
hannel gating (see Figure 3.3). That is, the

a
tivation of p independent gates and total ina
tivation divided into n

h

groups of partial

a
tivations with identi
al steady-state 
hara
teristi
s but di�erent kineti
 properties to

give multi-exponential de
ay 
hara
teristi
s.

The ODEs for the voltage v(t), the a
tivation m(t) and the partial ina
tivations

h

i

(t) are

C

dv

dt

(t) = �g

a

m(t)

p

h(t)(v(t) �E

a

)� g

`

(v(t) �E

`

) + I(t);

dm

dt

= �

m

[v(t)℄(1�m(t))� �

m

[v(t)℄m(t);

dh

i

dt

= �

h

i

[v(t)℄(1�m(t))� �

h

i

[v(t))℄m(t); (i = 1; : : : ; n

h

);

where C is the membrane 
apa
itan
e, g

a

is the (time independent) a
tive 
ondu
-

tan
e, g

`

is the (time independent) passive 
ondu
tan
e, E

a

is the (time independent)

a
tive 
urrent reversal potential, E

`

is the (time independent) passive 
urrent reversal

potential, I(t) is the inje
ted 
urrent, and where the total ina
tivation h(t) is the sum

of the di�erent partial ina
tivations

h(t) =

n

h

X

i=1

f

i

h

i

(t) + f

n

h

+1

for all t, and where the ina
tivation fra
tions f

i

satisfy

0 � f

i

� 1 (i = 1; : : : ; n

h

) and

n

h

+1

X

i=1

f

i

= 1:

The fun
tions �

�

(v) and �

�

(v) are Boltzmann fun
tions of the form

�

�

[v℄ =

1

�

�;�

(1� e

(v�u

�;�

)=�

�;�

)

and

�

�

[v℄ =

1

�

�;�

(1� e

(v�u

�;�

)=�

�;�

)

with � being m or h

i

(i = 1; : : : ; n

h

). Additionally, the parameters of the Boltzmann

fun
tions have to satisfy, for i = 1; : : : ; n

h

,

�

�;h

i

= �

i

�

�;h

; u

�;h

i

= u

�;h

; �

�;h

i

= �

�;h

�

�;h

i

= �

i

�

�;h

; u

�;h

i

= u

�;h

; �

�;h

i

= �

�;h
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where the s
aling fa
tors �

i

are 
onstrained by

1 = �

1

< �

2

< ::: < �

n

h

:

The ODE's are dis
retized using a 5 steps Ba
kward Di�erentiation Formula with


onstant time stepping. The obje
tive fun
tion is to minimize the least-squares dis-

tan
e between the voltages satisfying those equations and observed voltage values for

a number of experiments (or sweeps). The experimental data is for a potassium A 
ur-

rent in a pylori
 dilator 
ell of the stomatogastri
 ganglion of the Pa
i�
 spiny lobster

(see Figure 3.4). As 
an be seen from the equations, the problem is non-
onvex.

Figure 3.3: The ribbon stru
ture of the K

+


hannel mole
ule showing its insertion the

membrane (the blue ions on top are at the exterior of the 
ell) and a solid rendering of

this mole
ule (sour
e: right pi
ture from Sansom, 2001, left pi
ture from Doyle et al.,

1998)

In its 
urrent formulation, the problem uses fours experimental sweeps and involves

around 16,000 variables and about the same number of 
onstraints, only one of whi
h

is linear.

3.3.5 Me
hani
s and video games

Finally, we would like to mention here an appli
ation in a fairly di�erent area: that of

video animation and video-games. In an intereting paper, Anites
u and Potra (1996)

have formulated the problem of representing the motion of multiple rigid obje
ts in

spa
e, in
luding their intera
tion (fri
tion) when they hit ea
h other. The formulation

used is that of a time-dependent linear 
omplementarity problem. While this problem

is at the boundary of linear and nonlinear problems (it is solved by a variant of Lemke's

algorithm), it is nevertheless of interest to us be
ause it 
an be seen as the problem of

�nding a feasible solution, at ea
h time t, of the nonlinear set of inequalities

r

q

�[q(t)℄v(t) � 0; �(q(t)) � 0
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Figure 3.4: The position of the stomatogastri
 ganglion within the Pa
i�
 spiny lobster

(sour
e: Simmers et al., 1995)

where q(t) is ve
tor of states (positions) of the multi-body system at time t, v(t) =

dq

dt

(t)

is the ve
tor of velo
ities, and the se
ond inequality expresses the 
onta
t 
onstraints

(the fa
t that the problem bodies do not interpenetrate) for some smooth fun
tion �.

This formulation is not only elegant, but is also amenable to pra
ti
al implementation.

It is in fa
t, in an implementation by MathEngine, at the heart of video-games su
h

as the Vivid Image A
tor, and provides a very realisti
 real-time simulation of sho
ks

between rigid obje
ts. The hidden presen
e of nonlinear problems in environments as

ubiquitous as video-games also testify of its interest and reinfor
e our argument.

4 Is senility lurking?

Cyni
al observers may thus a

ept the maturity of nonlinear optimization as a dis-


ipline. They might also wonder if it already shows dangerous signs of aging and

osbsoles
en
e. . . these signs typi
ally in
lude a a more self-
entered dis
ourse or the

repetition of older ideas instead of the 
reation of new ones. Although we a
knowledge

that self-
entered 
ontributions do exist

(2)

, we hope that the variety of appli
ations

we have exposed in the previous se
tion is 
onvin
ing enough to dismiss the 
ase of a

narrower intera
tion with the world at large. We therefore fo
us, in what follows, on

indi
ating that new dire
tions and ideas 
ontinue to sustain the �eld's 
reativity.

4.1 The 
ontinuing impa
t of interior point methods

The �rst a
tive 
urrent of resear
h was initiated by the revival of interior point methods

in linear and semi-de�nite programming. This generated a number of new 
ontribu-

(2)

There are, in our view, too many papers presenting 
onvergen
e proofs for algorithms that have

never been and will probably never be properly implemented, or even tried on simple examples. . .
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tions that attempted to adapt these ideas initially to nonlinear 
onvex problems, and

subsequently to non
onvex ones. The main diÆ
ulty in adapting to the latter is that

the �rst-order optimality 
onditions, for minimization, whi
h are ne
essary and suÆ-


ient for linear and 
onvex problems, are insuÆ
ient for non
onvex ones. Indeed, they


an be satis�ed at saddle points or even at maximizers.

We believe it is fair to say that the numerous 
ontributions

(3)

on this topi
 are

far from having exhausted the question or solved all pra
ti
al problems. Oustand-

ing issues in
lude the eÆ
ient handling of nonlinear equality 
onstraints, the e�e
t

of 
onstraint s
aling, suitable pre
onditioning te
hniques and extrapolation along the

(possibly bizarre) 
entral path for non
onvex problems. Moreover, the relative merits

of interior point methods 
ompared to more traditional SQP approa
hes are still a

matter of lively resear
h and debate (for a re
ent non-te
hni
al dis
ussion of this topi
,

see Gould, 2003).

4.2 The revival of derivative free optimization

Algorithms for nonlinear programming that do not make use of derivative information

have also 
ome ba
k in the foreground of resear
h, after a long e
lipse. Very popular

in the infan
y of the �eld, with 
lassi
s like the simplex method of Nelder and Mead

(1965), interest in these methods has been revived by signi�
ant re
ent progress in two

di�erent dire
tions: interpolations methods and pattern sear
h methods.

The �rst 
lass of methods attempts to build a (typi
ally quadrati
) model of the

fun
tion to be minimized, using multivariate interpolation te
hniques. The resulting

algorithms (see Powell, 1994, 2000, 2002, or Conn, S
heinberg and Toint, 1997, 1998)

are typi
ally very eÆ
ient, and exploitation of problem stru
ture is 
urrently being

su

essfully experimented (Colson and Toint, 2001, 2002, 2003).

The se
ond 
lass of derivative free methods use a prespe
i�ed or adaptive \pattern"

to sample the variable spa
e and 
ompute minimizers. These methods are also the

subje
t of mu
h ongoing resear
h (see Dennis and Tor
zon, 1991, Tor
zon, 1997, Coope

and Pri
e, 2000 and 2001, or Audet and Dennis, 2003). Extension of these te
hniques

to large-s
ale problems is also being investigated (see Pri
e and Toint, 2003).

Mu
h remains to be done in this 
hallenging se
tor, in
luding better algorithms to

handle larger problems with 
onstraints.

4.3 Filter methods

We 
ould not 
on
lude this se
tion of the new ex
iting ideas in nonlinear programming

without brie
y 
overing the �lter methodology introdu
ed by Flet
her and Ley�er

(3)

See, for instan
e, Bonnans and Bouhtou (1995), Lasdon, Plummer and Yu (1995), Coleman and Li

(1996a, 1996b), Bonnans and Pola (1997), Simantiraki and Shanno (1997), Forsgren and Gill (1998),

Dennis, Heinkens
hloss and Vi
ente (1998), Gay, Overton and Wright (1998), Vanderbei and Shanno

(1999), Byrd et al. (2000b), Conn, Gould, Orban and Toint (2000b), Byrd, Gilbert and No
edal

(2000a), Chapter 13 of Conn et al. (2000a), or Gould, Orban, Sartenaer and Toint (2001), amongst

many others.
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(2002). This te
hnique aims at promoting global 
onvergen
e to minimizers of 
on-

strained problems without the need for a penalty fun
tion. Instead, the new 
on
ept

of a \�lter" is introdu
ed whi
h allows a step to be a

epted if it redu
es either the

obje
tive fun
tion or the 
onstraint violation fun
tion. This simple yet powerful idea

may be, in our view, the most signi�
ant progress in the past �ve years, and has al-

ready generated, in a very short time, a 
urry of related resear
h, both on algorithmi


aspe
ts (Ulbri
h, Ulbri
h and Vi
ente, 2000, Chin and Flet
her, 2001, Flet
her and

Ley�er, 2003, Gonzaga, Karas and Vanti, 2002, Gould and Toint, 2002, Gould, Ley�er

and Toint, 2003a) and on its theoreti
al underpinnings (W�a
hter and Biegler, 2001,

Flet
her, Ley�er and Toint, 2002b, Flet
her, Gould, Ley�er, Toint and W�a
hter, 2002a)

and inspired the organization of 
onferen
es and workshops devoted to this topi
.

To illustrate its power, and at the same time that of the performan
e pro�les of

Dolan and Mor�e, in Figure 4.5 we present a CPU time 
omparison of a 
lassi
al trust-

region method and FILTRANE, a multidimensional �lter method (Gould and Toint,

2003), on a large set of nonlinear feasibilty problems from the CUTEr 
olle
tion.
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Figure 4.5: CPU time performan
e pro�le for multidimensional �lter algorithm vs.


lassi
al trust-region algorithm on a set of 106 nonlinear feasibility problems

We see in this �gure that the 
lassi
al pure trust-region algorithm (one of the very

best options before the �lter idea) is slightly less reliabile than FILTRANE, and that

the latter 
ode is best (or tied best) on around 88% of the problems, a very signi�
ant

advantage when 
ompared to approximately 66% of the problems where the while the

trust-region method is best. Furthermore, FILTRANE is within a fa
tor 2 of the best
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on approximately 89% and within a fa
tor 5 for approximately 91% of the problems,

again an ex
ellent performan
e. This kind of numeri
al results is really en
ouraging and

stimulating, and one may therefore expe
t even more resear
h a
tivity in the domain

of the �lter methods. If it were only for that, it would already be enough to indi
ate

the 
ontinuing vitality of nonlinear optimization. . .

5 Con
lusion: the future's 
hallenges

We have presented some arguments to vindi
ate our view that nonlinear optimization is

a mature but not yet senile domain of resear
h. Of 
ourse, these arguments are biased

by our own experien
e and work, but we believe they are shared by a number of a
tors

in the �eld. The last issue of the SIAG/OPT Views-and-News

(4)

provides additional

elements that 
on
ur with ours, and also points to other domains where nonlinear

optimization is strongly developing, like problems with equilibrium 
onstraints, DAE-


onstrained problems, or, even more 
hallengingly, nonlinear optimization with dis
rete

variables.

What are the future's 
hallenges? Besides the 
ontinuing improvement of meth-

ods and software, we feel that the su

essful spe
ialization of nonlinear optimization

to problem sub
lasses (like dis
retized optimal 
ontrol problem or DAE 
onstrained

identi�
ation problems) 
onstitutes a fruitful evolution and will in due 
ourse be
ome

important. The quest for methods that 
an solve problems that are intra
table today,

be
ause of their size, nonlinearity or be
ause they involve to many dis
rete variables)

is not either anywhere near its end, a very invigourating perpe
tive.
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