
FILTRANE, a Fortran 95 Filter-Trust-Region
Package for Solving Nonlinear Least-Squares
and Nonlinear Feasibility Problems

NICHOLAS I. M. GOULD

Rutherford Appleton Laboratory

and

PHILIPPE L. TOINT

University of Namur

FILTRANE, a new Fortran 95 package for finding vectors satisfying general sets of nonlinear equa-

tions and/or inequalities, is presented. Several algorithmic variants are discussed and extensively

compared on a set of CUTEr test problems, indicating that the default variant is both reliable and

efficient. This discussion provides a first experimental study of the parameters inherent in filter

algorithms.

Categories and Subject Descriptors: G.4 [Mathematical Software]

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Nonlinear systems, nonlinear least-squares, nonlinear feasi-

bility, filter methods

ACM Reference Format:
Gould, N. I. M. and Toint, P. L. 2007. FILTRANE, a Fortran 95 filter-trust-region package for

solving nonlinear least-squares and nonlinear feasibility problems. ACM Trans. Math. Softw. 33,

1, Article 3 (March 2007), 23 pages DOI = 10.1145/1206040.1206043 http://doi.acm.org/10.1145/

1206040.1206043

1. INTRODUCTION

The purpose of this article is to present FILTRANE, a new Fortran 95 package
in the GALAHAD library [Gould et al. 2003b] for solving the general smooth
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feasibility problem, that is, the problem of finding a vector x ∈ IRn such that

cE (x) = 0, (1)

and

cI (x) ≥ 0, (2)

where cE (x) and cI (x) are smooth functions from IRn into IRm and IRq , respec-
tively. If such a point cannot be found, the goal is then to find a local minimizer
of the constraint violations. We choose to consider the Euclidean norm of these
violations, that is, to find a local minimizer of the function

min
x

1
2
‖θ (x)‖2, (3)

where

θ (x)
def=

(
cE (x)

[cI (x)]−

)
∈ IRp, (4)

with ‖ · ‖ denoting the Euclidean norm, p = m + q, and [cI (x)]− = min[0, cI (x)],
the minimum being taken componentwise. Thus E = {1, . . . , m} and I =
{m + 1, . . . , m + q}. An important special case of this problem is when q = 0,
which gives systems of smooth nonlinear equations, which we then aim to solve
in the least-squares sense. The problem under consideration is therefore not
only fairly general, but also important in practice because a large number of
applications can be cast in this form. Moreover, the feasibility problem may
also occur as a subproblem in more complicated contexts, such as the “restora-
tion” phase in the solution of the nonlinear programming problem using filter
methods (see [Fletcher and Leyffer 1998, 2002], Fletcher et al. [2002a, 2002b],
or [Gonzaga et al. 2003]. among others).

The method of choice for solving (1)–(2) or (3) is Newton’s method, because
of its fast convergence properties. However, as is well known, Newton’s method
must be safeguarded to ensure that it converges to a solution from start-
ing points that are far from the solution. Various safeguarding techniques
are known, including the use of a linesearch (see, for example, Ortega and
Rheinboldt [1970], Dennis and Schnabel [1983], Toint [1986, 1987]) or trust re-
gion (see Moré and Sorensen [1984], Nocedal [1984], Conn et al. [2000], Chap-
ter 16). More recently, Gould et al. [2005] have proposed a method that combines
the basic trust-region mechanism with filter techniques. They proved global
convergence for the algorithm and reported very encouraging initial compara-
tive numerical experiments, indicating that the new algorithm is often prefer-
able to a more classical trust-region algorithm. Our current objective is to de-
scribe the FILTRANE package that results from this research, and to investigate
some of its properties and features in substantially more detail.

The article is organized as follows. Section 2 presents the filter algorithm and
some of its variants whose performance we wish to study. Section 3 discusses
the numerical results obtained with the package and its variants, compares
them whenever possible, and analyzes the sensitivity of their performance as
some of the important algorithmic parameters are adjusted. Some conclusions
are drawn in Section 4.
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2. THE FILTER ALGORITHM AND ITS ALGORITHMIC OPTIONS

2.1 The Objective Function, Its Models, and the Step

In order to subsume both (1)–(2) and (3) in a single description, we consider an
algorithm that seeks to minimize

f (x) = 1
2
‖θ (x)‖2.

We may build two distinct local quadratic models of f (x) in the neighborhood
of a given iterate xk . The first is the Gauss-Newton model

mGN

k (xk + s) = 1
2
‖θ̄ (xk) + Jθ̄ (xk)s‖2, (5)

where θ̄ (x) is the vector formed by cE (x) and the nonzero components of [cI (x)]−,
and where Jθ̄ (xk) is the Jacobian of θ̄ (x) at xk . The second is the full second-order
Newton model

mN

k(xk+s) = mGN

k (xk+s)+ 1
2

∑
i∈E

ci(xk)〈s, ∇2ci(xk)s〉+ 1
2

∑
i∈I

[ci(xk)]−〈s, ∇2ci(xk)s〉 (6)

(where 〈·, ·〉 is the usual Eulidean inner product), which includes an additional
term taking the curvature of the equality and violated inequality constraints
into account.

In FILTRANE, we have chosen to compute the step sk by minimizing one of
these models in some region surrounding the current iterate xk , defined by the
constraint

‖s‖k ≤ τk�k , (7)

where �k is a trust-region radius that is updated in the usual trust-region
manner (see Conn et al. [2000], Chapters 6 and 17, for instance), and where
τk ≥ 1 is a real parameter that is adjusted from iteration to iteration. The effect
of this parameter is to allow for steps that potentially extend much beyond the
limit of the trust region itself, in the case where convergence seems satisfactory.
The precise mechanism for determining τk is discussed in more detail below.
The ‖ · ‖k norm appearing in (7) is the preconditioned Euclidean norm, that is,

‖s‖2
k = 〈

s, P−1
k s

〉
,

where Pk is a symmetric positive-definite preconditioning matrix that is used
at the kth iteration (see Section 2.4.4). The solution of the subproblem of mini-
mizing mGN

k (xk + s) or mN

k(xk + s) subject to (7) is computed approximately using
the Generalized Lanczos Trust-Region (GLTR) method of Gould et al. [1999]
as implemented in the GLTR module of GALAHAD [Gould et al. 2003b]. This
procedure is similar to the conjugate-gradient algorithm in that it minimizes
the quadratic model within the successive Krylov subspaces built from the
model’s preconditioned Hessian and gradient, but the minimization in each
subspace, instead of being unconstrained, is constrained by the inequality (7).
This is equivalent to applying an exact trust-region problem solver like that of
Moré and Sorensen [1983] in the successive Krylov subspaces. Assuming some
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uniform lower and upper bounds on the eigenvalues of the preconditioning ma-
trix Pk , this algorithm guarantees the familiar Cauchy point condition

mk(xk) − mk(xk + sk) ≥ κmdc‖gk‖ min

[‖gk‖
βk

, �k

]
, (8)

where mk is either mGN

k or mN

k , gk = ∇mk(xk), κmdc is a constant in (0, 1), and βk

is a positive upper bound on the norm of the Hessian of mk .
Note that the subproblem is convex whenever the Gauss-Newton model (5)

is used, but not necessarily so if Newton’s model (6) is used, since the matrices
∇2ci(xk) may be indefinite. In the nonconvex case, using τk > 1 in (7) is poten-
tially risky, and we set τk = 1. Unfortunately, nonconvexity of the model is only
discovered in the course of its mimimization: when this happens for τk > 1, we
then simply use the reentry feature of the GLTR module, which computes, at
modest cost, the minimum of the model on the Krylov space explored so far for
the smaller radius τk = 1.

2.2 The Filter-Trust-Region Mechanism

Once the step sk is computed, we may define the trial point to be

x+
k = xk + sk (9)

and consider the question of whether it is acceptable as our next iterate xk+1.
In order to define our filter, we first say that a point x1 dominates a point x2

whenever

|θi(x1)| ≤ |θi(x2)| for all i ∈ {1, . . . , p}.
Thus, if iterate xk1

dominates iterate xk2
, the latter is of no real interest to

us since xk1
is at least as good as xk2

for each i. All we need to do now is to
remember iterates that are not dominated by other iterates, using a structure
called a filter. A filter is a list F of p-dimensional vectors of the form {θ1, θ2, . . .}
such that, for each pair θk , θ� ∈ F with k 
= �,

|θik| < |θi�| for at least one i ∈ {1, . . . , p},
where θik is the ith component of θk . Filter methods then accept a new trial
iterate x+

k if it is not dominated by any other iterate in the filter. While the
idea of not accepting dominated trial points is simple and elegant, it needs to
be refined a little in order to provide an efficient algorithmic tool. In particular,

we do not wish to accept a new point x+
k if θ+

k
def= θ (x+

k ) is too close to being
dominated by another point already in the filter. To avoid this situation, we
slightly strengthen our acceptability condition. More formally, we say that a
new trial point x+

k is acceptable for the filter F if and only if

∀θ� ∈ F ∃ i ∈ {1, . . . , p} |θi(x+
k )| <

[|θi�| − γθδ(‖θ�‖, ‖θ+
k ‖)

]
+, (10)

where γθ ∈ (0, 1/
√

p) is a small positive constant, [w]+ = max[0, w], and δ(·, ·)
is one of the following:

δ(‖θ�‖, ‖θ+
k ‖) = ‖θ�‖, (11)

δ(‖θ�‖, ‖θ+
k ‖) = ‖θ+

k ‖, (12)
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or

δ(‖θ�‖, ‖θ+
k ‖) = min(‖θ�‖, ‖θ+

k ‖). (13)

The quantity γθδ(‖θ�‖, ‖θ+
k ‖) is called the filter margin. The upper bound of 1/

√
p

on γθ ensures that the right-hand side of (10) is always positive for some i for the
choices (11) and (13), and thus that points acceptable for the filter always exist
in these cases. Note that such points must exist if (12) is considered provided
‖θ�‖ > 0, but a small value for γθ clearly makes it more likely that (10) holds
for a given θ+

k .
In order to avoid cycling, and assuming the trial point is acceptable in the

sense of (10), we might add it to the filter, to exclude other iterates that are
worse; that is, we perform the simple operation

F ← F ∪ {θk}.
This may, however, cause an existing filter value θ� to be strongly dominated in
the sense that

∃ θk ∈ F ∀i ∈ {1, . . . , p} |θi�| ≥ |θik| − γθδ(‖θ�‖, ‖θk‖). (14)

If this happens, we simplify later comparisons by removing θ� from the filter.
(Note that θi� > θik is sufficient in this last condition if we restrict our choice to
δ(‖θ�‖, ‖θ+

k ‖) = ‖θ+
k ‖.)

If the trial point is not acceptable for the filter, it may nevertheless be ac-
ceptable for the usual trust-region mechanism. This requires that ‖sk‖ ≤ �k

and that ρk is sufficiently positive, where ρk is the familiar ratio of achieved to
predicted reduction defined by

ρk = f (xk) − f (x+
k )

mk(xk) − mk(x+
k )

. (15)

Our algorithm therefore combines the filter and trust-region acceptability cri-
teria to allow a potentially larger set of trial points to be accepted.

2.3 Handling Inequality Constraints

FILTRANE considers inequality constraints no differently from equalities: as
already mentioned in (4), we define θ to include the violation of the inequality
constraints. Note that this definition causes the �2-penalty function (3) to have
discontinuous second derivatives on the boundary of the set of vectors satisfy-
ing the inequality constraints. The technique is admittedly heuristic, and no
theoretical guarantee can be provided at this stage for problems involving in-
equality constraints. However, it seems to work reasonably well, which is why
it has been included in the package.

2.4 An Outline of the Algorithm and Some Further Details

2.4.1 The Algorithmic Framework. We are now ready to outline the
FILTRANE algorithm using the ideas developed above, and do so in
Algorithm 2.1. This outline leaves a number of points to be clarified, which
is the object of the remainder of this section.
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Algorithm 2.1. Outline of the Filter-Trust-Region Algorithm

Step 0: Initialization
An initial point x0 and an initial trust-region radius �0 > 0 are given, as well as
constants 0 < γ0 ≤ γ1 < 1 ≤ γ2, γθ ∈ (0, 1/

√
p), 0 < η1 < η2 < 1. Compute c0 = c(x0)

and θ0. Set k = 0, F = ∅, and select τ0 ≥ 1.
Step 1: Test for termination
If either ‖θk‖ or ‖∇ f (xk)‖ is sufficiently small, stop.
Step 2: Choose a model and a norm
Choose a norm ‖ · ‖k for (7). Set mk to be either mGN

k or mN
k .

Step 3: Determine a trial step
Compute a step sk that satisfies (7) and (8), using the GLTR algorithm. If the model
is found to be nonconvex and τk > 1, reenter the GLTR algorithm with τk = 1.
Compute the trial point x+

k = xk + sk .
Step 4: Evaluate the residual at the trial step
Compute c(x+

k ) and θ+
k = θ (x+

k ). Define ρk according to (15).
Step 5: Test to accept the trial step

—If x+
k is acceptable for the current filter:

Set xk+1 = x+
k , select τk+1 ≥ 1, and add θ+

k to F if either ρk < η1 or ‖sk‖ > �k .

—If x+
k is not acceptable for the current filter:

If ‖sk‖ ≤ �k and ρk ≥ η1, set xk+1 = x+
k and select τk+1 ≥ 1. Else, set xk+1 = xk and

τk+1 = 1.
Step 6: Update the trust-region radius
If ‖sk‖ ≤ �k , update the trust-region radius by choosing

�k+1 ∈
⎧⎨
⎩

[γ0�k , γ1�k] if ρk < η1,
[γ1�k , �k] if ρk ∈ [η1, η2),
[�k , γ2�k] if ρk ≥ η2;

otherwise, set �k+1 = �k . Increment k by one and go to Step 1.

2.4.2 An Adaptive Model Strategy. The first issue that we examine is how
the model mk is chosen. As we discussed above, two natural choices are the
Gauss-Newton and full Newton models given by (5) and (6), respectively. The
initial experiments reported in Gould et al. [2005] indicate that the first is
very often preferable, but that the latter sometimes brings significant efficiency
gains, in particular in the case where ‖θ‖ is significantly positive at a local
minimizer of f (x). Following ideas first proposed by Dennis et al. [1981], the
default version of FILTRANE therefore includes an adaptive model choice that
attempts to exploit the best of these two models.

A first strategy is to start with the Gauss-Newton model, but to evaluate
ρk at each iteration, not only for the model currently in use (Gauss-Newton,
initially), but also for the model not being used. Thus we obtain ρGN

k and ρN

k .
Each iteration for which ∣∣ρGN

k − 1
∣∣ ≤ ∣∣ρN

k − 1
∣∣ (16)

casts a vote in favor of the Gauss-Newton model, while a vote in favor of the
Newton model is recorded otherwise. After nv iterations, the model credited
with a majority of the corresponding nv votes is usedfor the next nv iterations.

ACM Transactions on Mathematical Software, Vol. 33, No. 1, Article 3, Publication date: March 2007.
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The parameter nv represents the “inertia” of the model choice mechanism and
prevents a rapid model change. The choice nv = 5 is made by default.

FILTRANE also provides an optional alternative strategy, which differs from
the default only in that the condition (16) is replaced by

ρGN

k ≥ ρN

k . (17)

2.4.3 Filter Management. We now turn to issues related to the way in
which the filter technique is implemented.

2.4.3.1 Prefiltering. Since condition (10) has to be tested at each iteration
for the trial point and each filter entry, we may wish to make this test reasonably
efficient. We therefore maintain a list of entries currently in the filter, arranged
by order of increasing Euclidean norm. When a new θ (x+

k ) is tested for filter
acceptability, the tests are performed by comparing it to the successive filter
entries in that list. If, for some �,

‖θ (x+
k )‖ < ‖θ�‖ − γθ

√
p δ(‖θ�‖, ‖θ+

k ‖),

then the current filter point lies inside the largest sphere that is tangent (up
to the margin) to the �th filter entry in the list, and (10) must hold. Moreover,
since the list is organized by increasing values of ‖θ�‖, the same must be true
of all remaining filter entries in the list, and x+

k may be declared acceptable for
the filter without further testing.

2.4.3.2 The Value of τk. One of the advantages of the filter algorithm pre-
sented above is the possibility of taking a step whose norm exceeds the trust-
region radius, without affecting the convergence properties of the method. In
practice, this is most useful in the first few iterations (at which the radius often
does not reflect yet the true nonlinearity of the objective function), while impos-
ing some limitation on ‖sk‖ turns out to be a reasonable stabilization scheme
later. We thus have chosen to set τ0 = 1020 and impose τk ∈ [1, τ0] initially,
while we strengthen this condition to τk ∈ [1, τmax], with τmax = 1000, as soon
as it has been reset at least once. The actual value of τk varies gradually in this
interval: it is doubled at each iteration where ρk ≥ η2 until it reaches its upper
bound, but is halved (with a lower bound of 1) if the new point is acceptable for
the filter, but ρk < η1. This somewhat involved compromise appears to balance
performance and reliability reasonably.

2.4.3.3 Unsigned Filter Entries. As suggested in Gould et al. [2005], we may
also extend our filter definition by considering θi(xk) instead of |θi(xk)|. In this
case, the acceptability condition (10) becomes

∀θ� ∈ F ∃ i ∈ {1, . . . , p} such that

either θi(x+
k ) <

[
θi� − γθδ(‖θ�‖, ‖θ+

k ‖)

]
+

if θi� > 0,

or θi(x+
k ) >

[
θi� + γθδ(‖θ�‖, ‖θ+

k ‖)

]
−

if θi� < 0.

(18)
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(Condition (14) can be adapted in the same manner.) This makes the trial point
potentially more often acceptable, as this condition is obviously weaker than
(10). We refer to this extension as using unsigned filter entries and discuss its
impact in Section 3.4. Note that it does not affect the prefiltering technique just
discussed.

2.4.3.4 The Filter Margin. The default choice in FILTRANE is

δ(‖θ�‖, ‖θ+
k ‖) = ‖θ�‖ and γθ = min

[
εθ ,

1

2
√

p

]
,

where εθ = 0.001 by default, but one of the other choices (12)–(13) for δ can be
specified by the user. The effect of an alternative choice of δ or εθ is discussed
in Section 3.4.

2.4.3.5 Grouping and Balancing the Violations. Gould et al. [2005] pointed
out that the constraints could be grouped in (potentially overlapping) subsets
for which constraint violation would then be measured as a whole, using the
Euclidean norm of the vector containing all the violations of the constraints
in the group. FILTRANE provides a mechanism to specify these subsets, either
automatically or according to a user’s preference. Furthermore, the automatic
grouping can be chosen to balance approximately among the groups the aggre-
gate violations at the starting point. When grouping is used, the dimension of
the “filter space” falls from m + q to the number of groups. Note that unsigned
filter entries are not available for groups containing more than one constraint.

2.4.4 Preconditioning and Stopping. At each iteration, the subproblem so-
lution may be preconditioned by a positive matrix Mk (which amounts to spec-
ifying the trust-region norm ‖ · ‖k = √〈·, Mk ·〉; see Conn et al. [2000], Section
6.7). Besides no preconditioner at all (i.e., using Mk = I and the Euclidean
norm to define the trust region), FILTRANE also provides the choice of diago-
nal preconditioning, or preconditioning using a band submatrix of adjustable
semibandwidth that is extracted from the model’s Hessian, ∇xxmk(xk) (the de-
fault version of the package uses this option with a semibandwith 5). Both the
diagonal and the banded submatrix are modified to make them positive definite
if necessary (see Gould et al. [2003b]). The package also allows a user-defined
preconditioning via its reverse communication interface.

FILTRANE terminates successfully as soon as

‖θ (xk)‖∞ ≤ εT or ‖∇x f (xk)‖[k] ≤ εG
√

n,

where the default values are εT = εG = 10−6, and where ‖ · ‖[k] =
√

〈·, M−1
k ·〉

is the dual norm of ‖ · ‖k (see Conn et al. [2000], Section 2.3.1). Observe that
this choice makes the stopping criterion dependent on preconditioning, which
is justified by the observation that termination is indeed best decided for the
scaled problem. On the other hand, this prevents directly comparing variants
using different preconditioners.
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2.4.5 Subproblem Accuracy. The subproblem

min
s

mk(xk + s) subject to ‖s‖k ≤ τk�k

can be solved more or less exactly. In FILTRANE, the default setting is to stop
the conjugate-gradient/Lanczos process as soon as the reduced gradient

yk(s) = ∇xmk(xk + s) + λk Mks

(where λk is an estimate of the Lagrange multiplier associated with the con-
straint (7)) satisfies

‖ yk(s)‖ ≤ min
[
εGLTR, max

[ ‖∇xmk(xk)‖εR ,
√

εM
] ]‖∇xmk(xk)‖, (19)

or

‖ yk(s)‖ ≤ min
[

1
2
εGLTR

√
n,

√
εM

]
, (20)

where, by default, εGLTR = 0.01 and εR = 1, and where εM is the machine
precision. The effect of loosening or tightening this requirement is discussed in
Section 3.3.

2.4.6 Other Issues. In an attempt to make trial points acceptable as of-
ten as possible without compromising the global convergence properties of the
algorithm, Gould et al. [2005] also suggested that x+

k be deemed acceptable
whenever the reduction in the objective function is at least as large as some
fraction of its value. This possibility is offered as an option in FILTRANE: if it is
activated by the user, the trial point is then accepted if

‖θk‖ − ‖θ+
k ‖ ≥ κW min[1, ‖θk‖εW ], (21)

where, by default, κW = 0.1. The effect of using this option with εW = 1, 2 or 3
is discussed in Section 3.5.

Finally, some constants related to trust-region management remain to be
defined. Following Conn et al. [2000], Section 17.1, our implementation uses
the constants

γ0 = 0.0625, γ1 = 0.25, γ2 = 2, η1 = 0.01, η2 = 0.9, �0 = 1.

FILTRANE is written as a standard Fortran 90 module, integrated in the
GALAHAD library [Gould et al. 2003b]. The user interface uses reverse commu-
nication, that is, returns control to the user whenever a user-defined precondi-
tioner must be applied or function/derivative information is needed.

3. NUMERICAL EXPERIENCE

We now discuss our numerical experiments with FILTRANE, with particular
emphasis on the advantages and drawbacks of its various algorithmic options.
To conduct these experiments, we selected 122 significant problems from the
CUTEr collection of test problems [Gould et al. 2003a]. Tables I–III report the
names and characteristics of these problems. The column heading nfr indicates
the number of free variables, nb the number of variables that are bounded on

ACM Transactions on Mathematical Software, Vol. 33, No. 1, Article 3, Publication date: March 2007.
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Table I. The Test Problems and Their Characteristics

Problem nfr nb nr nfx m q
AIRCRFTA 2 0 0 3 5 0

ARGAUSS 3 0 0 0 15 0

ARGLALE 200 0 0 0 400 0

ARGLBLE 200 0 0 0 400 0

ARGLCLE 200 0 0 0 399 0

ARGTRIG 200 0 0 0 200 0

ARTIF 4998 0 0 2 5000 0

ARWDHNE 500 0 0 0 998 0

BATCH 0 2 46 0 12 61

BDVALUE 100 0 0 2 100 0

BDVALUES 10000 0 0 2 10000 0

BOOTH 2 0 0 0 2 0

BRATU2D 4900 0 0 284 4900 0

BRATU2DT 4900 0 0 284 4900 0

BRATU3D 3375 0 0 1538 3375 0

BROYDN3D 5000 0 0 0 5000 0

BROYDNBD 5000 0 0 0 5000 0

BROWNALE 200 0 0 0 199 0

CAMSHAPE 800 0 0 0 0 1603

CBRATU2D 2888 0 0 312 2888 0

CBRATU3D 2000 0 0 1456 2000 0

CHAIN 800 0 0 2 400 0

CHANDHEQ 100 0 0 0 100 0

CHANNEL 9598 0 0 2 9598 0

CHEMRCTA 5000 0 0 0 5000 0

CHEMRCTB 5000 0 0 0 5000 0

CHNRSBNE 50 0 0 0 98 0

CLNLBEAM 5001 0 9998 0 10000 0

CLUSTER 2 0 0 0 2 0

COOLHANS 9 0 0 0 9 0

CORKSCRW 2497 0 2000 9 3000 500

CUBENE 2 0 0 0 2 0

DECONVNE 61 0 0 0 40 0

DRCAVTY1 961 0 0 264 961 0

DRCAVTY2 3969 0 0 520 3969 0

DRCAVTY3 961 0 0 264 961 0

DRUGDISE 100 300 199 4 500 0

EIGENA 110 0 0 0 110 0

EIGENB 110 0 0 0 110 0

EIGENC 462 0 0 0 462 0

EIGMAXA 101 0 0 0 101 0

EIGMAXB 101 0 0 0 101 0

EIGMAXC 202 0 0 0 202 0

EIGMINA 201 0 0 0 201 0

EIGMINB 301 0 0 0 301 0

EIGMINC 302 0 0 0 302 0

one side (above or below), nr the number of variables that are bounded both
from above and below (often called range variables), and nfx the number of
fixed variables (problem parameters). Our selection provides a variety of cases
including both small and large, linear and nonlinear problems, involving equal-
ity and/or inequality constraints. Note that the starting point x0 is provided by
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Table II. The Test Problems and Their Characteristics (2)

Problem nfr nb nr nfx m q
FEEDLOC 0 0 87 3 19 240

FLOSP2HH 2763 0 0 120 2761 0

FLOSP2HM 2763 0 0 120 2761 0

FLOSP2HL 2763 0 0 120 2761 0

FLOSP2TM 2763 0 0 120 2761 0

FLOSP2TL 803 0 0 64 803 0

GASOIL 10398 3 0 2 10398 0

GAUSSELM 20501 39 1599 0 61542 0

GLIDER 1006 200 101 7 1208 0

GOTTFR 2 0 0 0 2 0

GROWTH 3 0 0 0 12 0

HAGER4 2500 2500 0 1 2500 0

HATFLDF 3 0 0 0 3 0

HATFLDG 25 0 0 0 25 0

HEART6 6 0 0 0 6 0

HEART8 8 0 0 0 8 0

HELSBY 741 649 18 0 1399 0

HIMMELBA 2 0 0 0 2 0

HIMMELBC 2 0 0 0 2 0

HIMMELBD 2 0 0 0 2 0

HIMMELBE 3 0 0 0 3 0

HYDCAR6 29 0 0 0 29 0

HYDCAR20 99 0 0 0 99 0

HYPCIR 2 0 0 0 2 0

INTEGREQ 500 0 0 0 500 0

JUNKTURN 9996 0 0 14 7000 0

LEAKNET 80 70 6 0 153 0

LEWISPOL 0 0 6 0 9 0

MANNE 0 4749 1250 1 0 4000

MARINE 11200 15 0 0 11192 0

METHANB8 31 0 0 0 31 0

METHANL8 31 0 0 0 31 0

METHANOL 11997 5 0 3 11997 0

MRIBASIS 0 24 0 12 51 3

MSQRTA 1024 0 0 0 1024 0

MSQRTB 1024 0 0 0 1024 0

NGONE 0 496 1 3 31373

NONMSQNE 49 0 0 0 49 0

NYSTROM5 15 0 0 3 18 0

OPTMASS 3006 0 0 4 2004 501

OPTCDEG2 1500 1499 1500 3 1500 1500

ORTHREGA 8197 0 0 0 4096 0

ORTHREGD 10003 0 0 0 5000 0

ORTHREGF 30033 2 0 0 10000 0

PFIT1 1 0 2 0 3 0

PFIT2 1 0 2 0 3 0

PFIT3 1 0 2 0 3 0

PFIT4 1 0 2 0 3 0

PINENE 8795 5 0 5 8795 0
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Table III. The Test Problems and Their Characteristics (3)

Problem nfr nb nr nfx m q
POLYGON 0 198 0 2 0 5049

POROUS1 3844 0 0 252 3844 0

POROUS2 3844 0 0 252 3844 0

POWELLBS 2 0 0 0 2 0

POWELLSQ 2 0 0 0 2 0

PT 2 0 0 0 0 501

QR3D 590 20 0 0 610 0

QR3DBD 1552 33 0 0 1650 0

RECIPE 3 0 0 0 2 0

ROBOTARM 1999 2400 0 12 3202 0

ROCKET 802 801 800 4 2002 0

ROTDISC 180 181 531 13 360 721

RSBRNE 2 0 0 0 2 0

SEMICON1 5000 0 0 2 5000 0

SEMICON2 5000 0 0 2 5000 0

SINVALNE 2 0 0 0 2 0

SMMPSF 0 720 0 0 240 23

SNAKE 2 0 0 0 0 2

SPMSQRT 10000 0 0 0 16664 0

STOCFOR3 0 15965 0 0 8829 7846

STEERING 1597 0 401 7 1600 0

TRAINF 2000 0 2000 8 2002 0

TRIGGER 6 0 0 1 6 0

TRUSPYR1 3 8 0 0 3 0

TWIRIBG1 0 0 3127 0 922 317

VANDERM1 100 0 0 0 199 0

VANDERM2 100 0 0 0 199 0

VANDERM3 100 0 0 0 199 0

WOODSNE 4000 0 0 0 3001 0

YATP1SQ 123200 0 0 0 123200 0

YATP2SQ 123200 0 0 0 123200 0

YFITNE 3 0 0 0 17 0

ZANGWIL3 3 0 0 0 3 0

CUTEr as part of each problem specification, and that none of these is such that
θ (x0) = 0.

All experiments reported in this section were run on a Dell Latitude C840
portable computer (1.6 MHz, 1 Gb of RAM) under the Lahey lf95 Fortran com-
piler with default optimization. All attempts to solve the test problems were
limited to a maximum of 1000 iterations or 1 h of CPU time.

In what follows, we compare several variants of FILTRANE for reliability and
efficiency. Remarkably, all test problems except SEMICON1, CHEMRCTB, FLOSP2HM,
and FLOSP2TM could be solved (within the prescribed iteration and time con-
straints) by the default variant of FILTRANE or one of its (diagonal or five-
banded) internal preconditioned variants, which indicates good global reliabil-
ity of the package. The first two failures were caused by arithmetic errors in the
computation of the objective function and the last two by an excessive number
of CG iterations (indicating the need for an improved preconditioner). Further-
more, detailed analysis showed that some variants terminated very close to
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a problem solution despite their reporting that no further progress could be
made.1 These occurrences are counted as successful in our discussion.

Efficiency comparisons are made after the removal of problems for which
different local solutions were found by different variants.2 They use the per-
formance profiles introduced by Dolan and Moré [2002]. Suppose that a given
variant i from a set A reports a statistic si j ≥ 0 when run on example j from
our test set T , and that the smaller this statistic the better the variant is con-
sidered. Let

k(s, s∗, σ ) =
{

1 if s ≤ σs∗,

0 otherwise.

Then, the performance profile of variant i is the function

pi(σ ) =
∑

j∈T k(si, j , s∗
j , σ )

|T | (σ ≥ 1),

where s∗
j = mini∈A si j . Thus pi(1) gives the fraction of examples for which vari-

ant i was the most effective (according to statistics si j ), pi(2) gives the fraction
for which variant i is within a factor of 2 of the best, and limσ−→∞ pi(σ ) gives
the fraction of the examples for which the variant succeeded. We consider such
a profile to be a very effective means of comparing the relative merits of our al-
gorithmic variants, but have, in the figures, limited the range of the horizontal
axis to 10, de facto identifying a performance beyond 10 times worse than the
best with failure. When comparing CPU times, we also take into account inac-
curacies in timing by considering run-times as indistinguishable if they differ
by less than 1 s or less than 5%.

3.1 Filter Versus Pure Trust-Region Algorithms

We first examine the impact of using the multidimensional filter technique in
addition to the trust-region mechanism, by comparing the default version of
FILTRANE described above with a variant where the trust-region constraint
is enforced at every step and the filter mechanism is not used for deciding on
the acceptability of the trial point as a new iterate. The resulting algorithm
then conforms to the usual monotone trust-region framework (see Conn et al.
[2000], Chapter 6).

The first observation is that the default FILTRANE is more reliable than the
pure trust-region variant, as its solves 110 of the 123 test problems (within the
prescribed CPU and iteration limits) while the pure trust-region variant only
solves 101.

Figures 1 and 2 also illustrate that the default FILTRANE is often consider-
ably more efficient on the problems that could be solved by both variants, in
both iterations and CPU time. This comparison therefore confirms the findings
of Gould et al. [2005].

1This occurred on the unpreconditioned variants on problems ARGLBLE and ARGLCLE.
2This occurred on problem PFIT2, and, for some variants, on problems ARTIF and GROWTH.
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Fig. 1. Iteration performance profile for the default FILTRANE variant (including filter) and the

pure trust-region variant (no filter).

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p
(σ

)

Default
Trust region 

Fig. 2. CPU time performance profile for the default FILTRANE variant (including filter) and the

pure trust-region variant (no filter).

ACM Transactions on Mathematical Software, Vol. 33, No. 1, Article 3, Publication date: March 2007.



FILTRANE, a Fortran 95 Filter-Trust-Region Package • 15

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p
(σ

)

Default 

Pure Newton 
Pure Gauss–Newton 

Fig. 3. Iteration performance profile for the default FILTRANE variant (including adaptive model

choice) and the pure Gauss-Newton and Newton variants.

During the solution of a given problem, the number of entries in the fil-
ter typically increases slowly, but it remains on average very small (at most
5 for 64 problems, at most between 6 and 10 for 15, between 11 and 50 for
19, and above 50 for 12). There does not seem to be any correlation between
filter maximum size and dimension (the second largest filter occurs for the
three-dimensional problem PFIT4 with 292 entries, while the largest problems
YATP1SQ and YATP2SQ need four and one filter entries, respectively). Storing the
filter entries has never been a problem on our modest test machine. Although
it is possible to specify a maximum number of entries in the filter (once reached
the method then turns to a pure trust-region algorithm), we do not report on
this feature here more extensively, since our experience shows that its effect is
marginal.

3.2 Model Choice and Inertia

We next compare the default FILTRANE with two variants that use the Gauss-
Newton model (for the first) or the full Newton model (for the second) at every it-
eration. In terms of reliability, the default and pure Gauss-Newton variants are
best (109/122) while the pure Newton variant is substantially behind (87/122).
If we now consider efficiency, the performance profiles presented in Figures 3
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Fig. 4. CPU time performance profile for the default FILTRANE variant (including adaptive model

choice) and the pure Gauss-Newton and Newton variants.

and 4 indicate that the adaptive default strategy is about as efficient as the
Gauss-Newton strategy and considerably better than the pure Newton.

Although the unsatisfactory performance of the pure Newton model had al-
ready been noticed in Gould et al. [2005] for the solution of sets of nonlinear
equations, this characteristic appears to be reinforced on problems that involve
inequality constraints.

As the default variant uses the adaptive model, it is useful to verify that
the default choice of inertia (nv = 5) behaves well compared to other values.
We therefore tested four additional variants, with nv = 3, 4, 6, and 7. A first
observation is that the last three of these variants share the same reliability as
the default (109/122), while the variant using nv = 3 solves 108 problems. Their
efficiencies therefore do not differ significantly. The frequency at which one
model or the other is used appears to be very problem dependent, but the overall
trend clearly favors using the Gauss-Newton model significantly more often.

We also performed the same tests on a variant of FILTRANE that chooses its
adaptive model using the “best reduction” criterion (17) instead of the default
“best fit” (16). The reliability of this variant (108/122) was essentially as good
as that of the default, and its performance was comparable, although slightly
worse in terms of iterations.

ACM Transactions on Mathematical Software, Vol. 33, No. 1, Article 3, Publication date: March 2007.



FILTRANE, a Fortran 95 Filter-Trust-Region Package • 17

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p
(σ

)

Default 
Subproblem accuracy = (0.1,1.0) 
Subproblem accuracy = (0.1,0.5) 
Subproblem accuracy = (0.01, 0.5) 
Subproblem accuracy = (0.001,1.0) 
Subproblem accuracy = (0.001,0.5) 
Full subproblem accuracy 

Fig. 5. Iteration performance profile for the FILTRANE variants depending on the requested sub-

problem accuracy.

3.3 Accuracy of the Subproblem Solution

Another important algorithmic parameter is the minimum reduction in the
norm of the model’s gradient that is required for terminating the GLTR step
calculation. We therefore tested variants with εGLTR = 0.1, 0.001 and

√
εM as

well as εR = 0.5 in (19). Some of these variants found different local min-
ima for GROWTH, and this problem was therefore excluded from the comparisons
reported in this paragraph. The default version using (εGLTR, εR) = (0.01, 1)
proved to be the most reliable (108/121 problems solved), followed by the choices
(εGLTR, εR) = (0.01, 0.5) with 107/121 problems solved, (εGLTR, εR) = (0.001, 1)
and (0.001, 0.5) with 105/121, and the choices (εGLTR, εR) = (0.1, 1) and (0.1, 0.5)
with 104/121. The variant using full accuracy (εGLTR, εR) = (

√
εM , 1)) solved 98

problems.
The iteration and CPU time performance profiles (Figures 5 and 6) indicate

that the default version and that using εGLTR = 0.001 (and εR = 1) behave
similarly. Requiring full accuracy typically results in a smaller number of iter-
ations but longer CPU time. The looser accuracy choice (εGLTR = 0.1) appears to
be globally less efficient. The full-accuracy version excels in terms of iteration
numbers, but pays a heavy price in computing time.
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Fig. 6. CPU time performance profile for the FILTRANE variants depending on the requested

subproblem accuracy.

3.4 Filter Management

We now turn to the numerical appraisal of the various filter management issues,
starting with the value of τmax, the maximal trust-region relaxation parameter
in (7). The default value τmax = 1000 again provides the best reliability together
with the choice τmax = 10000, but the difference is slight relative to the variant
using τmax = 100, which solves 108 of the 122 problems. The choice τmax = 1,
which amounts to imposing the trust-region constraint (although using the fil-
ter to accept new iterates) is less reliable (103/122). These conclusions are rein-
forced by the performance profiles of Figures 7 and 8. They indicate that expand-
ing the trust-region is definitely useful, at least within the framework of the
filter technique, where the value of τk crucially depends on filter acceptability.

Interestingly, enforcing the trust-region constraint (τmax = 1) seems to be
globally advantageous if one wishes to reduce the number of filter entries, as is
shown in Figure 9.

We next consider the numerical effect of extending the definition of filter
entries by allowing them to be unsigned (see (18)). Our experiments show a
slightly increased reliability (109/122 versus 106/122) with a modest gain in
efficiency, both in iterations and time. Figure 10 shows that this gain is obtained
at the cost of including more entries in the filter, as can be expected.
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Fig. 7. Iteration performance profile for the FILTRANE variants depending on the trust-region

relaxation factor τmax.
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Fig. 8. CPU time performance profile for the FILTRANE variants depending on the trust-region

relaxation factor τmax.
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Fig. 9. Filter size performance profile for the FILTRANE variants depending on the trust-region

relaxation factor τmax.

In our default variant, we selected (11), which can be seen as using the filter
entry violation to prescribe the filter margin size. We nevertheless tested vari-
ants using (12) (using the current violation instead), and (13) (using the smallest
of these two violations). They appear to be slightly less reliable (107/122), and
marginally less efficient.

We complete our investigation of filter management by considering the im-
pact of the choice of the filter margin εθ . The default variant uses εθ = 0.001,
but we also tested variants with εθ = 0.1, 0.01 and 0.0001. The default choice
once more provides the best reliability, but all other choices still solved 108/122
problems. The differences among variants remain small.

3.5 Weak Acceptance Criterion

The weak acceptance rule (21) does not appear to bring any improvement be-
cause the default variant compares favorably with the variants that use it with
κW = 0.1 and εW = 1, 2, or 3, both in reliability (109/122 versus 107, 106, and
108, respectively) and efficiency.

3.6 Preconditioning

Although clearly crucial in practice, the question does not lend itself to much dis-
cussion here, since we have mentioned the fact that different preconditioning-
dependent stopping criteria make efficiency comparisons hard to interpret.
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Fig. 10. Filter size performance profile for the FILTRANE variants using signed or unsigned filter

entries.

We may compare the reliability scores of the default (unpreconditioned) vari-
ant (109/122) with its diagonally preconditioned version (103/122) or its vari-
ant using a banded matrix of semibandwidth 5 (107/122), but these measures
obscure the fact that some problems (GLIDER, CAMSHAPE, ROCKET, FLOSP2TL,
ROTDISC, CHEMRCTA, FLOSP2HH, and FLOSP2TL) simply require preconditioning
to be solved, while preconditioning prevents convergence on others (POWELLSQ,
TRAINF, CORKSCRW, YATP2SQ). Experience with specific classes of problems,
therefore, remains the ultimate deciding factor, but the fact that FILTRANE
allows preconditioning (user-defined included) is clearly valuable.

3.7 Other Issues

We conclude our experimental analysis of the FILTRANE package by briefly
mentioning some remaining issues.

We also investigated whether keeping dominated filter entries in the fil-
ter might save time at the expense of memory, but we could not isolate any
significant difference, possibly because the prefiltering technique described
above is already a fairly efficient process for comparing trial and filter points.

We finally tested grouping equations or inequalities and balancing those
groups, as described in Gould et al. [2005], but obtained results entirely parallel
to those reported in that reference. These indicate that keeping as many groups
as possible appears beneficial, and that the effect of balancing the groups is
limited on the CUTEr test problems.
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4. CONCLUSION

We have presented FILTRANE, a new Fortran 95 package for solving nonlin-
ear least-squares and nonlinear feasibility problems, and have shown that
the main feature of the underlying algorithm (use of a multidimensional
unsigned filter) produces significant gains in reliability and efficiency com-
pared to a more classical trust-region approach. FILTRANE is available online
at http://galahad.rl.ac.uk/galahad-www/ as part of the GALAHAD library.

As a stand-alone package, FILTRANE appears to be a reliable and efficient
package for the solution of sets of nonlinear equations and nonlinear least-
squares problems. Its potential use in conjunction with other software includes
the solution of the restoration phase in filter methods for constrained optimiza-
tion, which motivated its development.

Extensive numerical experiments were conducted to investigate the depen-
dence of FILTRANE on some of its algorithmic parameters. This investigation,
the first of its kind ever conducted for filter methods, indicates that this class
of algorithm does not depend too strongly on the choice of these parameters.
As always, the true potential of the FILTRANE package will only be correctly
assessed with its continued use in a variety of applications, but the results
presented here are clearly encouraging.
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