Math. Program., Ser. B 100: 95-132 (2004)

Digital Object Identifier (DOI) 10.1007/s10107-003-0487-2

Nick Gould - Philippe L. Toint
Preprocessing for quadratic programming

To Roger Fletcher, friend and optimization wizard, on his 65th birthday

Received: November 1, 2002 / Accepted: April 14, 2003
Published online: January 9, 2004 — © Springer-Verlag 2004

Abstract. Techniques for the preprocessing of (not-necessarily convex) quadratic programs are discussed.
Most of the procedures extend known ones from the linear to quadratic cases, but a few new preprocessing
techniques are introduced. The implementation aspects are also discussed. Numerical results are finally pre-
sented to indicate the potential of the resulting code, both for linear and quadratic problems. The impact of
insisting that bounds of the variables in the reduced problem be as tight as possible rather than allowing some
slack in these bounds is also shown to be numerically significant.

1. Introduction

We investigate presolving techniques for quadratic programs, that is nonlinear optimi-
zation problems of the form

minimize q(x) = f +g’x + xTHx
QP { subjectto ¢ <Ax <c (1.1
x<x<X

where the vector of variables x as well as the vectors g, x and X belong to ", where
H is a symmetric n X n matrix, A an m x n matrix, and where the vectors c and ¢ belong
to M. Infinite components are allowed in x, X, ¢ or ¢, and fixed variables and equality
constraints may be specified by choosing, for any component i, x; = X; or¢; = ¢;,
respectively. The nonzero entries of A will be denoted by a;; and those of H by h;;. In
many cases of practical interest, H and/or A are large and sparse. The components of
vectors in the problem will be denoted by a simple subscript.

Presolving (or preprocessing) techniques have a long history in the domain of linear
programming (that is for the case where H = 01in (1.1)), where they are considered as an
integral part of high quality software for this kind of problem. The idea of presolving is to
exploit simple logical relations between constraints and variables to simplify the problem
at hand at low cost as much as possible, before passing the resulting transformed prob-
lem to an effective solver. Once the transformed problem has been solved, the inverse
operation is performed to restore its solution in terms of the original formulation, an
operation often called postsolving (or postprocessing). The reader will find a clear and

N. Gould: Rutherford Appleton Laboratory, Computational Science and Engineering Department, Chilton,
Oxfordshire England e-mail: gould@rl.ac.uk

Ph.L. Toint: Department of Mathematics, University of Namur, 61, rue de Bruxelles, B-5000, Namur, Belgium
e-mail: philippe.toint@fundp.ac.be

Mathamatics Subject Classification(2000): 20E28, 20G40, 20C20

96 N. Gould, Ph.L. Toint

recent description of presolving techniques for linear programming in Gondzio (1997)
and Andersen and Andersen (1995), while older references include Brearley, Mitra and
Williams (1975), Bradley, Brown and Graves (1983) and Tomlin and Welch (1983a,
1983b). loslovich (2001) presents interesting developments for linear programs with
box constraints and non-negative coefficients. General primal presolve techniques are
also described in Fourer and Fourer and Gay (1994). Presolving for the linear comple-
mentarity problem is discussed in Ferris and Munson (2001) .

In this paper, we are principally interested in the case where H is nonzero. We do
not make any convexity assumption on (1.1), which is to say that H is allowed to be
indefinite.

The first order optimality conditions for (1.1) at x are given by the conditions

g+Hx—ATy—z=0, (1.2)
c<Ax <c, (1.3)
X <x <X, (1.4)

>0 when ¢; = [Ax];,
yi1 =0 when ¢; < [Ax]; <@, (1.5)
<0 when [Ax]; =¢,

and

> (0 when X; =xj,

zj1 =0 when x; < x; <X}, (1.6)

<0 when xXj =Xj,

where y and z are the optimal Lagrange multipliers associated with the general linear
constraints (1.3) and the bound constraints (1.4), respectively, and where the notation
[u]ix denotes the k-th component of the vector u. As we shall see, we may be able to
augment problem (1.1) with constraints on y and z of the form

IA

y=sy=y (1.7)

and

Z<7, (1.8)

I\l
IA

where y,y € " and z, 7 € %" may contain infinite components and where equalities
may be specified by choosing lower and upper bounds equal, as above. Combining such
bounds with (1.5) and (1.6) may enable us to deduce which of the constraints are active
at optimality. In the absence of a priori information, we assume that

Yy, =—00, Yy =400, z;=-00, Z;=+00,
fori =1,...,mand j =1, ... ,n. When a constraint bound is satisfied as an equality,
we say that this bound is active.

Preprocessing for quadratic programming 97

2. Simple transformations

Most problem transformations that we discuss in the following are based on conditions
(1.2)—(1.8). We have deliberately restricted the class of transformations that we consider
to those that do not create fill-in, i.e. to tranformations that do not cause the number
of nonzero entries in H or A to increase, since then the original data structure may be
reused to hold that of the transformed problem. They include a few simple operations
that we now outline.

e Fixing a variable. If we fix the j-th variable to the value x;, say, this operation
requires that we also adapt the other problem quantities to reflect the transforma-
tion. In particular, the need to update the constraint bounds, gradient and objective
function independent term as follows. If variable j occurs in the i-th constraint, then

T A iy =t =
¢ =c; —ajjx; and ¢, =¢i —ajjxj,

where the superscript + denotes quantities associated with the transformed problem.
The independent term of the quadratic objective function is updated to

fr=f+gixj+ dhyjxg
and the gradient becomes
8¢ =gk +hjex; (k#).

In some cases, a variable may be ignored. This happens if variable j does not occur
explicitly in the constraints nor in the objective function. Its value has therefore no
impact of their values, and it may be set to any value x; satisfying x; < x; < X;
without performing the updating of constraint bounds, objective or gradient values.
o Tightening bounds. If we are able to deduce that x; < bj, say, then we may revise

the upper bound on x ;. We may then distinguish the following subcases:

¢ bj < x;: the new and old bounds are incompatible, and the problem must there-

fore be infeasible;
¢ bj = x;: the new bound is forcing and we may fix the j-th variable to b, using
the technique that we have just described;

¢ xj < bj <Xj: the new bound can be tightened, which is to say that f;r =bj;

¢ bj > x;: the new bound is redundant and no information is gained.
In the case where the bound may be tightened, we note that the original value of X ;
has become irrelevant, and we may just assume that it is equal to +oo: variable j is
said to be implied upper bounded, meaning that the bound that can be deduced from
the rest of the problem data is stronger than X ;.
Similar cases can be distinguished for the case where a new bound of the form
b;j < xj is deduced. A variable that is both implied lower bounded and implied
upper bounded is known as implied free.
Obviously, the same type of reasoning applies for the possible tightening of the
bounds on the dual variables z;, on the constraint values [Ax]; and on the multi-
pliers y;. In our approach, we do not take into account the fact that dual variables
or multipliers may become implied free, but we immediately exploit any strictly
positive or strictly negative value of z; or y; to fix x; or ¢; to one of its bounds.

98 N. Gould, Ph.L. Toint

e Eliminating a constraint. If a constraint is either implied free or if it is known to be
always satisfied for other reasons, we simply remove it from the problem formula-
tion without altering its feasible domain. The number of rows in A then decreases
by one, which is obtained by declaring the eliminated row inactive. Since we need
these inactive rows in order to reconstruct the data of the problem after the trans-
formed problem has been solved, they are not completely discarded but are kept in
the problem data structure at the end of A, without playing any role in the transformed
problem.

e Adding a multiple of a constraint to another. As we will see below, it may sometimes
be advantageous to add a multiple of an equality constraint to another constraint,
typically to create a new zero in the updated version of the latter, but sometimes even
to zero it entirely, as might happen when combining (and thus identifying) dependent
constraints.

3. Problem reduction

We now review the problem simplications techniques, in which the above transforma-
tions may be used. A large number of the techniques used for the simplification of QPs
apply as well to the case of linear programming, and are essentially described in the
references cited above. We also mention them for completeness, and indicate the new
transformations explicitly.

3.1. Bound compatibility

Given problem (1.1), we may immediately verify the simple compatibility conditions

x; <%, (=1L....,n)and ¢ <c (=1,..,m). 3.1)

J

If one of these conditions fails, (1.1) is clearly incompatible and attempting to solve it
is doomed to fail. The diagnostic is then passed to the user and preprocessing stopped.
We also immediately obtain the simple conclusions:

Zj<0=> Zj<0 = Xj=X; = X; <+
and

Z/>O=>Zj>0$xj=)_cj = X; > —00

and, conversely,

fj:+oo:>zj20:>§j20 and £j=—002>Zj§0,:>2j§0’
for j =1, ..., n. If we now turn to the constraints and their multiplers, we obtain that,
fori=1,... ,m,

3, <0 =y <0=c¢=¢ = ¢ <+

Preprocessing for quadratic programming 99

and
,>0=35>0=c¢=¢ = ¢>-0
and, conversely, that

gi=+oo=>yi20=>zi20 and ¢ =-00 = 5, <0 = y; <0.

3.2. Reductions of the constraints

We next consider the problem simplifications that can be deduced from the primal con-
straints (1.3) or (1.4) independently of each other and irrespective of the values of g or
H.

3.2.1. Emptyrows The first (and easy) case is when row i of the matrix A is identically
zero. Then, either

¢ <0=<7q, (3.2)

in which case the problem is compatible and the i-th linear constraint may be removed,
or (3.2) fails and the problem is again incompatible.

3.2.2. Singleton rows 1If a general constraint i has the form ¢; < a;;x; < ¢; for some
J between 1 and n, then it can be recast as a set of simple bounds on the variable x;.
More precisely, this constraint is equivalent to

Ci . Ci C;)
<L (f ajj>0) or - < xj <= (f a; <O0).

a,-j aij a,-j a,-j

Once the current bounds on x; have been possibly tightened using these relations, the
i-th general constraint may be removed from the problem.

3.2.3. Doubleton rows and split equalities Another useful case is when the i constraint
takes the form a;xx; + a;jx; = ¢; (meaning that ¢; = ¢; = ¢;). In this case, x; may be
eliminated from the equality, giving that

Ci — QjkXk

XjSxj=—— <X,
aijj

which in turns is equivalent to the bounds

Ci — ajjX; < < Ci — aijX; (3.3)
ajk - ajk
if a;; and a; have the same sign, or
Ci — ajjX; Ci — ajjXj
— T < (3.4)

Aik Aik

100 N. Gould, Ph.L. Toint

otherwise. This shows that the bounds on x; may be “transferred” to x; (or vice-versa),
so that x ; may be considered as a free variable. In other words, we obtain that x ;r = —00,

ET = 400, and

ci —ajixX; _ L= G diX;
xf =max |x, ——2L and X, =min|xX, ——~
Aik djk

if a;; and a;; have the same sign, or

Ci—al’ji- _ . _ Ci— aiiX;
x; = max [gk, —]i| and X = min |:xk, #}
ik Aijk

otherwise. As will be seen in Sections 3.3.1 and 3.3.2, this transfer is sometimes advan-
tageous.

A new extension of this idea is to free a variable by “splitting” an equality constraint
into two inequalities while removing the bounds on the considered variable. More pre-
cisely, the constraint

IA
&
IA

n
aijxj + Zaikxk = and

k=1
k#j

=

is transformed into

n n
ajjxj + Zaikxk = and ¢ —ajjx; < leikxk S ¢ —ajjx; 3.5)
k=1 [
k#j k#j

ifaij > O, and

n n
ajjx; + Zaikxk = ¢ and Ci — aijgj < Zaikxk <c — aij)_cj (3.6)
k=1 k=1
k#j k#j

ifa;; < 0. Of course, this transformation is only useful as a problem reduction technique
if the original equality may subsequently be eliminated from the problem, using the fact
that x; is freed in the process (see Sections 3.3.1 and 3.3.2). It also has the drawback of
reducing the number of equality constraints, therefore decreasing their potential use in
other transformations such as those of Section 3.2.6. For this reason, we found best not to
use this technique in the first stages of the presolving process!, where the transformations
of Section 3.2.6 are attempted first.

! Te. the first two of the presolving loops described in Section 7.

Preprocessing for quadratic programming 101

3.2.4. Forcing, redundant and infeasible primal constraints If we now consider a gen-
eral linear constraint, corresponding to the i-th row of A, say, then a simple calculation
shows that

n
— def
[Axli =) ajx; < Y aiXj+ Y aijx; = ui, (3.7)
j=1 j=1 j=1
a;jj>0 a;j<0

and, similarly, that

n n
— def
[Ax]i > Y aijx; + Y aiX; = 4. (3.8)
j=1 j=1

al-j>0 al-j<()

The quantities ¢; and u; are known as lower and upper implied bounds on the i-th con-
straint. Several cases may now occur. The firstis when u; < ¢; or ¢; > ¢;. This implies
that the i-th constraint cannot be satisfied for any value of the variables between the
variable bounds, and the problem is therefore infeasible. The second is when u; = ¢;
or £; = ¢;. The i-th constraint is then said to be forcing in the sense that all variables
occuring in this constraint must be fixed to their respective bounds for the constraint to
be satisfied, which implies that

up=¢; = x;=x; forall jlaj>0 and x; =x; forall j|a; <0

or

b =c¢; — X Zij for all j|a,-j>0 and Xj =fj for all j|cl,'j < 0.

Once these variables are fixed, the i-th constraint is automatically satisfied and may be
eliminated from the problem. It may also happen that ¢; < £; or u; < ¢;. In this case,
the corresponding inequality constraint is redundant and may be ignored.

3.2.5. Further use of implied variable bounds on primal constraints If a primal con-
straint is not forcing, redundant or inconsistent, we may still use its expression and the
values of ¢; and u; to deduce useful bounds on the variables that occur in the constraint.
Consider a variable k occuring the i-th constraint with a;; > 0. Then

n
Li +air(xp — x) < Zaijxj <g (3.9)
Jj=1

which then implies that
¢ — ¥4

ik

X < X +

Similarly, if a;; < 0, then

n
i+ ai (o — %) < Y aijxj < G (3.10)
j=1

102 N. Gould, Ph.L. Toint

implies that

X > Xp +
aik

We may apply the same reasoning using the implied upper bound u; and obtain that
G — Ui

aix >0 = xx>xp+ , and aik <0 = xp <x,+
Aijk Aik

€ — Ui

Of course, these bounds are only useful if ¢; or u; are finite, which is to say when the
bounds of the variables occuring in their definitions (3.7) and (3.8) are finite. We now
follow Gondzio (1997) are derive further implications in the special case where only
one of the bounds on the variables is infinite in (3.7) or (3.8). Assuming that x, = —o0
for some k such that a;; > 0, then, considering the right part (upper bound) of the i-th
constraint, we have that

ajkXk + E ajjXx ; + E al]x]< E a,]x]<c,,

Jj=1.j#k
a;j>0 a,J <O
which then yields that
1IN =
Xp < — Z aijXx Za,]x]

ik
Jj=1j#k
a;ij>0 a,_,<0

Symmetrically, for a;z < 0 and X3 = 400, the inequality

ajkXr + E aijXx + E a,jxj<g a,jxj<c,,

j=1,j#k Jj=1
a,j>0 aij<0

gives that

xkz E ajjXx; E ajjXj

= Jj=1.j#k
a,j>0 a;j<0

If we now turn to the left part (lower bound) of the i-th constraint, we deduce in the
same manner that

_ 1 _
aix >0 and Xy =4+00 = x> —|¢c — Z ajjxXj— Z ajjX

dik J=Lk .
a;jj>0 a;jj<0
1 n
aix <0 and x, = —00 = X < o ¢ — Z ajjx;j — Z aijX;
ik j=1 J=1.j#k

a,-_,- >0 a,-j <0

Preprocessing for quadratic programming 103

This technique is especially useful because it allows the derivation of bounds on a vari-
able that is free in the original problem, provided it occurs as the only free variable in a
constraint.

3.2.6. Making A sparser A final possible reduction using primal constraints is to cre-
ate new zero entries in A by suitably combining two constraints. More specifically, we
consider the case where both constraints i and k involve variable j (a;; # 0 # ax;) and
where the i-th constraint is an equality constraint (¢; = ¢;). Itis then possible to perform
the transformation

. . akj C .
[constraint k]T = [constraint k] — =L [constraint i], (3.11)
a,]
together with
ayic; _ _ ayiCi
=g -, o =
ajj aij

The multiplier bounds then become X,‘(“ =Y, and il‘: =y, together with

agjy agjy
+ Zk —t _ = J Yk
- - aij aij
if the sign of ay; is the same as that of a;;, or, otherwise,
akj Yk e @)Y
+ J + k
- - aij aij

Constraint i is then called the pivot constraint and a;; the pivot. This transformation
does not alter the feasible set of the problem, but introduces a zero in position (k, j) of
A. If we wish to remain consistent with our strategy of avoiding fill-in in this matrix,
we must restrict such transformations to the case where the sparsity pattern of row k
contains that of row i, that is when

{(jl1<j<nand a; #0} C{j|1=<j<n and a; #0}.

In practice, we maintain a list of the equality constraints which are potential candi-
dates for being pivot constraints. Within this list, we follow the procedure suggested in
Gondzio (1997): for each constraint i taken by increasing number of nonzeros, we first
search the column of A that contain the least number of nonzeros. We then consider
combining constraint i and each of the constraints that have a nonzero in this column
of minimum size: the transformation is applied if the sparsity pattern of the considered
constraint k is a superset of that of the pivot constraint i. Note that constraint k may itself
be an equality, which implies that the list of equality constraints (used as candidate for
pivot constraints) must be managed dynamically.

If constraint k turns out to be a multiple of constraint i, then the transformation not
only “zeroes” ay;, but the entire k-th row through cancellation. Monitoring cancellation
is useful here, as it may lead to the conclusion that constraint k£ may be eliminated from
the problem.

104 N. Gould, Ph.L. Toint

The attentive reader will have noticed that this transformation is a form Gaussian
elimination. Since the purpose of the presolving procedure is not to replace the linear
or quadratic solvers that are potentially much more efficient in terms of linear algebra,
we limit the number of “passes” in the procedure, that is the number of times one goes
through the list of candidate equality constraints to see if they can be used as pivot con-
straints. Also note that care must be taken to avoid dividing by a pivot value which is too
small, which could cause severe loss of information, and thus some kind of threshold
pivoting (see Duff, Erisman and Reid, 1986, for instance) is advisable.

3.3. Reductions on the variables

We next consider the problem reductions that depend on all constraints, or on the values
of gor H.

3.3.1. Free linear singleton columns Free (or implied free) variables that occur only
linearly in the objective function and explicitly occuring in a single constraint may be
handled using equation (1.2), which reduces in this case to g; — a;;y; = 0. Thus, we
must have that

yi = 3L, (3.12)
aijj
Two cases are then possible. The first (and most common) is when g; # 0. In this
situation, y; is also nonzero and its sign determines which of the lower or upper bound
is active for constraint i. This constraint may therefore be interpreted as an equality
constraint, setting

¢t=c¢=c if yy<0, or T =c¢ =¢ if yi>0.

Furthermore, since variable j only appears in the i-th constraint which is now trans-
formed into an equality, it can be substituted out from the constraint, giving that

n
Xj = L e = aixe | (3.13)
dij (=1
t#]
When a;; is not too smallZ, we then remove this variable from the problem, while remem-
bering that its value can be computed from (3.13), once the optimal values of the other
variables are known. Of course, the objective function and the gradient of the trans-

formed problem must be updated to reflect this substitution. Using (3.12) and (3.13), we
obtain that these updates are given by

ff=f+%cy and g/ =gi—aieyi (L# j, aie #0). (3.14)

The second case is when g; = y; = 0. In this case, the value of the objective function
is independent from that of the j-th variable. It can therefore be fixed to any value that

2 1In practice, when its abolute value is above some user-specified threshold.

Preprocessing for quadratic programming 105

makes the problem feasible, without affecting optimality. We may thus, for instance,
choose (3.13) or

1 | ¢ +ci -
xj=— === aux |, (3.15)
J aijj 2 — !
£

depending on which of a boundary or interior solution is prefered. Note that, since y; = 0,
no update of the objective function or gradient is necessary. In both cases, constraint i
may then be eliminated from the problem, as it is implicitly taken into account by (3.13)
or (3.15).

This reduction is quite advantageous since it allows both the numbers of variables
and constraints to decrease by one. Note that the technique of Section 3.2.3 (transferring
bounds on the variables in a doubleton row) may sometimes be used to make a linear
singleton variable free or implied free.

Finally, linear singleton columns that are not free can nevertheless be used to deduce
bounds on the associated multiplier if one of the bounds corresponding to the column is
infinite. Indeed, in this situation, we have that g; — a;;y; = z;. Thus, we obtain that

+_ &

yi< = if)_cj=+oo and a,-j>0, Ol‘ifii:_oo and (lij<0,
ajj ’
and
+ 8 = . i — .
yi =z— if Xj =400 and a;; <0, orif x; =—0c0 and a;; > 0.
aij

3.3.2. Doubleton columns We now introduce a new transformation that applies to the
case where column j of A only contains two nonzeros, a;; and ay;, variable j is linear
(meaning that 2;; = 0 fori = 1,...,n) and free or implied free, and constraint i is
an equality constraint. Then, as above, variable j may substituted from this constraint,
yielding (3.13). However, the situation is now slightly more complicated in that not only
the objective function and gradient must be updated using (3.14), but (3.13) must also
be substituted into constraint k. This transformation may be expressed, provided a;; is
not too small, as

akjaig
+ i
ag, = kg — (3.16)
aij

fore =1,...,n,€# j,and

agic; B B agiCi

o =o -G of =g - 2O
a,-j al-j

(note that ¢; = ¢;). Moreover, the j-th component of (1.2) gives that

gj —aijyi —ajyk =2; =0 (3.17)

106 N. Gould, Ph.L. Toint

since variable j must be linear and (implied) free. We therefore deduce the bounds
8 — Yk _ . _ 81 T WiYy
ajj - ajj
if a;; and ai; have the same sign, and

8j — akjY, 8j — akj Yk
- =y=——
a,'j a,~.,~

otherwise. Similarly, if ay; is not too small,

8 —4ijyi _ _ 87T %iY;

=Yk =
akj akj
if a;; and ai; have the same sign, and
gj — aijy, P —aijv;
L
akj akj

otherwise. One could argue that (3.16) might create fill-in in A, when ax; = 0 # aj¢
for some ¢ # j. This is formally correct, but, fortunately, of no consequence since we
may use the storage required for the i-th pivot contraint (to be eliminated) to store these
possible fill-ins, as their number cannot exceed the number of nonzeros in constraint .
Of course this requires some care in the associated data structure management (see Sec-
tion 4). In our implementation, we use an additional integer array s of size m to allow
the concatenation of two rows of A into a single “merged” row. More precisely, s (k)
contains the index of the row to be concatenated to row k, if there is such a row, or a
conventional marker if there is no further row to concatenate to row k. This allows an
easy exploration of merged rows.

This kind of reduction is especially useful in A (or part of it) is associated with linear
network constraints, where intermediate nodes may often be eliminated. On the other
hand, there is a danger of creating constraints that are too dense (although the total num-
ber of nonzero entries in A can only decrease), which can be a disadvantage to certain
interior-point methods, and safeguards against this effect may be built in the procedure.
For instance, row merging can be allowed so long as the size of the merged row does not
exceed that of row k in the original problem formulation by more than a user-specified
percentage when A is sparse. Observe that one may again attempt to make a linear dou-
bleton variable free or implied free by applying the technique of Section 3.2.3. Finally
note that our decision to use the storage originally allocated for the pivot constraint for
the possible fill-in in row k prevents us from substituting (3.13) into more than one other
constraint.

3.3.3. Weakly forcing, forcing and infeasible dual constraints In the case of general
dual constraints, we see that the j-th constraint in (1.2) may be rewritten as

m n
Zaijyi—Zhgij=gj—Zj. (3-18)
=1

i=1

Preprocessing for quadratic programming 107

If some components of y or y are finite, this equation may be exploited using the notion
of implied bounds, in a manner similar to used for primal constraints in Section 3.2.4.
We first define

m m
v déf Z aijy. + Z aijy; — Z hejxe Z hféj_e (3.19)

aij>0 a;j <0 /’ng 20 m, 20

and

n
w; & Z aijy; + Z aijy, — Z hejx, — Y hej¥e. (3.20)

i=1 =1
a;jj>0 a,l <O hl/ >O hej<0

From these definitions, it is clear that

m n
vi <Y aiyi— Y hyxe <wj,
(=1

i=1
and therefore, from (3.18), that
Vi =g —27j S w;. (3.21)

Unsurprisingly, v; and w; are called implied bounds on the j-th dual constraint. We
then obtain that

8j —Wj=2j=8j =V
Let us consider first the case where Z; < 0, which must occur if x j = -0, for

instance. A first possibility is then that g; > w;. If this happens, then we deduce from
(3.21) that

zj>gj—wj>0, (3.22)

which is inconsistent with our assumption that z; < 0. Hence the problem is dual
infeasible, and the presolving procedure may be terminated. A second possibility is that
gj < v;. In this case, we obtain from (3.21) that

7; <gj—v; <0, (3.23)

which in turn implies that the upper bound on the jth variable must be active: we may
then fix x; to X ;. The j-th dual constraint is said to be weakly forcing and the j-th
variable is said to be dominated.

On the other hand, it may happen that z, > 0 (for instance if X; = +o00). Then,
if g; < vj, we deduce from (3.21) that (3.23) holds, which is again incompatible with
our assumption that z ; > 0. The problem is also dual infeasible in this case, and our
preprocessor exits with this information. If g; > w}, then it follows as above that (3.22)
holds. The j-th dual constraint is therefore weakly forcing and we may then fix x; to its
lower bound x ;.

Finally, it may happen that the j-th dual variable is known, i.e. that z, = Z;. For
instance, if variable j is free or implied free, then z. = 0 = z;. If, additionally, we also
have thatv; = g; —z. orw; = g; —Z;, then the j-th dual constraint is forcing, and, as
in Section 3.2.4, all variables and multipliers occuring in this constraint must be fixed
to their appropriate bound for the constraint to be satisfied.

108 N. Gould, Ph.L. Toint

3.3.4. Further use of the implied bounds on dual constraints If (3.18) is neither infea-
sible or (weakly) forcing, we may, as in Section 3.2.5, make further use of v; and w,
yielding new bounds on the variables or multipliers that may then be used for possibly
tightening the best bounds known for these quantities.

Consider first the case where 7; < 0. We may then derive from the definition of w
and (3.21) that, fork =1, ... ,m,

wit+aik—Yi) > 8 —2j > &j
when g;; > 0, and
wj+ag(k—y,) =8 —2j = &j

when a; < 0. From these two inequalities, we may then deduce that

Wi—0; Wi— o;
ykzyk—]—g’ifakj>0, and Y <Yy —]—gjifakj<0.
ari 2k ari
j j
Similarly, we also obtain from the definition of w; and (3.21) that, fork =1, ... , n,
wj —hkj(xk —x) =8 —2j =8
when h; > 0, and
wj —hgj(xxk —Xk) = 8 —2j = &
when &;; < 0, from which we derive that
Wi — o; Wi — o;
xkggk—f—]—gjifhkj>0, and xszk+]—gjifhkj<0.
kj Akj

The same reasoning applied to the case where z; = 0 (and thus, in particular, if

X j = +00) yields that
Vi — g5 Vi— g:
w<y — LB gy >0, and yzy - L

= agj Akj

if Qg < 0.

and

Vi — o Vi — o
XkZ)_Ck-l-]—gjifhkj>0, and xp < x; + 2 8

if arj <O.
hkj akj

This last set of bounds involving hy; is new and specific to quadratic programs.

As for primal constraints, the above bounds are potentially useful when the involved
implied bounds are finite, that is when v; > —o00 or w; < +00. However, we may
also apply the technique of Section 3.2.5 and deduce further bounds on the variables or
multipliers in the case where the implied bounds on the j-th dual constraint contain a
single infinite contribution (that is a single infinite term in the sums of (3.19) or (3.20)).
We now detail these bounds for the sake of completeness.

Preprocessing for quadratic programming 109

The unique infinite contribution may occur because one bound on the multipliers is
infinite, or because one bound on the variables is infinite. Assume first that it corresponds
to the k-th multiplier (that is Y, = —ooor YV, = +00), and define

def m m n n
[yk] de _ _
PSS iyt Y aFi— Y hFe— Y hexy,
i=1,i#k i=1,i%k (=1 =1
a;jj>0 a;j<0 hej>0 hej<0
and
¢ m m n n
[yx] de — —
wE Y @y + Y iy, = Y hyxe— Y hye.
i=1,i#k i=1,i#k

=1 (=1
a;j>0 a;j <0 hej>0 hej<0

We thus have that

m n
[yl 873
agjyk + v < E aijyi — E hejxe < agjyi + w;™
i=1 =1

and therefore that

[kl

akj Yk +U5<yk] S8 Sagyktwi.

If we also have that 7 j < 0, we then deduce that

[vk]
8j — wjyk . _
Vg > —— if arj >0 and y, = +o0,
agj
and that
[yk]
8j — wj)k .
Ve = if aj <0 and y, = —o0.
i 2k
J

If, on the other hand, z i > (), then we obtain that

. [yk]
- 8j —V; " 0 and
e if ar; >0 an = —o00,
Ve = aj ki Y
and
g — vE_)’k] ' ~
Yk = if arj <0 and y = +o0.
Akj

Symmetrically, if the only infinite bound corresponds to the k-th variable (that is
X, = —00 or X; = +00), we may define

m m n n
def — —
oS gy + D ayi— Y hgXe— Y hexg
i=1 i=1

e=1,0k e=1,0k
ajj>0 a;jj<0 hej>0 hej<0

110 N. Gould, Ph.L. Toint

and

m

m n n
[x] def — —
wit = > aiyi+ Y aijy; — > hejxg— Y he¥e.
i=1 i=1 =1,k £=1,0#k
a,-j>0 al-j<0 h[j>0]’l(j<0

If, as above, we also have that Z j < 0, we may then deduce that

R £
8j —w; .
xx < ———1— if hy; >0 and x;, = —oo, (3.24)
and that
gi— wBXk] ' 3
xp > —————— if =hj <0 and Xy = +o00, (3.25)
while, if z i > (), we obtain that
gj—v _
e if hgj >0 and Xy = 400, (3.26)
kj
and
8j — Ug-xk] .
xS == if hg; <0 and x, = —oo. (3.27)
kj

3.3.5. Removing dependent variables The removal of dependent variables is reminis-
cent of the procedure of Section 3.2.6, applied to columns and now possibly involving
the matrix H. The difference is that we restrict ourselves here to an attempt to identify
all pairs of variables k and j such that

ahg=hegp (L=1,...,n) and oaay=a;; (=1,...,m) (3.28)

for some constant ¢ # 0 independent of i and £. In order to verify this condition, we
start by maintaining a list of variables that are potentially dependent on another and by
rejecting variables k from this list whose associated column is diagonal in H. Indeed, if
hik # 0, then (3.28) implies that hy; = h jx # 0, in which case column k of H cannot
be diagonal. We next identify a row i of A such that a;; # 0 which is of minimal size,
and attempt to verify that (3.28) holds for each column j # k such that a;; # 0. Since
this verification is potentially expensive, we first reject all columns j of A that have a
number of nonzeros different from that of column k. We also eliminate all j such that
the size of the j-th row of H is different from that of its k-th row. We also terminate the
verification of (3.28) as soon as a row index is found such that the second part of (3.28)
fails, thereby limiting the computational effort as much as possible. If the second part
of the condition (concerning A) is verified, we then verify its first part (on H), stopping,
as above, as soon as possible. This procedure is new, but inspired by Tomlin and Welch
(1983a), Andersen and Andersen (1995) and Gondzio (1997), with adaptations for the
presence of the Hessian H. If (3.28) holds, two cases may arise.

Preprocessing for quadratic programming 111

The first is when, additionally, ag;x = g;. In this case, we may interpret variable j
as being redundant in the problem, since the dependence of the objective function and
constraint value on this variable is exactly « times their dependence on variable k. We
then remove variable j from the problem, and perform the replacement

[variable k]T = [variable k] + «[variable jl,
such that
hoexy = hoxi + oahgexj = haoxg +hejx; (E=1,...,n),
and
a,-k)c;r = Qi Xk + aapXj = ajpXg +ajjx; (@ =1,...,m).

This implies that the bounds of the new variable k are updated by

+ _ -+ _ = -
Xy =X tox; and X, =X +aX; if o>0,

or

+ _ =, =+ _ = :
Xy =X +oX; and X =Xr+toax; if «<0,

while the bounds on the associated dual variable are now given by

+ = =
g =z toz; and T =% taz; if a>0,

or
=z +ez; and 7 =z +az; if a<O

No updating of A, H or g is necessary. This type of combination is especially useful

when the updated lower or upper bound become infinite.

If, on the other hand, ag; # g;, then it may happen that one of the variables under
consideration dominates the other. If ag; > g;, more reduction in the objective function
can be achieved by reducing variable k as much as possible than would be possible by
reducing variable j. However, the dual constraints have to remain feasible, which is
always possible if variable j is free or if it is suitably unbounded. More formally, using
(3.28), the symmetry of H and our assumption on g, we have that

n m n m
azp =agr + o thexz —a Zaikyi >gj+ Zhjew - ZaijJ’i =z, (3.29)
=1 i=1 (=1 i=1
and therefore, if z; > 0 (which is the case when x¥; = +00) and & > 0, we deduce that
zx > 0. As a consequence, variable k may be fixed to its lower bound in this case, unless
it is equal to —oo, implying that the problem is dual infeasible. The same deduction can
of course be made from (3.29) if z; < O (for instance when x ;= —o0) and o < 0.
Symmetrically, if agy < g, we obtain that
n m n
azp =ogp + o thexe —a Zaikyi <gj+ Zhjzw - Zaijyi =zj, (3.30)
=1 i=1 =1
and we deduce that variable k may be fixed atits upper boundif z; < 0 (e.g.ifx; = —00)
and @ > 0, 0rif z; > 0 (e.g. if X; = +00) and o < 0. The inequalities (3.29) and
(3.30) may also be used symmetrically to deduce bounds on z; from the bounds on z,
and thus possibly to fix x; at one of its bounds.

112 N. Gould, Ph.L. Toint

3.4. Unconstrained reductions

A last case of interest occurs when a variable does not appear in the linear constraints:
we then say that it is linearly unconstrained. However, note that such a variable usually
remains subject to bound constraints.

If a linearly unconstrained variable j additionally occurs only linearly in the objec-
tive function, then it may simply be fixed to its lower or upper bound, depending
on whether the corresponding gradient component g; is positive or negative. If the
associated bound is infinite, then the problem is dual infeasible. If g; is identically
zero, then variable j has no impact on the value of the objective function, and it
is fixed to an optimal value that is arbitrarily chosen between its lower and upper
bounds.

If such a variable does not occur linearly in the objective function, but its contribu-
tion is separable from that of other variables (which is the case when the corresponding
column of H is diagonal), then the global minimum of the one-dimensional associated
quadratic within the variable’s bounds can be computed unless this problem is dual infea-
sible. The considered variable may then be fixed to the computed minimizer and its dual
variable chosen accordingly. This last technique is also new and specific to quadratic
programs.

4. Data structures and presolving modes

We assume that the matrices A and H for problem (1.1) have been input using a row-
wise storage scheme (see Duff, Erisman and Reid, 1986, §2.7), and that only the lower
triangular part of the symmetric H is given — our implementation actually supports,
in addition, both dense and co-ordinate input, but these are converted internally into a
row-wise scheme.

All the problem reductions described above can then be carried out reasonably sim-
ply and efficiently, provided we maintain adequate additional information and suitably
manage the corresponding data structure. In our implementation, we have chosen to
maintain a record of the number of nonzeros in each row and column of A and H, as
well as an indicator of the diagonal nature of each column of H. This informations is
stored in three integer vectors that are built at the beginning of the problem analysis and
maintained throughout the problem reduction process.

Since a number of problem reduction techniques (see Section 3.2) require access
to rows of A while others (see Section 3.3) need access to its columns, it is
useful to supplement the structure of A by a linked lists superstructure describing
its columns (see Duff et al., 1986, §.8). Similarly, it is advantageous to be able to
access to a complete row or column of H including its part beyond the diagonal.
For this purpose, we also build a pointer superstructure that provides a linked list of
all nonzero elements of the upper triangular part of a Hessian row. Both these
superstructures (for A and H, whenever appropriate) are computed at the start of the
analysis.

As suggested in Section 3.3.2, we also maintain an array of length m indicating,
in its i-th component, whether or not another row structure of A is to be concate-
nated with row i. The presence of this array slightly complicates all program loops on

Preprocessing for quadratic programming 113

the nonzero entries of a row in this case, but the additional complexity remains mar-
ginal.

We also maintain an history of the successive transformations, as it is necessary to
invert them once the transformed problem has been solved. This history takes the form
of two integer and one real vectors. Each of these arrays has a length equal to the number
of transformations actually applied to the problem. The coding of these transformations
is slightly more complicated than used by Gondzio (1997), but remains comparable in
the amount of memory used. As the number of problem transformations may sometimes
be substantial, we also provide a mechanism to save their history to disk files. The user is
asked to specify how many transformations are to be kept in memory, and the associated
memory storage is then successively filled and written to disk whenever necessary, in a
totally transparent manner.

Two status vectors are also maintained for the variables and constraints, in order to
distinguish active variables or constraints (that is variables or constraints that haven’t
been removed from the problem formulation) from inactive ones. The status vector asso-
ciated with the variables is also used to keep track of implied free variables, whenever
possible. Note that the user may specify in these vectors if a variable or a constraint is to
be considered as part of the problem or not. This is potentially useful in the case where
one solves a set of “neighbouring QPs” that differ by the presence/absence of a few con-
straints or variables, as can be the case in the exploration of the combinatorial tree for a
nonlinear integer programming problem. We further maintain a list of rows and columns
of A whose number of nonzeros have been modified, in order to restrict the application
of the heuristics of Section 3.2.6 and 3.3 to these rows and columns, respectively. This
technique allows us to use these more costly procedures systematically at a very modest
cost.

We also followed a suggestion made by Fourer and Gay (1994) in order to avoid,
to some extent, the presence of redundant constraints in the reduced problem, which
arise naturally as a result of the elimination process. While performing the problem
transformations, we store in memory the best bounds on the variables that are known
not to be redundant for the (reduced) linear constraints, and allow the user the option
to pass this set of bounds to the solver, instead of the tighter but possibly more degen-
erate ones that result from the problem reduction process. This option is referred to
as the “medium” mode, at variance with the “tightest” mode where the tightest known
bounds on the variables and constraints are included in the reduced problem. We also
extended this idea by allowing the user to require the loosest bounds that are known to
guarantee the equivalence of the reduced problem an the original one, an option that we
refer to as the “loosest” mode. We comment in Section 7 on the impact of using these
options.

5. The final permuted format

When the problem analysis is finally complete, we permute the resulting transformed
problem into a form that is designed to make the computation on this transformed prob-
lem efficient. We have chosen a form where the variables are ordered so that free variables
occur first, and so that the bounds on the remaining variables appear in the order

114 N. Gould, Ph.L. Toint

non-negative variables: 0 <x; G=1,...,ny),

lower bounded variables: Xj < Xj (J=nm+1,...,n7),
range constrained variables: X;<xj < Xj(j=ny+1,...,n3),
upper bounded variables: xX; <xj(j=n3+1,...,n4),
non-positive variables: x; <0 (j=ns+1,...,ns),

where the unspecified bounds are infinite and where ns < n is the total number of
variables remaining in the transformed problem. Within each category, the variables are
further ordered so that those with non-zero diagonal Hessian entries occur before the
remainder. The constraints are also ordered so that their bounds appear in the order

equality constraints: ¢; = [Ax]; (i=1,...,mp)),

non-negativity constraints: 0 < [Ax]; (i=mi+1,...,m),
lower bounded constraints: ¢; < [Ax]; (i=my+1,...,m3),
range constraints: ¢, <[Ax]; <ci(i=m3+1,...,my),
upper bounded constraints: [Ax]; <c¢i i=mg+1,...,ms),
non-positivity constraints: [Ax]; <0 (i=ms+1,...,mg),

where mg < m is the total number of constraints remaining in the transformed problem.
The data g, H and A is reordered to conform with the above scheme; the diagonal terms
of H (if present) are stored last within each of their given (subdiagonal) rows, so that
unnecessary checking for diagonal entries does not occur when forming Hessian-vector
products.

Of course, the data associated with the disregarded variables or constraints is not
lost. In practice, we permute it to the end of the original data structures, beyond the
reordered data for the transformed problem. This ensures that it does not interfere at all
in the processing of the transformed problem.

6. Problem restoration

Once the transformed problem has been processed (solved, hopefully), it is of course
important to translate the results obtained back to the original QP formulation, reintro-
ducing variables and constraints that were eliminated in the presolving process. This
is called postsolving, and is simply performed by applying the inverse of the problem
transformations in the reverse order. In terms of the notation used above, this means that,
for each transformation, we have to deduce the quantities without the T superscript from
those with a * superscript. While this is rather straightforward in most cases, several
points are nevertheless worth noticing.

The first is that the restoration of certain problem values might require that of oth-
ers. For instance, the restoration of the original coefficients of the objective function’s
gradient requires the restoration of the coefficients of A as well, whenever a variable
has been fixed in the presolving process. A simple strategy would be to always restore
the complete problem data, but it might be advantageous to avoid the irrelevant part of
this computation when restoration of the complete problem is not necessary. We must
therefore keep track of the successive dependencies between the various problem quan-
tities that must be restored while transformations are determined and applied, in order

Preprocessing for quadratic programming 115

to reconstruct all necessary problem components, but only those, and only as far as
necessary within the postsolve process. In our implementation, we explicitly store these
dynamic dependencies during the problem reduction phase for reuse when postsolving.

The second point of interest is that it is usually desirable to recover the values of
the dual variables and multipliers at the solution of the original problem from those at
the solution of the transformed problem. For each problem transformation, we therefore
have to deduce z and y from z*, y* and, possibly, other data of the transformed problem.
We briefly consider how this can be done for some problem transformations.

6.1. Fixing a variable

Fixing a variable x ; does not always permits us to simultaneously fix the associated dual
variable z ;. For instance, if we happen to deduce that z; > 0, then we may fix x; to its
lower bound, but the value of z; is given by the equation z; = g; + [Hx]; — [ATy]j
and both x and y are still unknown at the presolving stage. Fortunately, this equation
may be used when postsolving to deduce z; from the optimal x*, H*, A* and y*, ie.,

zj = gj + [H xF]; — [ATTy),

6.2. Tightening a bound on the variables

If a bound on x, say, is tightened during the analysis, it may happen that the solution of
the reduced problem has a nonzero dual variable z,j associated with this constraint. Since
it is purely artificial, z;x must be set to zero in the solution of the initial problem, while
maintaining both dual feasibility and complementarity. This typically requires modify-
ing the multipliers associated to the constraints involving x; and, as a consequence, the
duals z; of the other variables appearing in these constraints.

The simpler case is when an equality doubleton constraint is used to transfer the
bounds on x; to xi, as explained in Section 3.2.3. In this situation, we may distinguish
two cases. If none of the bounds in (3.3) or (3.4) is active, this means that the original
bounds on x; are not active at the solution: they are therefore irrelevant and could have
been forgotten from the problem. Thus

ijz;r(:O), zk=z,:L and yi =y,

If, on the other hand, one of the bounds in (3.3) or (3.4) is active at the solution of the
transformed problem, we first deduce that z; must be zero. Moreover, (1.2) and the fact
Z;r = 0 by design yield that

+

aijyi +2j = aijy;
v oyt +
aikYi aiky; +2p.

We then immediately deduce that

1 ajj
Vi = yl+ —+ Ezz_ and Zj = _izz_ (61)
1

116 N. Gould, Ph.L. Toint

The same type of reasoning applies to the slightly more complex case where bounds
on x; are tightened as the result of the analysis of the i-th primal constraint (see Sec-
tion 3.2.5). In this case, the i-th constraint may involve more than two variables, which
means that we have to replace the second part of (6.1) by

Zj = —Z;_iz,j forall j | ai; # 0. 6.2)
1

The most intricate case is when a bound on x is imposed as the result of the analysis
of dual constraints, that is via (3.24)—(3.27). In this case, the multipliers of all constraints
i such that a;; # 0 must be considered, together with the duals of all variables involved
in these constraints. Fortunately, this exploration and the associated updating of the
multipliers and dual variables is typically very fast.

6.3. Freeing a variable by splitting an equality constraint

Transfering the bounds on a variable into bounds on a split equality constraint (as de-
scribed at the end of Section 3.2.3) is another case where recovering the dual variables
and multipliers requires some care. If)A)f denotes the multiplier associated with the
inequality constraint of (3.5) and yi+ the multiplier associated with the equality con-
straint, these values satisfy the dual equations

n m

g;j+ Zhgj)(@ — Zapjy; —a;jyt =0
=1 p=1
pFL

and

n m
g+ Y hoxe =Y apyy —any —audi =z
=1 p=1
pF#i
for k # j, while we also have, for the problem before the transformation, that
n m
gk + Zhekxe - Zapkyp =k
=1 p=1

fork =1, ..., n.Itcan then be verified that we may recover the value of z; and y; from
the relations

zj=—a;y} and y; =y +37,

the dual variables of the variables different from j and the other multipliers being
unmodified.

Preprocessing for quadratic programming 117

6.4. Forcing primal constraints

Consider now the problem transformation that removes a forcing primal constraint and
fixes the values of each of the variables occuring in this constraint to its lower or upper
bound (as discussed in Section 3.2.4). We then use the following strategy, proposed by
Fourer and Gay (1994), to recover the associated dual variables and multiplier. Let J
be the index set of the variables fixed when removing the forcing constraint i. If u; (as
defined in (3.7)) is equal to ¢;, we know that y; > 0 and choose it as the smallest number
which is sufficiently positive to ensure that

z; <0 forall j|aj>0 and z; >0 forall j|aj <O,
while we choose y; to be the largest non-positive number ensuring that
z; >0 forall j|a;; >0 and z; <0 forall j|a; <O

if ¢; (as defined in (3.8)) is equal to c;.

6.5. Linear combination of constraints

If we consider the transformation that add a multiple of an (equality) constraint to another
constraint (such as in Section 3.2.6, where this preocedure is used to make A sparser),
the formulae for the corresponding multipliers are easy to find. Specifically, if (3.11)
describes such a transformation, we have that

+_ %+

yve=y; and y =y — =Lyl
a,‘j

6.6. Constraint elimination using linear doubleton columns

Another case of interest is the undoing of a transformation where a linear (implied) free
doubleton column is used to eliminate one of the variable from an equality constraint
(see Section 3.3.2). If variable j is eliminated by substitution from constraint i into
constraint k, the j-th component of (1.2) gives (3.17) since variable j must be linear and
(implied) free. On the other hand, the same condition on the transformed problem gives
that

g+ + Htxt — [A+]Ty+ — Z+.

We may then write the £-th component of this identity (where we assume that x; occurs
in the transformed problem) as

m
e 0
8 —ay =g — jgz —ageyt + a#ljaigy,j =Y afy + 11— [H x]
ij j o
p#k
(6.3)

118 N. Gould, Ph.L. Toint

where we used the second part of (3.14) with (3.12) and (3.16). Now observe that, since
xj is linear, H = H™ and [HTx™]; = [Hx]¢. Moreover, ap¢ = a;g forp#k,p#i
and £ # i since the transformation only alters rows k and i in A. It is now easy to verify
that the choices

lzrle = [z{1e (€#j), and z; =0,
together with

1
ye=vyi., and y;=— (gj —akjw)

aijj
(the last equality resulting from (3.17)) translate the optimality conditions of the trans-

formed problem into optimality conditions for the original one. In particular, (6.3) re-
duces to the £-th component of (1.2) for the untransformed problem.

7. Preliminary numerical experience

We now report some numerical experience gained with our Fortran 90 implementation
of the ideas discussed above. The resulting package, PRESOLVE is an integral compo-
nent of the GALAHAD optimization library (see Gould, Orban and Toint, 2003b). In
this implementation, the status and bounds on the problems quantities is first verified
according to Section 3.1 and the heuristics discussed above are then applied in a loop,
until no further reduction in the problem dimensions (that is n, m and the numbers of
nonzeros in A and H) is obtained. Within each loop, the heuristics are applied in the
following order:

1. remove empty and singletons rows, as indicated in Sections 3.2.1 and (3.2.2),

2. try to eliminate variables that are linearly unconstrained, as outlined in Section 3.4;

3. attempt to exploit the presence of linear singleton columns, as discussed in Sec-
tion 3.3.1;

4. attempt to exploit the presence of linear doubleton columns, as explained in Sec-
tion 3.3.2;

5. complete the analysis of the dual constraints, using the techniques of Section 3.3.3
and 3.3.4;

6. remove empty and singletons rows, as indicated in Sections 3.2.1 and (3.2.2),

7. possibly remove dependent variables, as described in Section 3.3.5;

8. analyze the primal constraints, using the techniques described in Sections 3.2, except
the sparsification procedure of Section 3.2.6;

9. try to make A sparser as explained in Section 3.2.6;

10. check the current status of the variables, dual variables and multipliers, using the

various implications described in Section 3.1.

The resulting problem is finally permuted to comply with the format described in
Section 5.

Preprocessing for quadratic programming 119

1

09f

08f

07f

06f

05f

04f

03F

02t

01t

0

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

Fig. 1. The reduction obtained by presolving (for 178 problems) on the number of problem variables, sorted
by decreasing original problem size (left) and by decreasing reduction (right)

7.1. Problem reduction

We start by considering the efficiency of the presolving process in terms of reduction
of the problem sizes. Figures 1-4 report the effect of presolving on a collection of 178
linear and quadratic programs, of which 7 only involve only simple bounds, from the
CUTEr collection of test problems (see Bongartz, Conn, Gould and Toint, 1995 and
Gould, Orban and Toint, 2003a) which includes the Netlib linear programs and 68 prob-
lems with a non-trivial quadratic term. Results were obtained on a Pentium (biprocessor)
running Linux Red Hat 7.2 with 1024 MBytes of memory, using the frt Fujitsu Fortran
compiler with full optimization.

Figure 1, report, for each problem, the ratio of the number of variables in the reduced
problem to that in the original problem, sorted by decreasing size of the original problem
(in the left part of the figure) and by decreasing obtained reduction (in the right part).
The left picture shows that there is little relation between the original size of a problem
and its potential for a substantial reduction in its number of variables. The right picture
shows the whole range of reduction, from the spectacular total reduction cases on the
left to cases (approximately one third) were no reduction in #n is obtained. The number
of problem variables is reduced by 19% on average across all problems. This average
reduction is of 20% if one considers linear problems only, and of 18% if one considers
quadratic ones (that is problems with | H| > 0) only. Thus, despite the fact that quadratic
programs may typically produce more coupling between the problem’s variables than
linear ones (and thus potentially less opportunity for applying reduction heuristics), they
nevertheless also seem amenable to problem reduction.

Figures 2—4 show the corresponding reduction ratios for the number of constraints
m, the number of nonzero entries in A and in H. The first of these figures indicates that
the potential in reducing m (on average by 20%) is equivalent to that of reducing n, the
amount of reduction being again uncorrelated to the original value of m. Figures 3 and
4 show that the reduction of the number of nonzero entries in A and H follow the same
general pattern. The difference between linear and quadratic problems is marginal for
these two latter statistics. We also observe, that the average reduction in the size of H
(25%) exceeds that in the size of A (20%), which indicates again that the potential of

120 N. Gould, Ph.L. Toint

1

0.9+

08

07

06

05

04f

03

02

0.1

[

20 40 60 80 100 120 140 160

Fig. 2. The reduction obtained by presolving (for 171 problems with A # 0) on the number of constraints,
sorted by decreasing number of constraints in the original problem (left) and by decreasing reduction (right).

1 T T T T

0.9

08

0.7

06

05

04

03

02

0.1

0
20 40 60 80 100 120 140 160

160

Fig. 3. The reduction obtained by presolving (for 171 problems with A # 0) on the number of nonzero entries
in A, sorted by decreasing number of such entries in the original problem (left) and by decreasing reduction

(right).

presolving quadratic programming problems is comparable to that of linear programs,
at least in terms of problem size reduction.

Tables A.1-A.2 (in Appendix A) provide details of these results. In these (and later)
tables, the CPU-times are given in seconds. Examination of these detailed statistics first
shows that the problem reduction obtained for linear programs compares well with that
obtained with specialized LP presolving tools. If we compare them with the results
reported by Gondzio (1997), we obtain smaller n for 65 of the 93 comparable prob-
lems, smaller m for 47 and smaller number of nonzeros in A for 43, Gondzio’s results
showing smaller n for 17 problems, smaller m for 33 problems and smaller number of
nonzeros in A for 41 problems, the rest being ties. The difference with Gondzio’s results
is not surprising, as, on one hand, we have not implemented the dense column splitting
technique that he describes and have added a few new technique such as equality con-
straint splitting or doubleton column handling. Furthermore, slight differences in way
transformations are sequenced do lead to different results. A second point of interest
is that comparison of the presolve times with numerical solution times for the tested

Preprocessing for quadratic programming 121

0
10 20 30 0

1

o

°

°

o

°

°

o

o

°

50 60 30 40 50 60

Fig. 4. The reduction obtained by presolving (for 68 problems with H # 0) on the number of nonzero entries
in H, sorted by decreasing number of such entries in the original problem (left) and by decreasing reduction
(right).

0

problems (see below) also shows that presolve time remain marginal, as desired, both
for linear and quadratic examples. While it is not surprising that problems QPCBLEND,
QPCBOIEL, QPCBOEI2 and QPCSTAIR are very comparable in this respect with their
linear counterparts BLEND, BOEING1, BOEING2 and STAIR since their Hessians are
diagonal, we notice the full range of possibilities for problems with denser H: from little
or no reduction for BLOCKQP1, BLOCKQP5, DTOC3, GMNCASE1, GMNCASE3 or YAO
to more interesting cases like AUG2D, DUALCS8, MOSARQP1, NCVXQP4, PRIMAL?2,
STATIC3 or UBHL, up to the very successful examples such as GMNCASE4 and SOS-
QP1 in which the presolve removes all the variables and constraints, and thus reveals the
complete solution to the QP under consideration. We finally consider the space needed to
perform the necessary factorizations of the problem matrices with and without presolv-
ing. Tables A.1-A.2 report, under the headings “int ratio” and “real ratio”, the ratios of
the integer and real workspace needed using the presolver to the corresponding number
without presolve. We note that presolving reduces this space in nearly all cases, and that
ratios above 1.00 are only marginally so for linear problems. This is not always the case
for quadratic programs: the extreme case of CVXQP2 arises, for instance, because the
initial (simple) preconditioner is ineffective and a switch to a more sophisticated (and
expensive but effective) one is made by the solver for the reformulated problem, while
the simple (cheaper but less effective) preconditioner suffices for the original. This also
explains why the presolved version nevertheless solves much faster.

7.2. Impact on solution time

We now turn to the impact of presolving on the total solution time for linear and quadratic
programs. As for problem reduction, we start by presenting a graphical comparison of the
three (tightest, medium and loosest, see Section 4) presolving modes with the case where
no presolving is applied. The quadratic solver used is QPB, run in default mode, also from
GALAHAD, an interior point algorithm for nonconvex quadratic programs described in
Conn, Gould, Orban and Toint (2000), Gould, Orban, Sartenaer and Toint (2002) or

122 N. Gould, Ph.L. Toint

Table 1. Failure causes for problem solution.

Presolving apparently conditioning total

mode infeasible too large

none 9 7 16
tightest 3 3 6
medium 3 4 7
loosest 3 2 5

20 40 60 80 100 120 140 160 o 20 40 60 80 100 120 140 160

Fig. 5. The reduction (or increase) of solution time with presolving in tightest mode, sorted by decreasing
solution time for the original problem (left) and by decreasing reduction (right).

Gould and Toint (2002). Note that we excluded three problems from the comparison:
STATIC3, which is unbounded below, NCVXQP3 for which different local solutions
were found for the presolved and original formulations, and DFL001 for which our
compiler generated a swapping error.

We first report in Table 1 the causes of failure to solve the (possibly reduced) problem
for all presolving modes (including no presolving at all).

Figure 5 shows the ratio of the solution time required by the solver with presolving
(in tightest mode) to that required without presolving, for each of the 160 problems
where both solves were successful. As expected, the impact of presolving on solution
times is variable. This impact is very favourable? in 39 of the 160 compared problems,
favourable* for 35 problems, relatively neutral® for 53, unfavourable® for 25 and very
unfavorable’ for 8. The average gain is 11% (10% for linear problems and 13% for
quadratic ones).

Figures 6 and 7 show the same ratios for the medium and loosest presolving modes,
respectively. For the medium mode, the impact is very favourable for 37 problems,
favourable for 32, neutral for 54, unfavourable for 26 and very unfavourable for 12, with
an average gain of 2% (9% on linear problems and 0% on quadratic ones). For the loosest
mode, the impact is very favourable for 41 problems, favourable for 36, neutral for 52,

3 Better by a factor at least 2.

4 Between 10% and 100% better.
5 Difference smaller than 10%.

6 Between 10% and 100% worse.
7 Worse by a factor at least 2.

Preprocessing for quadratic programming 123

o 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

Fig. 6. The reduction (or increase) of solution time with presolving in medium mode, sorted by decreasing
solution time for the original problem (left) and by decreasing reduction (right).

20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160

Fig. 7. The reduction (or increase) of solution time with presolving in loosest mode, sorted by decreasing
solution time for the original problem (left) and by decreasing reduction (right).

unfavourable for 25 and very unfavourable for 7, with an average gain of 12% (14% on
linear problems and 8% on quadratic ones). The loosest mode therefore appears to be of
real interest from the efficiency point of view, especially for linear problems. Note also
that the choice between the different presolving modes could well depend on the solver
used.

Tables B.1 and B.2 (in Appendix B) report the detailed solution times for each the
problem and for each presolving mode (“(t)” for tightest, “(m)” for medium and “(1)”
for loosest). Failures are indicated in these tables by a “-”. In each case, the “c” column
gives an indication of the final status reported by the solver, except in unquestionably
successful cases. The symbol “cond.” means that the solution returned is the best that
could be found given the high conditioning of the problem. The solution time is never-
theless reported for those problems where the found solution coincides with the correct
solution by at least five digits of accuracy in the objective function value. The symbol
“stp.” indicates that the solver was stopped because the step had become so small that
further progress was impossible. Note that none of these two cases preclude a satisfac-
tory solution. The symbol “inf.” indicates that the solver erroneously concluded that
the problem is primal infeasible, “mem.” indicates that the necessary memory space

124 N. Gould, Ph.L. Toint

could not be allocated, “swap” that a swapping error was generated, and “unb.” that the
problem is unbounded below.

Globally speaking, the effect of presolving on solution time therefore seems to be
relatively positive.

8. Conclusion and perspectives

We have described a set of presolving techniques that can be applied on linear and qua-
dratic optimization problems. For the latter class, the problem reduction exploits the
fact that both variables and multipliers appear together in the dual feasibility condition,
leading to transformations that are specific to the quadratic case. Numerical experience
with the resulting code indicate that, despite their stronger inner coupling, quadratic
problems appear to be as amenable to presolving as linear ones, both in terms of reduced
problem size and reduced solution time. The resulting thread-safe Fortran 90 package
PRESOLVE is available without cost as part of the GALAHAD optimization library (see
Gould et al., 2003b).

Acknowledgements. The authors wish to thank J. Gondzio for his encouraging comments while this work
was in progress and to P. Y. Bernard and P. Lambrecht for proofreading an early version of the manuscript
and helping to debug the code. Thanks are also due to the associate editor and the referees for their helpful
suggestions.

Appendix A: The effect of presolving on problem size

Table A.1. The effect of presolving on LP dimensions

Problem Before presolve After presolve int real time
m n |A] m n |A| ratio ratio
25FV47 821 1571 10400 741 1468 9870 0.88 0.84 0.1

80BAU3B 2262 9799 21002 1984 8752 19139 544 1.64 0.5
ADLITTLE 56 97 383 53 89 360 096 0.95 0.0

AFIRO 27 32 83 21 29 72 0.67 0.80 0.0
AGG2 516 302 4284 289 233 2315 0.53 0.37 0.0
AGG3 516 302 4300 290 235 2349 0.51 0.38 0.0
AGG 488 163 2410 173 105 875 0.37 031 0.0
BANDM 305 472 2494 173 202 1256 046 0.51 0.0
BEACONFD 173 262 3375 7 15 26 0.02 0.00 0.0
BLEND 74 83 491 70 71 427 092 098 0.0
BNL1 643 1175 5121 535 1073 4560 0.88 0.94 0.0
BNL2 2324 3489 13999 1724 2869 12040 0.82 0.87 0.2
BOEING1 351 384 3485 292 367 2303 0.26 0.39 0.0
BOEING2 166 143 1196 134 139 1133 099 1.00 0.0
BORE3D 233 315 1429 59 70 356 021 0.23 0.0
BRANDY 220 249 2148 110 172 1492 0.57 0.57 0.0
CAPRI 271 353 1767 214 268 1351 0.39 0.40 0.0
CYCLE 1903 2857 20720 1448 2063 16873 0.27 0.45 0.1
CZPROB 929 3523 10669 479 2502 5343 043 041 04
D2Q06C 2171 5167 32417 1990 4181 30120 093 091 1.1

D6CUBE 415 6184 37704 403 5447 33601 0.89 097 0.7

Preprocessing for quadratic programming

125

Table A.1. Continued

Problem Before presolve After presolve int real time
m n |A] m n |A] ratio ratio
DEGEN?2 444 534 3978 441 529 3968 1.02 0.96 0.0
DEGEN3 1503 1818 24646 1493 1799 24334 099 0.96 0.1
DEGENLPA 15 20 82 15 20 81 1.00 1.00 0.0
DEGENLPB 15 20 82 15 20 81 1.00 1.00 0.0
DFL001 6071 12230 35632 5754 10626 33559 - - 1.4
E226 223 282 2578 156 254 2199 0.67 0.80 0.0
ETAMACRO 400 688 2409 326 461 1762 0.77 0.84 0.0
FFFFF800 524 854 6227 427 624 4912 0.0
FINNIS 497 614 2310 369 457 1573 079 0.72 0.0
FIT1D 24 1026 13404 24 1025 13308 1.00 1.00 0.1
FIT1P 627 1677 9868 627 1028 9219 099 1.00 0.1
FIT2D 25 10500 129018 25 10485 128882 1.00 1.00 4.8
FIT2P 3000 13525 50284 3000 13525 50284 1.00 1.00 3.7
FORPLAN 161 421 4563 90 206 1892 0.60 0.55 0.0
GANGES 1309 1681 6912 714 578 4418 0.60 032 0.1
GFRD-PNC 616 1092 2377 460 934 2063 0.86 0.79 0.0
GREENBEA 2392 5405 30877 1830 3678 23011 0.70 0.68 0.3
GREENBEB 2392 5405 30877 1824 3665 22864 032 0.18 0.3
GROW15 300 645 5620 300 645 5620 1.00 1.00 0.0
GROW22 440 946 8252 440 946 8252 1.00 1.00 0.0
GROW7 140 301 2612 140 301 2612 1.00 1.00 0.0
ISRAEL 174 142 2269 163 142 2258 0.71 0.95 0.0
KB2 43 41 286 42 33 256 097 0.90 0.0
LOTFI 153 308 1078 126 274 965 0.83 0.86 0.0
MAROS 846 1443 9614 605 871 5797 0.61 0.54 0.1
MAROS-R7 3136 9408 144848 2156 4435 78295 040 0.75 1.5
MODEL 339 1831 1893 9 6 20 0.06 0.04 0.0
MODSZK1 687 1620 3168 654 893 2407 0.88 092 0.1
NESM 662 2923 13288 614 2227 12421 095 0.96 0.2
OET1 1002 3 3004 1002 3 3004 1.00 1.00 0.0
PEROLD 625 1376 6018 560 1113 5228 0.85 0.65 0.0
PILOT 1441 3652 43167 1361 3356 40855 098 098 0.3
PILOT4 410 1000 5141 378 775 4609 0.56 0.60 0.0
PILOT87 2030 4883 73152 1966 4595 70683 097 1.08 0.5
PILOT-JA 940 1988 14698 768 1405 10768 092 0.73 0.1
PILOTNOV 975 2172 13057 809 1730 11369 - - 0.1
PILOT-WE 722 2789 9126 675 2411 8332 0.18 032 0.1
PT 501 2 1002 501 2 1002 1.00 1.00 0.0
QAP12 3192 8856 38304 3192 8856 38304 1.00 1.00 1.7
QAP8 912 1632 7296 912 1632 7296 1.00 1.00 0.1
READING2 200 303 800 88 187 361 0.11 0.14 0.0
RECIPELP 91 180 663 74 82 409 081 0.85 0.0
SC105 105 103 280 101 100 273 099 097 0.0
SC205 205 203 551 200 199 543 097 1.00 0.0
SC50A 50 48 130 46 45 123 095 0.99 0.0
SC50B 50 48 118 43 43 107 098 0.85 0.0
SCAGR25 471 500 1554 288 316 1080 0.65 0.94 0.0
SCAGR7 129 140 420 72 82 270 0.52 0.80 0.0
SCFXM1 330 457 2589 262 384 2205 028 0.33 0.0
SCFXM2 660 914 5183 522 761 4420 079 0.86 0.1
SCFXM3 990 1371 7777 781 1138 6589 0.79 0.84 0.1
SCORPION 388 358 1426 124 132 439 039 042 0.0
SCRS8 490 1169 3182 388 989 2605 081 0.69 0.1
SCsD1 77 760 2388 77 760 2388 1.00 1.00 0.0
SCSD6 147 1350 4316 147 1350 4316 1.00 1.00 0.0
SCsD8 397 2750 8584 397 2750 8584 1.00 1.00 0.0

126 N. Gould, Ph.L. Toint

Table A.1. Continued

Problem Before presolve After presolve int real time
m n |A] m n |A] ratio ratio
SCTAP1 300 480 1692 300 480 1692 1.00 1.00 0.0
SCTAP2 1090 1880 6714 1090 1880 6714 1.00 1.00 0.0
SCTAP3 1480 2480 8874 1480 2480 8874 1.00 1.00 0.1
SEBA 515 1028 4352 138 41 658 0.06 0.52 0.1
SHARELB 117 225 1151 106 191 943 098 0.78 0.0
SHARE2B 96 79 694 92 79 660 098 094 0.0
SHELL 536 1775 3556 337 1285 2576 0.72 0.71 0.1
SHIPO4L 402 2118 6332 325 1915 5723 090 091 0.1
SHIP04S 402 1458 4352 224 1266 3481 0.83 0.77 0.1
SHIPOSL 778 4283 12802 526 3147 9249 0.72 0.74 0.2
SHIP08S 778 2387 7114 303 1601 4436 0.65 0.62 0.1
SHIP12L 1151 5427 16170 664 4196 11092 0.71 0.68 04
SHIP12S 1151 2763 8178 321 1895 4969 054 057 0.1
SIERRA 1227 2036 7302 1126 1967 6980 095 0.94 0.1
SIPOW1 2000 2 4000 2000 2 4000 1.00 1.00 0.0
SIPOW1M 2000 2 4000 2000 2 4000 1.00 1.00 0.0
SIPOW2 2000 2 3000 1000 2 2000 0.55 0.58 0.0
SIPOW2M 2000 2 3000 1000 2 2000 0.55 0.58 0.0
SIPOW3 2000 4 5992 1998 4 5990 1.00 1.00 0.0
SIPOW4 2000 4 7000 2000 4 7000 1.00 1.00 0.0
SSEBLIN 72 194 312 72 192 310 1.00 1.00 0.0
STAIR 356 467 3856 305 333 3560 0.66 0.79 0.0

STANDATA 359 1075 3031 293 372 1037 0.84 0.76 0.0
STANDGUB 361 1184 3139 293 382 1057 0.84 0.76 0.0
STANDMPS 467 1075 3679 395 956 2421 0.79 0.80 0.1
STOCFOR1 117 111 447 91 92 357 051 030 0.0
STOCFOR2 2157 2031 8343 1964 1798 7392 095 0.82 0.1
STOCFOR3 16675 15695 64875 15236 13892 56774 0.65 0.54 3.4

TRUSS 1000 8806 27836 1000 8806 27836 1.00 1.00 0.2
TUFF 333 587 4520 253 476 4032 028 0.32 0.0
VTP-BASE 198 203 908 38 55 168 0.03 0.06 0.0
WOOD1P 244 2594 70215 171 1800 48552 0.87 048 0.6
WOODW 1098 8405 37474 706 5194 22800 0.39 0.66 0.4

Table A.2. The effect of presolving on QP dimensions

Problem Before presolve After presolve int real time
m n |A] |H| m n |A| |H| ratio ratio
AUG2D 1600 3280 6400 3120 1444 2964 5776 2964 093 0.89 0.0

AUG2DC 1600 3280 6400 3280 1600 3280 6400 3280 1.00 1.00 0.1
AUG2DCQP 1600 3280 6400 3280 1600 3280 6400 3280 1.00 1.00 0.0
AUG2DQP 1600 3280 6400 3120 1599 3120 6238 3120 1.03 1.00 0.1
BLOCKQP1 1001 2005 9005 3005 1001 2005 8998 1005 1.00 1.00 0.1
BLOCKQP2 1001 2005 9005 3005 1001 2005 8999 1005 1.00 1.00 0.1
BLOCKQP3 1001 2005 9005 3005 1001 2005 8998 1005 1.00 1.00 0.1
BLOCKQP4 1001 2005 9005 3005 1001 2005 8999 1005 1.00 1.00 0.1
BLOCKQP5 1001 2010 14010 3010 1001 2010 13998 1010 1.00 1.00 0.1
BLOWEYA 1002 2002 5003 4003 1002 2002 5003 3002 0.09 0.05 0.1
BLOWEYB 1002 2002 5003 4003 1002 2002 5003 3002 0.14 0.06 0.1
BLOWEYC 1002 2002 5003 4003 1002 2002 5003 3002 0.59 044 0.1
BQPGABIM 0 50 0 172 0 46 0 153 100 100 0.0

Preprocessing for quadratic programming 127
Table A.2. Continued
Problem Before presolve After presolve int real time
m n |A| |H| m n |A] |H| ratio ratio
BQPGAUSS 0 2003 0 9298 0 2003 0 9298 1.00 1.00 00
CVXQP1 500 1000 1498 3984 500 700 1498 2484 0.80 0.62 0.0
CVXQP2 250 1000 749 3984 250 550 749 1969 121 1259 0.0
CVXQP3 750 1000 2247 3984 750 850 2243 3169 090 0.78 0.0
DTOC3 1998 2999 6993 2997 1997 2996 6986 2996 0.99 1.00 0.0
DUAL1 1 85 85 3558 1 85 85 3558 1.00 1.00 0.0
DUALZ2 1 96 96 4508 1 96 96 4508 1.00 1.00 0.0
DUALC1 215 9 1935 45 11 9 78 45 002 005 00
DUALC2 229 7 1603 28 7 7 39 28 0.00 001 0.0
DUALCS5 278 8 2224 36 3 8 20 36 000 000 0.0
DUALC8 503 8 4024 36 16 8 94 36 000 001 0.0
GMNCASE1 300 175 23940 11803 300 175 23940 11802 0.92 052 0.0
GMNCASE2 1050 175 28546 11803 543 175 24361 11803 030 0.81 0.1
GMNCASE3 1050 175 28546 11803 585 175 24266 11803 0.32 0.82 0.1
GMNCASE4 350 175 27510 15330 0 0 0 0 000 000 0.1
GOULDQP2 999 1999 2997 1997 999 1999 2997 1997 1.00 1.00 0.0
GOULDQP3 999 1999 2997 3995 999 1999 2997 3995 1.00 1.00 0.0
HUESTIS 2 1000 2000 1000 2 1000 1974 1000 1.00 1.00 0.0
JNLBRNG1 0 5625 0 16725 0 5329 0 15841 1.00 1.00 04
KSIP 1001 20 20001 20 1000 20 20000 20 1.00 1.00 0.1
LISWETS8 100 103 400 103 100 103 400 103 098 094 0.0
MOSARQP1 700 2500 3422 2545 700 732 3397 777 0.62 095 0.0
MOSARQP2 600 900 2930 945 600 624 2921 669 090 099 0.0
NCVXBQP1 0 1000 0 3984 0 998 0 3976 1.00 1.00 0.0
NCVXQP1 500 1000 1498 3984 500 711 1498 2539 032 018 0.0
NCVXQP2 500 1000 1498 3984 500 711 1498 2539 074 053 0.0
NCVXQP3 500 1000 1498 3984 500 806 1498 3010 1.80 9.40 0.0
NCVXQP4 250 1000 749 3984 250 550 749 1969 021 020 0.0
NCVXQP5 250 1000 749 3984 250 581 749 2144 021 020 00
NCVXQP6 250 1000 749 3984 250 682 749 2507 0.21 020 0.0
NCVXQP7 750 1000 2247 3984 750 850 2243 3169 1.01 089 0.0
NCVXQP8 750 1000 2247 3984 750 877 2243 3319 099 094 0.0
NCVXQP9 750 1000 2247 3984 750 903 2243 3464 093 096 0.0
NOBNDTOR 0 100 0 240 0 64 0 176 1.00 1.00 0.0
OBSTCLAE 0 5625 0 16425 0 5329 0 15841 1.00 1.00 03
PRIMALL 85 325 5815 324 85 200 5815 199 079 089 0.0
PRIMAL?2 9% 649 8042 648 96 395 8042 394 020 584 00
PRIMALC1 9 230 2070 229 9 230 2070 229 1.00 1.00 0.0
PRIMALC2 7 231 1617 230 7 231 1617 230 1.00 1.00 0.0
PRIMALCS 8 287 2296 286 8 287 2296 286 1.00 1.00 0.0
PRIMALCS 8 520 4160 519 8 520 4160 519 1.00 098 0.0
QPCBLEND 74 83 491 83 71 83 443 8 095 099 0.0
QPCBOEI1 351 384 3485 384 292 370 2303 370 0.62 0.68 0.0
QPCBOEI2 166 143 1196 143 134 143 1137 143 090 094 00
QPCSTAIR 356 467 3856 467 356 385 3666 385 070 1.00 0.0
SOSQP1 1001 2000 4000 3000 0 0 0 0 000 000 0.0
SOSQP2 1001 2000 4000 3000 1001 2000 3000 1000 1.00 1.00 0.2
STATIC3 96 434 496 1014 48 171 176 738 046 045 0.0
STCQP1 2052 4097 13338 26603 0 598 0 2123 0.1
STCQP2 2052 4097 13338 26603 0 763 0 6661 0.00 000 1.4
STNQP1 2052 4097 13338 26603 0 598 0 1952 0.1
STNQP2 2052 4097 13338 26603 0 763 0 6488 0.00 000 0.1
TORSION1 0 5476 0 15984 0 5184 0 15408 1.00 1.00 03
UBH1 6000 9009 24000 3003 3003 6000 14991 3003 030 0.06 1.5
YAO 200 202 600 202 199 200 596 200 098 092 0.0

128 N. Gould, Ph.L. Toint

Appendix B: The effect of presolving on solution time

Table B.1. The effect of presolving on LP solution time

Problem No presolve Presolve (t) Presolve (m) Presolve (1)
time c time c time c time c
25FV47 12.7 12.5 12.7 12.7
80BAU3B 23.8 26.4 26.2 26.0
ADLITTLE 0.0 0.1 0.1 0.7
AFIRO 0.0 0.7 0.0 0.0
AGG 0.4 0.1 0.1 0.1
AGG2 1.9 0.4 0.4 0.4
AGG3 2.2 0.4 0.4 0.4
BANDM 0.5 0.4 04 0.4
BEACONFD 0.2 0.0 0.0 0.0
BLEND 0.1 0.1 0.1 0.1
BNL1 2.8 3.7 34 3.1
BNL2 18.8 10.5 10.2 10.2
BOEING1 0.9 1.0 1.5 1.0
BOEING2 0.3 0.3 0.3 0.3
BORE3D 0.2 0.1 0.1 0.1
BRANDY 0.4 0.4 0.4 0.4
CAPRI 1.1 0.8 0.8 0.8
CYCLE - cond. 11.3 11.6 10.9
CZPROB 2.8 4.5 4.2 4.2
D2Q06C 92.6 53.0 539 53.0
D6CUBE 234 24.3 24.4 24.5
DEGEN?2 1.5 3.1 33 2.6
DEGEN3 12.8 34.1 33.9 34.1
DEGENLPA 0.0 0.0 0.0 0.0
DEGENLPB - inf. 0.0 0.0 0.0
DFL0O01 1584.8 cond. — swap — swap 0.0 swap
E226 0.8 0.9 0.7 0.6
ETAMACRO 1.8 2.1 1.7 2.0
FFFFF800 - inf. 1.6 2.1 1.6
FINNIS 0.7 0.6 0.6 0.6
FIT1D 4.0 4.0 4.0 4.2
FIT1P 1.6 4.6 44 3.8
FIT2D 234.0 233.1 232.8 2322
FIT2P 445 47.4 47.6 47.3
FORPLAN 0.4 0.2 0.6 0.2
GANGES 3.0 0.8 1.3 0.8
GFRD-PNC 0.7 0.5 0.5 0.6
GREENBEA - inf. 9.2 9.4 - stp.
GREENBEB 45.6 cond. 10.1 10.0 11.3
GROW15 0.7 0.7 1.0 0.7
GROW22 1.0 0.9 1.0 0.9
GROW7 0.3 0.2 0.2 0.2
ISRAEL 32 2.2 2.4 22
KB2 0.1 0.1 0.1 0.1
LOTFI 0.2 0.1 0.1 0.1
MAROS 14.3 42 4.0 43
MAROS-R7 122.7 51.1 51.1 52.2
MODEL 0.0 0.0 0.0 0.0
MODSZK1 1.3 1.6 1.2 1.6
NESM 8.8 6.6 6.3 6.4

OET1 0.3 0.3 0.3 0.3

Preprocessing for quadratic programming 129

Table B.1. Continued

Problem No presolve Presolve (t) Presolve (m) Presolve (1)
time c time c time c time c
PEROLD 7.5 6.4 6.2 6.2
PILOT 100.3 55.3 55.3 55.1
PILOT4 4.3 2.2 2.2 2.6
PILOT87 913.2 296.6 297.0 297.9
PILOT-JA 14.3 10.7 10.8 10.8
PILOTNOV — inf. — inf. - inf. — inf.
PILOT-WE 6.8 4.7 4.7 4.3
PT 0.4 0.2 0.2 0.2
QAP12 — inf. — inf. - inf. — inf.
QAPS8 — inf. — inf. - inf. — inf.
READING2 0.1 0.0 0.0 0.0
RECIPELP 0.1 0.1 0.1 0.1
sSC105 0.0 0.1 0.0 0.0
s5C205 0.1 0.1 0.1 0.1
SC50A 0.0 0.0 0.0 0.0
SC50B 0.0 0.0 0.0 0.0
SCAGR25 0.2 0.2 0.2 0.2
SCAGR7 0.0 0.0 0.0 0.0
SCFXM1 0.8 0.8 1.1 0.8
SCFXM2 3.0 33 3.2 33
SCFXM3 6.2 4.5 5.2 5.1
SCORPION 0.1 0.1 0.1 0.1
SCRS8 0.8 0.8 1.1 0.8
SCsD1 0.1 0.1 0.1 0.1
SCSD6 0.2 0.2 0.3 0.2
SCSD8 0.4 0.5 0.5 0.5
SCTAP1 0.5 0.4 04 0.7
SCTAP2 3.6 35 34 2.8
SCTAP3 4.8 4.2 4.2 4.1
SEBA 1.5 0.3 0.3 0.3
SHARE1B 0.2 0.1 0.1 0.1
SHARE2B 0.1 0.1 0.1 0.1
SHELL 0.5 0.5 04 0.4
SHIPO04L 0.6 1.0 1.0 1.0
SHIP04S 0.8 0.6 0.6 0.8
SHIPOSL 1.1 2.0 2.8 2.8
SHIP0O8S 0.7 0.7 0.7 0.7
SHIP12L 2.2 3.8 4.1 3.7
SHIP12S 1.0 0.8 0.9 0.8
SIERRA 1.1 2.0 1.2 1.8
SIPOW1 0.2 0.2 0.2 0.2
SIPOW1M 0.2 0.2 0.2 0.2
SIPOW2 1.8 0.1 0.1 0.1
SIPOW2M 1.8 0.8 0.2 0.2
SIPOW3 0.5 0.4 0.5 0.4
SIPOW4 0.5 0.6 1.2 0.6
SSEBLIN 0.0 0.0 0.0 0.0
STAIR 0.6 0.9 1.3 0.9
STANDATA 0.5 0.3 0.3 0.4
STANDGUB 0.5 0.3 0.9 0.3
STANDMPS 0.8 0.8 0.8 0.8
STOCFOR1 0.1 0.1 0.1 0.1
STOCFOR2 8.3 4.3 4.5 44

STOCFOR3 119.8 56.7 57.0 56.2

130 N. Gould, Ph.L. Toint

Table B.1. Continued

Problem No presolve Presolve (t) Presolve (m) Presolve (1)
time c time c time c time ¢

TRUSS 6.8 7.1 7.6 6.8

TUFF 1.4 0.7 0.7 0.7

VTP-BASE 0.1 0.0 0.0 0.0

WOOD1P 18.2 24.2 24.1 23.6

WOODW 11.3 19.9 19.2 19.5

Table B.2. The effect of presolving on QP solution time

Problem No presolve Presolve (t) Presolve (m) Presolve (1)
time c time c time [¢ time
AUG2D 3.5 33 33 3.6
AUG2DC 3.6 4.3 4.2 3.5
AUG2DCQP 1.9 3.8 3.5 3.5
AUG2DQP 2.7 4.2 4.5 3.7
BLOCKQP1 1.5 1.7 1.7 1.9
BLOCKQP2 1.3 1.4 1.4 1.4
BLOCKQP3 0.7 1.3 0.8 0.8
BLOCKQP4 1.5 1.8 1.6 1.6
BLOCKQP5 14 1.8 1.4 14
BLOWEYA 9.7 14 14 14
BLOWEYB 232.1 14 14 2.4
BLOWEYC 4.8 1.7 2.0 1.6
BQPGABIM 0.1 0.1 0.1 0.0
BQPGAUSS 110.8 115.5 116.6 111.2
CVXQP1 7.0 3.8 4.8 4.2
CVXQP2 391.9 cond. 1.0 1.0 14
CVXQP3 124 10.2 9.5 10.5
DTOC3 9.5 10.1 10.1 9.9
DUAL1 1.5 1.1 1.1 1.1
DUAL?2 10.4 10.9 11.1 10.9
DUALC1 04 0.0 0.0 0.0
DUALC?2 0.3 0.0 0.0 0.0
DUALCS 04 0.0 0.0 0.0
DUALCS 0.9 0.1 0.1 0.1
GMNCASE1L 22.0 3.5 4.3 4.3
GMNCASE?2 6.1 4.0 34 3.8
GMNCASE3 13.7 4.2 35 4.3
GMNCASE4 170.7 0.1 0.1 0.1
GOULDQP2 0.1 0.1 0.2 0.1
GOULDQP3 0.3 0.3 0.3 0.6
HUESTIS - inf. 0.3 0.3 0.3
JNLBRNG1 309.7 319.1 314.6 315.3
KSIP 4.5 4.6 4.8 4.5
LISWETS8 0.1 0.1 0.1 0.2
MOSARQP1 3.7 1.6 1.3 1.3
MOSARQP2 1.8 1.3 1.6 1.3
NCVXBQP1 0.1 0.1 0.1 0.1
NCVXQP1 7.8 4.1 453 cond. 3.1
NCVXQP2 7.3 33 35.0 cond. 1.2
NCVXQP3 12.1 167.3 cond. 35.0 cond. 17.9
NCVXQP4 0.5 0.3 0.3 0.4
NCVXQP5 0.8 0.4 0.4 0.4
NCVXQP6 9.2 2.2 2.7 1.8

NCVXQP7 4.3 cond. 9.6 20.1 20.3

Preprocessing for quadratic programming 131

Table B.2. Continued

Problem No presolve Presolve (t) Presolve (m) Presolve (1)

time c time c time c time
NCVXQP8 20.9 52.6 27.4 32.1
NCVXQP9 543 cond. 127.8 cond. 46.2 17.5
NOBNDTOR 0.0 0.0 0.0 0.0
OBSTCLAE 298.0 301.0 331.2 3104
PRIMALL 0.5 0.5 0.5 0.5
PRIMAL?2 1.1 0.7 0.7 0.7
PRIMALC1 0.2 0.3 0.3 0.3
PRIMALC2 0.3 0.3 0.3 0.3
PRIMALCS 0.1 0.1 0.1 0.1
PRIMALCS - stp. - Stp. - Stp. - stp.
QPCBLEND 0.1 0.1 0.1 0.1
QPCBOEI1 2.2 1.3 2.0 1.3
QPCBOEI2 0.5 0.5 0.5 0.5
QPCSTAIR 3.7 49 4.8 4.8
S0sQP1 0.3 0.0 0.0 0.0
SOSQP2 1.0 0.7 0.6 0.7
STATIC3 — cond. - unb. — unb. — unb.
STCQP1 - inf. 0.8 0.8 0.8
STCQP2 15.7 49.8 48.4 499
STNQP1 - inf. 0.1 0.2 0.2
STNQP2 2.5 0.2 0.2 0.1
TORSION1 2959 298.6 300.1 301.9
UBH1 3.0 2.8 32 2.7
YAO 0.2 0.1 0.1 0.2

References

Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71(2), 221-245 (1995)

Bongartz, L., Conn, A.R., Gould, N.LM., Toint, Ph.L.: CUTE: Constrained and Unconstrained Testing Envi-
ronment. Transactions of the ACM on Math. Softw. 21(1), 123-160 (1995)

Bradley, G.H., Brown, G.G., Graves, G.W.: Structural redundancy in large-scale optimization models. In: M.H.
Karwan et al., (ed.), Redundancy in Mathematical Programming, Springer Verlag, Heidelberg, 1983,
pp. 145-169

Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of mathematical programming problems prior to applying
the simplex algorithm. Math. Program. 8(1), 54-83 (1975)

Conn, A.R., Gould, N.I.LM., Orban, D., Toint, Ph.L.: A primal-dual trust-region algorithm for minimizing a non-
convex function subject to bound and linear equality constraints. Math. Program. 87(2), 215-249
(2000)

Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, Oxford,
England, 1986

Ferris, M.C., Munson, T.S.: Preprocessing complementarity problems. In: M.C. Ferris, O.Mangasarian and
J.S. Pang, (eds.), Complementarity: Applications, Algorithms and Extensions, Kluwer Academic
Publishers, Dordrecht, 2001 pp. 143-164

Fourer, R., Gay, D.M.: Experience with a primal presolve algorithm. In: W.W. Hager, D.W. Hearn and P.M.
Pardalos, (eds.), Large Scale Optimization: State of the Art, Kluwer Academic Publishers, Dordrecht,
1994, pp. 135-154

Gondzio, J.: Presolve analysis of linear programs prior to applying an interior point method. INFORMS J.
Comput. 9(1), 73-91 (1997)

Gould, N.I.LM., Toint, Ph.L.: Numerical methods for large-scale non-convex quadratic programming. In: A.H.
Siddiqi and M.Koc¢vara, (eds.), Trends in Industrial and Applied Mathematics, Kluwer Academic
Publishers, Dordrecht, 2002 pp. 149-179

Gould, N.LM., Orban, D., Toint, Ph.L.: CUTETr, a contrained and unconstrained testing environment, revisited.
Transactions of the ACM on Mathematical Software, to appear (2003a)

132 N. Gould, Ph.L. Toint: Preprocessing for quadratic programming

Gould, N.LM., Orban, D., Toint, Ph.L.: GALAHAD - a library of thread-safe Fortran90 packages for large-
scale nonlinear optimization. Transactions of the ACM on Mathematical Software, to appear (2003b)

Gould, N.ILM., Orban, D., Sartenaer, A., Toint, Ph.L.: Componentwise fast convergence in solving nonlinear
equations. Math. Program., Ser. B 92(3), 481-508 (2002)

Toslovich, I.: Robust reduction of a class of large-scale linear programs. SIAM J. Optim. 12(1), 262-282
(2001)

Tomlin, J.A., Welch, J.S.: Formal optimization of some reduced linear programming problems. Math. Program.
27(2), 232-240 (1983a)

Tomlin, J.A., Welch, J.S.: A pathological case in the reduction of linear programs. Oper. Res. Lett. 2, 53-57
(1983b)

