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Summary. A non-monotone variant of the trust-region SQP-filter algorithm an­
alyzed in Fletcher et al (SIAM J. Opt. 13(3), 2002, pp. 653-659) is defined, that 
directly uses the dominated area of the filter as an acceptability criterion for trial 
points. It is proved that, under reasonable assumptions and for all possible choices 
of the starting point, the algorithm generates at least a subsequence converging to 
a first-order critical point. 

1 Introduction 

Our objective is to define and analyze a new algorithm for solving constrained 
minimization problems where both the objective function and the constraints 
are smooth, that is 

minimize f{x) 
subject to cs{x) = 0 (1) 

cx{x) > 0, 

where / is a twice continuously differentiable real valued function of the 
variables x e ^'^ and cs{x) and cx{x) are twice continuously differen­
tiable functions from 3?"̂  into 5R"̂  and from 3?̂  into 3? ,̂ respectively. Let 
c(x)^ = {cs{x)^ cx{x)^). Note that no convexity assumption is made. 

The algorithms that we discuss belongs is a trust-region filter method^ and 
belong as such to a class of algorithms introduced by [FL02]. A global con­
vergence theory for this class is proposed in [FLT98], in which the objective 
function is locally approximated by a linear function, leading, at each itera­
tion, to the (exact) solution of a linear program. Similar results are shown in 
[FLT02], where the approximation of the objective function is quadratic, lead­
ing to a Sequential Quadratic Programming (SQP) method. However, this is 
accomplished at the (very high) cost of finding a global minimizer of the pos­
sibly nonconvex quadratic programming subproblem. This latter requirement 
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is relaxed in [FGLTW02], where the SQP step is decomposed in "normal" and 
"tangential" components. 

The main purpose of the current paper, a companion of [FGLTW02], is 
to analyze an algorithm where the filter acceptance criterion for new iterates 
is relaxed to allow dominated iterates to be accepted in some cases. This is 
potentially important as it is known that SQP method can generate such 
iterates in their asymptotic fast convergence phase. The theory developed 
here therefore provides a possible convergence framework for a filter method 
with quadratic convergence properties without the need to introduce second-
order corrections. Results along this line are already known for linesearch-filter 
methods [WBOl], and for another variant of trust-region-filter methods where 
the definition of filter entries is modified [Ulb04]. Our objective is to intro­
duce a framework suitable for trust-region-filter methods using the original 
definition of the filter entries. Moreover, the new theory is that it no longer 
needs the notion of a "margin" around the filter, a device which is common 
to all theoretical approaches of the filter method so far. 

2 A Non-monotone Filter Algorithm 

As indicated above, the algorithm that we are about to describe is of the SQP 
type. At a given iterate x^, Newton's method is implicitly applied to solve (a 
local version of) the first-order necessary optimality conditions by solving the 
quadratic programming subproblem QP(xfc) given by 

minimize fk + {9k, s) + ^{s, Hks) 
subject to C£{xk) + A£{xk)s = 0 (2) 

cxixk) + Ax{xk)s > 0, 

where fk = f{xk), gk = 9{xk) = ^xf{xk), where A£{xk) and Aj{xk) are 
the Jacobians of the constraint functions cg and cj at Xk and where Hk is a 
symmetric matrix. We will not immediately be concerned about how Hk is 
obtained, but we will return to this point in Section 3. The solution of QP(x'fc) 
then yields a step s^. If Sk = 0, then Xk is first-order critical for problem (1). 

2.1 The composite SQP step 

The step Sk is typically computed by solving, possibly approximately, a variant 
of (2). In the trust-region approach, one takes into account the fact that (2) 
only approximates our original problem locally: the step Sk is thus restricted 
in norm to ensure that Xk + Sk remains in a trust-region centred at Xk, where 
we behave this approximation to be adequate. The subproblem QP(xfe) is thus 
replaced by its TRQP(a;fc,Z\fc) variant given by 
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minimize mk(xk + s)

subject to cE(xk) +AE(xk)s = 0,

cI(xk) +AI(xk)s ≥ 0,

and ‖s‖ ≤ ∆k,

(3)

for some (positive) value of the trust-region radius ∆k, where we have defined

mk(xk + s) = fk + 〈gk, s〉+ 1
2 〈s,Hks〉, (4)

and where ‖ · ‖ denotes the Euclidean norm. This latter choice is purely for ease of

exposition. We could equally use a family of iteration dependent norms ‖ · ‖k, so long

as we require that all members of the family are uniformly equivalent to the Euclidean

norm.

In accordance with the ideas pionneered by Vardi (1985), Byrd, Schnabel and

Shultz (1987) and Omojokun (1989), and also with Fletcher, Gould, Leyffer, Toint

and Wächter (2002a), our algorithm decomposes the step sk into the sum of two dis-

tinct components, a normal step nk, such that xk + nk satisfies the linear constraints

of TRQP(xk,∆k) within the trust region, and a tangential step tk, whose purpose is

to obtain reduction of the objective function’s model while continuing to satisfy those

constraints. More formally, we write

sk = nk + tk (5)

and assume that

cE(xk) +AE(xk)nk = 0, cI(xk) +AI(xk)nk ≥ 0, (6)

‖sk‖ ≤ ∆k, (7)

and

cE(xk) +AE(xk)sk = 0, cI(xk) +AI(xk)sk ≥ 0. (8)

Of course, this is a strong assumption, since in particular (6) or (7)/(8) may not have

a solution. We shall return to this possibility shortly.

Given our assumption, there are many ways to compute nk and tk. For instance,

we could compute nk from

nk = Pk[xk]− xk, (9)

where Pk is the orthogonal projector onto the feasible set of QP(xk). No specific choice

for nk is made, but one instead assumes that nk exists when the maximum violation

of the nonlinear constraints at the k-th iterate θk
def
= θ(xk), with

θ(x) = max

[

0,max
i∈E
|ci(x)|,max

i∈I
−ci(x)

]

, (10)

is sufficiently small, and that nk is then reasonably scaled with respect to the values of

the constraints. In other words, we assume, exactly as in Fletcher et al. (2002a), that

nk exists and

‖nk‖ ≤ κuscθk, whenever θk ≤ δn, (11)
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for some constants κusc > 0 and δn > 0. This assumption is also used by Dennis, El-

Alem and Maciel (1997) and Dennis and Vicente (1997) in the context of problemsonly

involvong equality constraints. It can be shown not to impose conditions on the con-

straints or the normal step itself that are unduly restrictive (see Fletcher et al. (2002a)

for a discussion).

Having defined the normal step, we are in position to use it if it falls within the

trust-region, that is if ‖nk‖ ≤ ∆k. In this case, we write

xN

k = xk + nk, (12)

and observe that nk satisfies the constraints of TRQP(xk,∆k) and thus also of QP(xk).

It is crucial to note, at this stage, that such an nk may fail to exist because the

constraints of QP(xk) may be incompatible, in which case Pk is undefined, or because

all feasible points for QP (xk) may lie outside the trust region.

Let us continue to consider the case where this problem does not arise, and a normal

step nk has been found with ‖nk‖ ≤ ∆k. We then aim to find a tangential step tk,

starting from xN

k and satisfying (7) and (8), whose objective is to decrease the value of

the objective function. This is achieved by computing a step that produces a sufficient

decrease in mk, which is to say that we wish mk(x
N

k )−mk(xk + sk) to be “sufficiently

large”. Of course, this is only possible if the maximum permitted size of tk is not

too small, which is to say that xN

k is not too close to the trust-region boundary. We

formalize this condition by strengthening our requirement that ‖nk‖ ≤ ∆k so that

‖nk‖ ≤ κ∆∆kmin[1, κµ∆
µk
k ], (13)

for some κ∆ ∈ (0, 1], some κµ > 0 and some µk ∈ [0, 1). If condition (13) does not

hold, we assume, as in Fletcher et al. (2002a), that the computation of tk is unlikely

to produce a satisfactory decrease in mk, and proceed just as if the feasible set of

TRQP(xk,∆k) were empty. If nk can be computed and (13) holds, TRQP(xk,∆k) is

said to be compatible . In this case, a sufficient model decrease seems possible. We

formalize this notion in the form of a familiar Cauchy-point condition, and, recalling

that the feasible set of QP(xk) is convex, we introduce the first-order criticality measure

χk = | min
AE(xk)t=0

cI(xk)+AI(xk)(nk+t)≥0
‖t‖≤1

〈gk +Hknk, t〉| (14)

(see Conn, Gould, Sartenaer and Toint, 1993). Note that this function is zero if xN

k is

a first-order critical point of the linearized “tangential” problem

minimize 〈gk +Hknk, t〉+ 1
2 〈Hkt, t〉

subject to AE(xk)t = 0

cI(xk) +AI(xk)(nk + t) ≥ 0,

(15)

which is, up to the constant term 1
2 〈nk, Hknk〉, equivalent to QP(xk) with s = nk + t.

The sufficient decrease condition then consists in assuming that there exists a constant
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κtmd > 0 such that

mk(x
N

k )−mk(x
N

k + tk) ≥ κtmdχkmin

[

χk
βk
,∆k

]

, (16)

whenever TRQP(xk,∆k) is compatible, where βk = 1 + ‖Hk‖. We know from Toint

(1988) and Conn et al. (1993) that this condition holds if the model reduction exceeds

that which would be obtained at the generalized Cauchy point, that is the point re-

sulting from a backtracking curvilinear search along the projected gradient path from

xN

k , that is

xk(τ) = Pk[x
N

k − τ∇xmk(x
N

k )].

This technique therefore provides an implementable algorithm for computing a step

that satisfies (16), but, of course, a further reduction of mk is often desirable if fast

convergence is sought. Also note that the minimization problem of the right-hand side

of (14) reduces to a linear programming problem if we choose to use a polyhedral norm

in its definition at iteration k. However, we recognise that (16) may be difficult to

verify in practice, since it may be expensive to compute xN

k and Pk when the dimension

of the problem is large.

2.2 The restoration procedure

If TRQP(xk,∆k) is not compatible for µ, that is when the feasible set determined by

the constraints of QP(xk) is empty, or the freedom left to reduce mk within the trust

region is too small in the sense that (13) fails, we must consider an alternative. Observe

that, if θ(xk) is sufficiently small and the true nonlinear constraints are locally com-

patible, the linearized constraints should also be compatible, since they approximate

the nonlinear constraints (locally) correctly. Furthermore, the feasible region for the

linearized constraints should then be close enough to xk for there to be some room

to reduce mk, at least if ∆k is large enough. If the nonlinear constraints are locally

incompatible, we have to find a neighbourhood where this is not the case, since the

problem (1) does not make sense in the current one. As in Fletcher et al. (2002a), we

rely on a restoration procedure. The aim of this procedure is to produce a new point

xk+rk that satisfies two conditions: we require TRQP(xk+rk,∆k+1) to be compatible

for some ∆k+1 > 0, and also require that xk + rk be acceptable, in the sense that we

discuss in the Section 2.3.3 (precisely, we require thate either (21) or (22) holds for

such an x+k ). In what follows, we will denote

R def
= {k | nk does not satisfy (11) or ‖nk‖ > κ∆∆kmin[1, κµ∆

µ
k ]},

the set of restoration iterations.

The idea of the restoration procedure is to (approximately) solve

min
x∈IRn

θ(x) (17)

starting from xk, the current iterate. This is a non-smooth problem, but there exist

methods, possibly of trust-region type (such as that suggested by Yuan, 1994), which
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can be successfully applied to solve it. Thus we will not describe the restoration

procedure in detail. Note that we have chosen here to reduce the infinity norm of the

constraint violation, but we could equally well consider other norms, such as ℓ1 or ℓ2,

in which case the methods of Fletcher and Leyffer (1998) or of El-Hallabi and Tapia

(1995) and Dennis, El-Alem and Williamson (1999) can respectively be considered.

Of course, this technique only guarantees convergence to a first-order critical point of

the chosen measure of constraint violation, which means that, in fact, the restoration

procedure may fail as this critical point may not be feasible for the constraints of (1).

However, even in this case, the result of the procedure is of interest because it typically

produces a local minimizer of θ(x), or of whatever other measure of constraint violation

we choose for the restoration, yielding a point of locally-least infeasibility. There seems

to be no easy way to circumvent this drawback, as it is known that finding a feasible

point or proving that no such point exists is a global optimization problem and can

be as difficult as the optimization problem (1) itself. One therefore has to accept two

possible outcomes of the restoration procedure: either the procedure fails in that it

does not produce a sequence of iterates converging to feasibility, or a point xk + rk is

produced such that θ(xk + rk) is as small as desired.

2.3 The filter as a criterion to accept trial points

Unfortunately, because the SQP iteration may only be locally convergent, the step sk

or rk may not always be very useful. Thus, having computed a step sk or rk from our

current iterate xk, we need to decide whether the trial point x+k , defined by

x+k
def
=

{

xk + rk if k ∈ R,
xk + sk otherwise

(18)

is any better than xk as an approximate solution to our original problem (1). If we

decide that this is the case, we say that iteration k is successfull and choose x+k as our

next iterate. Let us denote by S the set of (indices of) all successful iterations, that is

S = {k | xk+1 = x+k }.

We will discuss the details of precisely when we accept x+k as our next iterate in

Section 2.3.3, but note that an important ingredient in the process is the notion of a

filter, a notion itself based on that of dominance.

We say that a point x1 dominates a point x2 whenever

θ(x1) ≤ θ(x2) and f(x1) ≤ f(x2).

Thus, if iterate xk dominates iterate xj , the latter is unlikely to be of real interest to

us since xk is at least as good as xj on account of both feasibility and optimality. All

we need to do now is to remember iterates that are not dominated by other iterates

using a structure called a filter. A filter is a list F of pairs of the form (θi, fi) such

that either

θi < θj or fi < fj
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for i 6= j. Fletcher et al. (2002a) propose to accept a new trial iterate xk + sk only

if it is not dominated by any other iterate in the filter and xk. In the vocabulary

of multi-criteria optimization, this amounts to building elements of the efficient fron-

tier associated with the bi-criteria problem of reducing infeasibility and the objective

function value. We may describe this concept by associating with each iterate xk its

(θ, f)-pair (θk, fk) and might choose to accept xk+sk only if its (θ, f)-pair does not lie,

in the two-dimensional space spanned by constraint violation and objective function

value, above and on the right of a previously accepted pair. If we define

D(F) = {(θ, f) | θ > θj and f > fj for some j ∈ F}, (19)

the part of the (θ, f)-space that is dominated by the pairs in the filter, this amounts to

say that x+k could be accepted if (θ(x+k ), f(x
+
k )) 6∈ D(Fk), where Fk denotes the filter

at iteration k.

2.3.1 The contribution of a trial point to the filter

While the idea of not accepting dominated trial points is simple and elegant, it needs

to be refined a little in order to provide an effective algorithmic tool. In particular, we

may not wish to accept a new point x+k if its (θ, f)-pair

(θ+k , f
+
k )

def
= (θ(x+k ), f(x

+
k ))

is arbitrarily close to being dominated by another point already in the filter.

Fletcher et al. (2002a), as all other theoretical analysis of the filter that we know

of, set a small “margin” around the border of D(Fk) in which trial points are also

rejected. We follow here a different idea and define, for any (θ, f)-pair, an area that

represents its contribution to the area of D(Fk). For this purpose, we partition the

right half-plane [0,+∞] × [−∞,+∞] into four different regions (see Figure 1). If we

define D(Fk)C to be the complement of D(Fk) in the right half-plane,

θFkmin
def
= min

j∈Fk
θj , θFkmax

def
= max

j∈Fk
θj ,

and

fFk
min

def
= min

j∈Fk
fj fFk

max
def
= max

j∈Fk
fj ,

these four parts are

1. the dominated part of the filter, D(Fk).

2. the undominated part of lower left (south-west) corner of the half plane,

SW (Fk) def
= D(Fk)C ∩ [0, θFkmax]× [−∞, fFk

max],

3. the undominated upper left (north-west) corner,

NW (Fk) def
= [0, θFkmin)× (fFk

max,+∞],
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✻

✲

s

s

s

s

D(Fk)

NW (Fk)

SW (Fk)

SE(Fk)

0

f(x)

θ(x)

θFkmin θFkmax

fFk
max

fFk
min

Figure 1: The partition of the right half-plane for a filter Fk containing four (θ, f)

pairs.

4. the undominated lower right (south-east) corner,

SE(Fk) def
= (θFkmax,+∞]× [−∞, fFk

min).

Consider first a trial iterate x+k with its associated (θ, f)-pair (θ+k , f
+
k ) with θ+k > 0.

If the filter is empty (Fk = ∅), then we measure its contribution to the area of the filter

by the simple formula

α(x+k ,Fk)
def
= κ2F

for some constant κF > 0. If the filter already contains some past iterates, we measure

the contribution of x+k to the area of the filter by

α(x+k ,Fk)
def
= area

(

D(Fk)C∩[θ+k , θFkmax+κF]×[f+
k , f

Fk
max+κF]

)

if (θ+k , f
+
k ) ∈ SW (Fk)),

by

α(x+k ,Fk)
def
= κF(θ

Fk
min − θ+k ) if (θ+k , f

+
k ) ∈ NW (Fk)),

by

α(x+k ,Fk)
def
= κF(f

Fk
min − f+

k ) if (θ+k , f
+
k ) ∈ SE(Fk)),

and by

α(x+k ,Fk)
def
= −area

(

D(Fk) ∩ [θ+k − θPkmin]× [f+
k − fPk

min]

)

, if (θ+k , f
+
k ) ∈ D(Fk)),
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✻

✲

s

s

s

s

(θ+k , f
+
k )

q

✻

❄

κF

(θ+k , f
+
k )

q

✲✛ κF

(θ+k , f
+
k ) q

(θ+k , f
+
k )

q

fPk
max

fPk
min

0

f(x)

θ(x)

θFkmin θFkmax θFkmax + κF

fFk
max + κF

fFk
max

fFk
min

Figure 2: The contributions of four (θ+k , f
+
k ) pairs (in D(Fk), SW (Fk), NW (Fk) and

SE(Fk)) to the area of the filter. Horizontal stripes indicate a positive contribution

and vertical stripes a negative one.

where

Pk def
= {(θj , fj) ∈ Fk | θj < θ+k and fj < f+

k },

(the set of filter pairs that dominate (θ+k , f
+
k )), and

θPkmin
def
= min

j∈Pk
θj , θPkmax

def
= max

j∈Pk
θj .

Figure 2 illustrate the corresponding areas in the filter for four possible (θ+k , f
+
k ) pairs

(in D(Fk), SW (Fk), NW (Fk) and SE(Fk)) to the area of the filter. Horizontally

dashed surfaces indicate a positive contribution and vertically dashed ones a negative

contribution. Note that α(x,F) is a continuous function of (θ(x), f(x)), and thus of

x, for a given filter F . Furthermore, α(x,F) is identically zero if (θ(x), f(x)) is on the

boundary of the dominated region D(F). Also note that, although seemingly compli-

cated, the value of α(x,F) is not difficult to compute, since its calculation requires, in

the worst case, us to consider all the points currently in the filter only once.

2.3.2 Updating the filter

The procedure to update the filter for a particular (θ, f) pair is extremely simple. If

(θk, fk) = (θ(xk), f(xk)) does not belong to D(Fk) (i.e. if xk is not dominated), then

Fk+1 ← Fk ∪ (θk, fk),
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✻

✲

s

⊗

⊗

s

s

s q
(θk, fk)

0

fk

θk

(θPkmin, fk)

(θk, f
Pk
min)

Figure 3: The filter Fk+1 after including the dominated pair (θk, fk) into Fk.

while if (θk, fk) ∈ D(Fk) (if xk is dominated),

Fk+1 ← (Fk \ Pk) ∪ (θPkmin, fk) ∪ (θk, f
Pk
min),

where Pk is now the subset of pairs in Fk that dominate (θk, fk). This last situation is

illustrated by Figure 3, which shows the filter resulting from the operation of including

the pair (θk, fk) belonging to D(Fk) (that associated with the vertically shaded “incre-

ment” in the filter area of Figure 2) in the filter. The two points in Pk that have been

removed are marked with crossed circles and their associated dominated orthants are

indicated by dotted lines.

Observe that it may happen that the number of points in the filter decreases when

the set of dominating points Pk contains more than two filter pairs. Moreover, the pair

for which the filter is updated is not always itself included in the filter (as shown in

Figure 3).

2.3.3 Acceptability of potential iterates

We now return to the question of deciding whether or not a trial point x+k is acceptable

for the filter. We will insist that this is a necessary condition for the iteration k to be

successful in the sense that xk+1 = x+k , i.e. the algorithm changes its current iterate to

the trial point. Note that all restoration iterations are successful (R ⊆ S). Note also

that (except for x0) all iterates are produced by successful iterations : if we consider
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an iterate xk, there must exists a predecessor iteration of index p(k) ∈ S such that

x+
p(k) = xp(k)+1 = xk. (20)

Observe that we do not always have that p(k) = k − 1 since not all iterations need

being successful.

A monotone version of our method (rather similar to that developped in Fletcher

et al., 2002a, but using α(x,F) rather that a margin around the filter) would be to

accept x+k whenever this trial point results in an sufficient increase in the dominated

area of the filter, i.e. D(Fk). This is to say that x+k would be acceptable for the filter

whenever

αk ≥ γF(θ+k )2, (21)

where αk
def
= α(x+k ,Fk) and where γF ∈ (0, 1) is a constant. The non-monotone version

that we analyse below replaces this condition by the weaker requirement that

k
∑

j=r(k)+1

j∈U

αp(j) + αk ≥ γF









k
∑

j=r(k)+1

j∈U

θ2j + (θ+k )
2









(22)

where αq
def
= α(x+q ,Fq) (and thus αp(q) = α(xq ,Fp(q))), where

U = {k | xk the filter is updated for(θk, fk)},

and where r(k) ≤ k is some past reference iteration such that r(k) ∈ U . Note that

condition (22) may equivalently be written in the more symmetric form

k
∑

j=r(k)+1

j∈U

αp(j) + αk ≥ γF









k
∑

j=r(k)+1

j∈U

(θ+
p(j))

2 + (θ+k )
2









because of (20).

The reader may notice that condition (22) is reminiscent of the condition for non-

monotone trust-region algorithms developed in Toint (1997) (see also Chapter 10.1 of

Conn, Gould and Toint, 2000). It requires that the average contribution to the filter

area of the last points included in the filter and x+k together to be globally (sufficiently)

positive, but makes it possible to accept x+k even though it may be dominated (i.e. lie

in D(Fk)).
However, if x+k provides a clear monotonic improvement, in the sense that (21)

holds, we are also prepared to accept it. Thus, x+k will be called acceptable at iteration

k if either (21) or (22) holds. We will denote

A def
= {k ∈ S | (22) holds} (23)

Observe also that we could replace θ2k by min[θσk , κθ] in (21) and (22), where σ and

κθ are strictly positive constants. This variant may be more numerically sensible, and

does not affect the theory developed below.
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2.4 The non-monotone Algorithm

We are now ready to define our algorithm formally as Algorithm 2.1. A flow-chart of

the algorithm is given as an appendix.

Algorithm 2.1: Non-monotone Filter Algorithm

Step 0: Initialization. Let an initial point x0, an initial trust-region radius

∆0 > 0 and an initial symmetric matrix H0 be given, as well as constants

0 < γ0 < γ1 ≤ 1 ≤ γ2, 0 < η1 ≤ η2 < 1, γF ∈ (0, 1), κθ ∈ (0, 1), κ∆ ∈ (0, 1],

κµ > 0, µ ∈ (0, 1), ψ > 1/(1 + µ) and κtmd ∈ (0, 1]. Compute f(x0) and

c(x0). Set F = ∅ and k = 0.

Step 1: Test for optimality. If θk = χk = 0, stop.

Step 2: Ensure compatibility. Attempt to compute a step nk. If TRQP

(xk,∆k) is compatible, go to Step 3. Otherwise, update the filter for (θk, fk)

and compute a restoration step rk for which TRQP(xk + rk,∆k+1) is com-

patible for some ∆k+1 > 0, and x+k = xk + rk is acceptable. If this proves

impossible, stop. Otherwise, set xk+1 = x+k and go to Step 7.

Step 3: Determine a trial step. Compute a step tk, set x
+
k = xk + nk + tk,

and evaluate c(x+k ) and f(x
+
k ).

Step 4: Test acceptability of the trial point. If x+k is not acceptable, again

set xk+1 = xk, choose ∆k+1 ∈ [γ0∆k, γ1∆k], set nk+1 = nk, and go to Step 7.

If

mk(xk)−mk(x
+
k ) < κθθ

ψ
k , (24)

then update the filter for (θk, fk) and go to Step 6.

Step 5: Test predicted vs. achieved reduction. If

ρk
def
=

f(xk)− f(x+k )
mk(xk)−mk(x

+
k )

< η1, (25)

set xk+1 = xk, choose ∆k+1 ∈ [γ0∆k, γ1∆k], set nk+1 = nk and go to Step 7.

Step 6: Move to the new iterate. Set xk+1 = x+k and choose ∆k+1 such that

∆k+1 ∈ [∆k, γ2∆k] if ρk ≥ η2 and (24) fails.

Step 7: Update the Hessian approximation. Determine Hk+1. Increment k

by one and go to Step 1.

As in Fletcher and Leyffer (2002, 1998), one may choose ψ = 2 (Note that the

choice ψ = 1 is always possible because µ > 0). Reasonable values for the constants
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might then be

γ0 = 0.1, γ1 = 0.5, γ2 = 2, η1 = 0.01, η2 = 0.9,

γF = 10−4, κ∆ = 0.7, κµ = 100, µ = 0.01, κθ = 10−4, and κtmd = 0.01.

but it is too early to know if these are even close to the best possible choices.

For the restoration procedure in Step 2 to succeed, we have to evaluate whether

TRQP(xk + rk,∆k+1) is compatible for a suitable value of ∆k+1. This requires that a

suitable normal step be computed which successfully passes the test (13). Of course,

once this is achieved, this normal step may be reused at iteration k+1. Thus we shall

require the normal step calculated to verify compatibility of TRQP(xk + rk,∆k+1)

should actually be used as nk+1. Also note that the restoration procedure cannot be

applied on two successive iterations, since the iterate xk + rk produced by the first of

these iterations leads to a compatible TRQP(xk+1,∆k+1) and is acceptable.

As it stands, the algorithm is not specific about how to choose ∆k+1 during a

restoration iteration. On one hand, there is an advantage to choosing a large ∆k+1,

since this allows a large step and one hopes good progress. On the other, it may be

unwise to choose it to be too large, as this may possibly result in a large number of

unsuccessful iterations, during which the radius is reduced, before the algorithm can

make any progress. A possible choice might be to restart from the radius obtained

during the restoration iteration itself, if it uses a trust-region method. Reasonable

alternatives would be to use the average radius observed during past successful itera-

tions, or to apply the internal doubling strategy of Byrd et al. (1987) to increase the

new radius, or even to consider the technique described by Sartenaer (1997). However,

we recognize that numerical experience with the algorithm is too limited at this stage

to make definite recommendations.

The role of condition (24) may be interpreted as follows. If this condition holds,

then one may think that the constraint violation is significant and that one should aim

to improve on this situation in the future, by inserting the current point in the filter.

Fletcher, Leyffer and Toint (1998) use the term of “θ-step” in such circumstances, to

indicate that the main preoccupation is to reduce constraint violation. On the other

hand, if condition (24) fails, then the reduction in the objective function predicted

by the model is more significant than the current constraint violation and it is thus

appealing to let the algorithm behave as if it were unconstrained. Fletcher and Leyffer

(2002) use the term of “f -step” to denote the step generated, in order to reflect the

dominant role of the objective function f . In this case, it is important that the predicted

decrease in the model is realized by the actual decrease in the function, which is why

we then perform the test (25). In particular, if the iterate xk is feasible, then (11)

implies that xk = xN

k and we obtain that

κθθ
ψ
k = 0 ≤ mk(x

N

k )−mk(x
+
k ) = mk(xk)−mk(x

+
k ). (26)

As a consequence, the filter mechanism is irrelevant if all iterates are feasible, and

the algorithm reduces to a traditional unconstrained trust-region method. Another
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consequence of (26) is that no feasible iterate is ever included in the filter, which

is crucial in allowing finite termination of the restoration procedure, as explained in

Fletcher et al. (2002a). Note that the argument may fail and a restoration step may

not terminate in a finite number of iterations if we do not assume the existence of

the normal step when the constraint violation is small enough, even if this violation

converges to zero (see Fletcher, Leyffer and Toint, 1998, for an example).

Notice also that (24) ensures that the denominator of ρk in (25) will be strictly

positive whenever θk is. If θk = 0, then xk = xN

k , and the denominator of (25) will be

strictly positive unless xk is a first-order critical point because of (16).

The reader may have observed that Step 6 allows a relatively wide choice of the

new trust-region radius ∆k+1. While the stated conditions appear to be sufficient

for the theory developed below, one must obviously be more specific in practice. For

instance, one may wish to distinguish, at this point in the algorithm, the cases where

(24) fails or holds. If (24) holds, the main effect of the current iteration is not to

reduce the model (which makes the value of ρk essentially irrelevant), but rather to

reduce the constraint violation (which is taken care of by inserting the current iterate

in the filter at Step 4). In this case, Step 6 imposes no further restriction on ∆k+1. In

practice, it may be reasonable not to reduce the trust-region radius, because this might

cause too small steps towards feasibility or an unnecessary restoration phase. However,

there is no compelling reason to increase the radius either, given the compatibility of

TRQP(xk,∆k). A reasonable strategy might then be to choose ∆k+1 = ∆k. If, on the

other hand, (24) fails, the emphasis of the iteration is then on reducing the objective

function, a case akin to unconstrained minimization. Thus a more detailed rule of the

type

∆k+1 ∈
{

[γ1∆k, γ2∆k] if ρk ∈ [η1, η2),

[∆k, γ2∆k] if ρk ≥ η2.

seems reasonable in these circumstances.

Finally, observe that the mechanism of the algorithm imposes that

U ⊆ S, (27)

i.e. that iterates are included in the filter only at successful iterations.

3 Convergence to First-Order Critical Points

We now prove that our non-monotone algorithm generates a globally convergent se-

quence of iterates. In the following analysis, we concentrate on the case that the

restoration iteration always succeeds. If this is not the case, then it usually follows

that the restoration phase has converged to an approximate solution of the feasibility

problem (17) and we can conclude that (1) is locally inconsistent.

In order to obtain our global convergence result, we will use the assumptions

AS1: f and the constraint functions cE and cI are twice continuously differentiable;
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AS2: there exists κumh > 1 such that

‖Hk‖ ≤ κumh − 1 for all k,

AS3: the iterates {xk} remain in a closed, bounded domain X ⊂ IRn.

If, for example, Hk is chosen as the Hessian of the Lagrangian function

ℓ(x, y) = f(x) + 〈yE , cE(x)〉 + 〈yI , cI(x)〉

at xk, in that

Hk = ∇xxf(xk) +
∑

i∈E∪I

[yk]i∇xxci(xk), (1)

where [yk]i denotes the i-th component of the vector of Lagrange multipliers yTk =

(yTE,k yTI,k), then we see from AS1 and AS3 that AS2 is satisfied when these multipliers

remain bounded. The same is true if the Hessian matrices in (1) are replaced by

bounded approximations.

A first immediate consequence of AS1–AS3 is that there exists a constant κubh > 1

such that, for all k,

|f(x+k )−mk(x
+
k )| ≤ κubh∆

2
k. (2)

A proof of this property, based on Taylor expansion, may be found, for instance, in

Toint (1988) or on p. 133 of Conn et al. (2000). A second important consequence of

our assumptions is that AS1 and AS3 together directly ensure that, for all k,

fmin ≤ f(xk) ≤ fmax and 0 ≤ θk ≤ θmax (3)

for some constants fmin ≤ fmax and θmax > 0. Thus the part of the (θ, f)-space in

which the (θ, f)-pairs associated with the filter iterates lie is restricted to the rectangle

[0, θmax]× [fmin,∞].

We also note the following simple consequence of (11) and AS3.

Lemma 3.1 Suppose that Algorithm 2.1 is applied to problem (1). Suppose also

that (11) and AS3 hold, and that

θk ≤ δn.

Then there exists a constant κlsc > 0 independent of k such that

κlscθk ≤ ‖nk‖. (4)

Proof. See Lemma 3.1 of Fletcher et al. (2002a). ✷
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Our assumptions and the definition of χk in (14) also ensure that θk and χk can be

used (together) to measure criticality for problem (1).

Lemma 3.2 Suppose that Algorithm 2.1 is applied to problem (1). and that finite

termination does not occur. Suppose also that AS1 and AS3 hold, and that there

exists a subsequence {ki} 6⊆ R such that

lim
i→∞

χki = 0 and lim
i→∞

θki = 0. (5)

Then every limit point of the subsequence {xki} is a first-order critical point for

problem (1).

Proof. See Lemma 3.2 of Fletcher et al. (2002a). ✷

We start our analysis by examining the impact of our non-monotone acceptance

criteria (21) and (22). Once a trial point as accepted as a new iterate, it must be

because it provide some improvement, compared to either a past reference iterate

(using (22)), or to the previous iterate (using (21)). We formalize this notion by saying

that iterate xk = xp(k)+1 improves on iterate xi(k), where

i(k) = r(p(k)) if p(k) ∈ A,

that is if xk is accepted at iteration p(k) using (22), and

i(k) = p(k) if p(k) 6∈ A, (6)

that is if xk is accepted at iteration p(k) using (21). Now consider any iterate xk. This

iterate improved on xi(k), which was itself accepted because it improved on xi(i(k)),

and so on, back to the stage where x0 is reached by this backwards referencing process.

Hence we may construct, for each k, a chain of successful iterations indexed by Ck =

{ℓ1, ℓ1, ℓ2, . . . , ℓq} such that

ℓ1 = 0, ℓq = k and xℓj = xi(ℓj+1) for j = 1, . . . , q − 1.

We start by proving the following useful lemma.

Lemma 3.3 Suppose that Algorithm 2.1 is applied to problem (1). Then, for

each k,

area(D(Fk)) ≥ γF
k−1
∑

i=0

j∈U

θ2i
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Proof. Consider now the backward referencing chain from iteration k − 1, Ck−1,

and any ℓj (j > 0) in this chain. Observe that, if p(ℓj) ∈ A, then (22) implies that

i(ℓj) = r(p(ℓj)) = ℓj−1 and that

ℓj
∑

i=ℓj−1+1

i∈U

αp(j) ≥ γF
ℓj
∑

i=ℓj−1+1

i∈U

θ2i (7)

If now p(ℓj) 6∈ A, then ℓj−1 = p(ℓj) and thus

{ℓj−1 + 1, . . . , ℓj} ∩ U ⊆ {ℓj−1 + 1, . . . , ℓj} ∩ S = {ℓj},

where we have used (27). Moreover, (21) then implies that αp(ℓj) ≥ γFθ
2
ℓj
, so that

(7) holds again in this case. Combining these inequalities with the inequality

area(D(Fk)) ≥
k−1
∑

i=0

i∈U

αp(i) =

q
∑

j=0









ℓj
∑

i=ℓj−1+1

i∈U

αp(i)









then gives the desired result. ✷

We now consider what happens when the filter is updated an infinite number of

times.

Lemma 3.4 Suppose that Algorithm 2.1 is applied to problem (1). Suppose also

that AS1 and AS3 hold and that |U| =∞. Then

lim
k→∞

k∈U

θk = 0.

Proof. Suppose, for the purpose of obtaining a contradiction, that there exists

an infinite subsequence {ki} ⊆ U such that θki ≥ ǫ for all i and for some ǫ > 0.

Applying now Lemma 3.3, we deduce that

area(D(Fki+1)) ≥ iγFǫ2.

However, (3) implies that, for any k, area(D(Fk)) is bounded above by a constant

κmax
F ≥ 0 independent of k. Hence we obtain that

i ≤ κmax
F

γF ǫ2
,

and i must also be finite. This contradicts the fact that the subsequence {ki} is

infinite. Hence this latter assumption is impossible and the conclusion follows. ✷
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We next examine the size of the constraint violation before and after an iteration where

restoration did not occur.

Lemma 3.5 Suppose that Algorithm 2.1 is applied to problem (1), that AS1 and

AS3 hold, that k 6∈ R and that nk satisfies (4). Then

θk ≤ κubt∆
1+µ
k (8)

and

θ(x+k ) ≤ κubt∆
2
k. (9)

for some constant κubt ≥ 0.

Proof. See Lemma 3.4 of Fletcher et al. (2002a). ✷

We next assess the model decrease when the trust-region radius is sufficiently small.

Lemma 3.6 Suppose that Algorithm 2.1 is applied to problem (1). Suppose also

that AS1–AS3, (13) and (16) hold, that k 6∈ R, that

χk ≥ ǫ, (10)

for some ǫ > 0, and that

∆k ≤ min

[

ǫ

κumh

,

(

2
κubg

κumhκ∆κµ

)
1

1+µ

,

(

κtmdǫ

4κubgκ∆κµ

)
1
µ

]

def
= δm, (11)

where κubg

def
= maxx∈X ‖∇xf(x)‖. Then

mk(xk)−mk(x
+
k ) ≥ 1

2κtmdǫ∆k.

Proof. See Lemma 3.5 of Fletcher et al. (2002a). ✷

We continue our analysis by showing, as the reader has grown to expect, that iterations

have to be very successful when the trust-region radius is sufficiently small.
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Lemma 3.7 Suppose that Algorithm 2.1 is applied to problem (1). Suppose also

that AS1–AS3, (16) and (10) hold, that k 6∈ R, and that

∆k ≤ min

[

δm,
(1− η2)κtmdǫ

2κubh

]

def
= δρ. (12)

Then

ρk ≥ η2.

Proof. See Lemma 3.6 of Fletcher et al. (2002a). ✷

Note that this proof could easily be extended if the definition of ρk in (25) were altered

to be of the form

ρk
def
=

f(xk)− f(x+k ) + Θk

mk(xk)−mk(x
+
k )

(13)

provided Θk is bounded above by a multiple of ∆2
k. We will comment in Section 4 why

such a modification might be of interest (see also Section 10.4.3 of Conn et al., 2000).

Now, we also show that the test (24) will always fail when the trust-region radius

is sufficiently small.

Lemma 3.8 Suppose that Algorithm 2.1 is applied to problem (1). Suppose also

that AS1–AS3, (13), (16) and (10) hold, that k 6∈ R, that nk satisfies (4), and that

∆k ≤ min

[

δm,

(

κtmdǫ

2κθκ
ψ
ubt

)
1

ψ(1+µ)−1

]

def
= δf . (14)

Then

mk(xk)−mk(x
+
k ) ≥ κθθ

ψ
k .

Proof. This directly results from the inequalities

κθθ
ψ
k ≤ κθκψubt∆

ψ(1+µ)
k ≤ 1

2κtmdǫ∆k ≤ mk(xk)−mk(x
+
k ),

where we successively used Lemma 3.5, (14) and Lemma 3.6. ✷

We may also guarantee a decrease in the objective function, large enough to ensure

that the trial point is acceptable with respect to the (θ, f)-pair associated with xk, so

long as the constraint violation is itself sufficiently small.
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Lemma 3.9 Suppose that Algorithm 2.1 is applied to problem (1). Suppose also

that AS1–AS3, (16), (10) and (12) hold, that k 6∈ R, that nk satisfies (4), and that

θk ≤ κ
− 1
µ

ubt

(

η2κtmdǫ

2
√
γF

)

1+µ
µ

def
= δθ. (15)

Then

f(x+k ) ≤ f(xk)−
√
γFθk.

Proof. Applying Lemmas 3.5–3.7—which is possible because of (10), (12), k 6∈ R
and nk satisfies (4)—and (15), we obtain that

f(xk)− f(x+k ) ≥ η2[mk(xk)−mk(x
+
k )]

≥ 1
2η2κtmdǫ∆k

≥ 1
2η2κtmdǫ

(

θk
κubt

)
1

1+µ

≥ √
γFθk

and the desired inequality follows. ✷

We now establish that if the trust-region radius and the constraint violation are both

small at a non-critical iterate xk, TRQP(xk,∆k) must be compatible.

Lemma 3.10 Suppose that Algorithm 2.1 is applied to problem (1). Suppose also

that AS1–AS3, (11) and (10) hold, that (16) holds for k /∈ R, and that

∆k ≤ min

[

γ0δρ,

(

1

κµ

)
1
µ

,

(

γ20(1 −
√
γF)κ∆κµ

κuscκubt

)

1
1−µ

]

def
= δR. (16)

Suppose furthermore that

θk ≤ min[δθ, δn]. (17)

Then k 6∈ R.

Proof. Because θk ≤ δn, we know from (11) and Lemma 3.1 that nk satisfies

(11) and (4). Moreover, since θk ≤ δθ, we have that (15) also holds. Assume, for

the purpose of deriving a contradiction, that k ∈ R, that is

‖nk‖ > κ∆κµ∆
1+µ
k , (18)

where we have used (13) and the fact that κµ∆
µ
k ≤ 1 because of (16). In this

case, the mechanism of the algorithm then ensures that k − 1 6∈ R. Now assume

that iteration k − 1 is unsuccessful. Because of Lemmas 3.7 and 3.9, which hold
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at iteration k − 1 6∈ R because of (16), the fact that θk = θk−1, (11), and (15), we

obtain that

ρk−1 ≥ η2 and f(x+k−1) ≤ f(xk−1)−
√
γFθk−1. (19)

Hence, if iteration k − 1 is unsuccessful and this must be because x+k−1 is not

acceptable for the filter. However, if we have that

θ+k−1 ≤ (1−√γF )θk−1, (20)

then, using the second part of (19) and the fact that (θk−1, fk−1) ∈ SW (Fk−1),

α(x+k−1,Fk−1) ≥ [f(xk−1)− f(x+k−1)][θk−1 − θ+k−1] ≥ γFθ2k−1 ≥ γF [θ+k−1]
2,

and x+k−1 is acceptable for the filter because of (21). Since this is not the case, (20)

cannot hold and we must have that

θ+k−1 > (1−√γF)θk−1 = (1−√γF )θk.

But Lemma 3.5 and the mechanism of the algorithm then imply that

(1−√γF )θk < κubt∆
2
k−1 <

κubt

γ20
∆2
k.

Combining this last bound with (18) and (11), we deduce that

κ∆κµ∆
1+µ
k < ‖nk‖ ≤ κuscθk ≤

κuscκubt

γ20(1 −
√
γF)

∆2
k

and hence that

∆1−µ
k >

γ20(1 −
√
γF)κ∆κµ

κuscκubt

.

Since this last inequality contradicts (16), our assumption that iteration k − 1 is

unsuccessful must be false. Thus iteration k − 1 is successful and θk = θ+k−1. We

then obtain from (18), (11) and (9) that

κ∆κµ∆
1+µ
k < ‖nk‖ ≤ κuscθk ≤ κuscκubt∆

2
k−1 ≤

κuscκubt

γ20
∆2
k,

which is again impossible because of (16) and because (1 − √γF) < 1. Hence our

initial assumption (18) must be false, which yields the desired conclusion. ✷

We continue to follow Fletcher et al. (2002a) and now distinguish two mutually exclusive

cases. For the first, we consider what happens if there is an infinite subsequence of

iterates belonging to the filter.

Lemma 3.11 Suppose that Algorithm 2.1 is applied to problem (1). Suppose

also that AS1–AS3, (11) hold and (16) holds for k /∈ R. Suppose furthermore that

|U| =∞. Then there exists a subsequence {kj} ⊆ U such that

lim
j→∞

θkj = 0 (21)

and

lim
j→∞

χkj = 0. (22)
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Proof. Let {ki} be any infinite subsequence of U . We observe that (21) follows

from Lemma 3.4. Suppose now that

χki ≥ ǫ2 > 0 (23)

for all i and some ǫ2 > 0. Suppose furthermore that there exists ǫ3 > 0 such that,

for all i ≥ i0,
∆ki ≥ ǫ3. (24)

Observe first that (21) and (11) ensure that

lim
i→∞

‖nki‖ = 0. (25)

Thus (24) ensures that (13) holds for sufficiently large i and thus ki 6∈ R for such i.

Now, as we noted in the proof of Lemma 3.6,

|mki(xki )−mki(x
N

ki
)| ≤ κubg‖nki‖+ 1

2κumh‖nki‖2,

which in turn, with (25), yields that

lim
i→∞

[mki(xki)−mki(x
N

ki
)] = 0. (26)

We also deduce from (16) and AS2 that

mki(x
N

ki
)−mki(x

+
ki
) ≥ κtmdǫ2 min

[

ǫ2
κumh

, ǫ3

]

def
= δ > 0. (27)

We now decompose the model decrease in its normal and tangential components,

that is

mki(xki )−mki(x
+
ki
) = mki(xki )−mki(x

N

ki
) +mki(x

N

ki
)−mki(x

+
ki
).

Substituting (26) and (27) into this decomposition, we find that

lim inf
i→∞

[mki(xki )−mki(x
+
ki
)] ≥ δ > 0. (28)

We now observe that, because ki ∈ U \ R, we know from the mechanism of the

algorithm that (24) must hold, that is

mki(xki )−mki(x
+
ki
) < κθθ

ψ
ki
. (29)

Combining this bound with (28), we find that θki is bounded away from zero for

i sufficiently large, which is impossible in view of (21). We therefore deduce that

(24) cannot hold and obtain that there is a subsequence {kℓ} ⊆ {ki} for which

lim
ℓ→∞

∆kℓ = 0.
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We now restrict our attention to the tail of this subsequence, that is to the set of

indices kℓ that are large enough to ensure that (14), (15) and (16) hold, which is

possible by definition of the subsequence and because of (21). For these indices, we

may therefore apply Lemma 3.10, and deduce that iteration kℓ 6∈ R for ℓ sufficiently

large. Hence, as above, (29) must hold for ℓ sufficiently large. However, we may also

apply Lemma 3.8, which contradicts (29), and therefore (23) cannot hold, yielding

the desired result. ✷

Thus, if the filter is updated at an infinite subsequence of iterates, Lemma 3.2 ensures

that there exists a limit point which is a first-order critical point. Our remaining

analysis then naturally concentrates on the possibility that there may be no such infinite

subsequence. In this case, the filter is unchanged for k sufficiently large. In particular,

this means that the number of restoration iterations, |R|, must be finite. In what

follows, we assume that k0 ≥ 0 is the last iteration at which the filter was updated.

Lemma 3.12 Suppose that Algorithm 2.1 is applied to problem (1), that finite

termination does not occur and that |U| < ∞. Suppose also that AS1–AS3, (11)

hold and that (16) holds for k /∈ R. Then we have that

lim
k→∞

θk = 0. (30)

Furthermore, nk satisfies (4) for all k ≥ k0 sufficiently large.

Proof. Consider any successful iterate with k ≥ k0. Since the filter is not updated
at iteration k, it follows from the mechanism of the algorithm that ρk ≥ η1 holds

and thus that

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(x
+
k )] ≥ η1κθθ

ψ
k ≥ 0. (31)

Thus the objective function does not increase for all successful iterations with k ≥
k0. But AS1 and AS3 imply (3) and therefore we must have, from the first part of

this statement, that

lim
k∈S

k→∞

f(xk)− f(xk+1) = 0. (32)

The limit (30) then immediately follows from (31) and the fact that θj = θk for all

unsuccessful iterations j that immediately follow the successful iteration k, if any.

The last conclusion then results from (11) and Lemma 3.1. ✷

We now show that the trust-region radius cannot become arbitrarily small if the

(asymptotically feasible) iterates stay away from first-order critical points.
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Lemma 3.13 Suppose that Algorithm 2.1 is applied to problem (1), that finite

termination does not occur and that |U| < ∞. Suppose also that AS1–AS3 hold

and (16) holds for k /∈ R. Suppose furthermore that (10) hold for all k ≥ k0. Then
there exists a ∆min > 0 such that

∆k ≥ ∆min

for all k.

Proof. Suppose that k1 ≥ k0 is chosen sufficiently large to ensure that (17) holds

and that nk satisfies (11) for all k ≥ k1, which is possible because of Lemma 3.12.

Suppose also, for the purpose of obtaining a contradiction, that iteration j is the

first iteration following iteration k1 for which

∆j ≤ γ0 min



δρ,

√

(1−√γF)θF

κubt

,∆k1





def
= γ0δs, (33)

where

θF def
= min

i∈U
θi

is the smallest constraint violation appearing in the filter. Note also that the in-

equality ∆j ≤ γ0∆k1 , which is implied by (33), ensures that j ≥ k1 + 1 and hence

that j− 1 ≥ k1 and thus that j− 1 6∈ R. Then the mechanism of the algorithm and

(33) imply that

∆j−1 ≤
1

γ0
∆j ≤ δs (34)

and Lemma 3.7, which is applicable because (33) and (34) together imply (12) with

k replaced by j − 1, then ensures that

ρj−1 ≥ η2. (35)

Furthermore, since nj−1 satisfies (11), Lemma 3.1 implies that we can apply Lemma 3.5.

This together with (33) and (34), gives that

θ+j−1 ≤ κubt∆
2
j−1 ≤ (1−√γF )θF. (36)

We may also apply Lemma 3.9 because (33) and (34) ensure that (12) holds and

because (15) also holds for j − 1 ≥ k1. Hence we deduce that

f(x+j−1) ≤ f(xj−1)−
√
γFθj−1.

This last relation and (36) ensure that x+j−1 is acceptable for the filter. Combining

this conclusion with (35) and the mechanism of the algorithm, we obtain that

∆j ≥ ∆j−1. As a consequence, and since (24) also fails at iteration j − 1, iteration
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j cannot be the first iteration following k1 for which (33) holds. This contradiction

shows that ∆k ≥ γ0δs for all k > k1, and the desired result follows if we define

∆min = min[∆0, . . . ,∆k1 , γ0δs].

✷

We may now analyse the convergence of χk itself.

Lemma 3.14 Suppose that Algorithm 2.1 is applied to problem (1), that finite

termination does not occur and that |U| < ∞. Suppose also that AS1–AS3, (11)

hold and (16) holds for k /∈ R. Then

lim inf
k→∞

χk = 0. (37)

Proof. We start by observing that Lemma 3.12 implies that the second conclusion

of (11) holds for k sufficiently large. Moreover, as in Lemma 3.12, we obtain (31)

and therefore (32) for each k ∈ S, k ≥ k0. Suppose now, for the purpose of obtaining
a contradiction, that (10) holds and notice that

mk(xk)−mk(x
+
k ) = mk(xk)−mk(x

N

k ) +mk(x
N

k )−mk(x
+
k ). (38)

Moreover, note, as in Lemma 3.6, that

|mk(xk)−mk(x
N

k )| ≤ κubg‖nk‖+ κumh‖nk‖2,

which in turn yields that

lim
k→∞

[mk(xk)−mk(x
N

k )] = 0

because of Lemma 3.12 and the second conclusion of (11). This limit, together with

(31), (32) and (38), then gives that

lim
k→∞
k∈S

[mk(x
N

k )−mk(x
+
k )] = 0. (39)

But (16), (10), AS2 and Lemma 3.13 together imply that, for all k ≥ k0

mk(x
N

k )−mk(x
+
k ) ≥ κtmdχkmin

[

χk
βk
,∆k

]

≥ κtmdǫmin

[

ǫ

κumh

,∆min

]

, (40)

immediately giving a contradiction with (39). Hence (10) cannot hold and the

desired result follows. ✷

We may summarize all of the above in our main global convergence result.
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Theorem 3.15 Suppose that Algorithm 2.1 is applied to problem (1) and that

finite termination does not occur. Suppose also that AS1, (11) AS3 and AS2 hold,

and that (16) holds for k /∈ R. Let {xk} be the sequence of iterates produced

by algorithm. Then either the restoration procedure terminates unsuccessfully by

converging to an infeasible first-order critical point of problem (17), or there is a

subsequence {kj} for which
lim
j→∞

xkj = x∗

and x∗ is a first-order critical point for problem (1).

Proof. Suppose that the restoration iteration always terminates successfully.

From AS3, Lemmas 3.11, 3.12 and 3.14, we obtain that, for some subsequence {kj},

lim
j→∞

θkj = lim
j→∞

χkj = 0. (41)

The conclusion then follows from Lemma 3.2. ✷

4 Conclusion and Perspectives

We have introduced a trust-region SQP-filter algorithm for general nonlinear program-

ming, and have shown this algorithm to be globally convergent to first-order critical

points. The proposed algorithm differs from that discussed by Fletcher and Leyffer

(2002), notably because it uses a decomposition of the step in its normal and tangen-

tial components and imposes some restrictions on the length of the former. It also

differs from the algorithm of Fletcher et al. (2002a) in two main aspects. The first and

most important is that the rule for deciding whether a trial point is acceptable for the

filter is non-monotone, and allows, in some circumstances, acceptance of points that

are dominated by other filter pairs. This gives hopes that an SQP filter algorithm can

be developed without introducing second-order correction steps. The second is that

the algorithm no longer relies on the definition of a “margin” around the filter, but

directly uses the dominated area of the filter as an acceptance criterion.
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Figure 1: Flowchart of the algorithm.


