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Abstract. It has long been known that barrier algorithms for constrained optimization can produce a sequence
of iterates converging to a critical point satisfying weak second-order necessary optimality conditions, when
their inner iterations ensures that second-order necessary conditions hold at each barrier minimizer. We show
that, despite this, strong second-order necessary conditions may fail to be attained at the limit, even if the
barrier minimizers satisfy second-order sufficient optimality conditions.
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1. Introduction

We consider the constrained optimization problem

minimize f(x) (1)

subject to

ci (x) ≥ 0 for all i ∈ I, (2)

where f and theci mapRn into R andI is a finite set of indices. We assume thatf(x)
and theci (x) are twice continuously differentiable on an open set containing

F = {x ∈ Rn | ci (x) ≥ 0 for all i ∈ I}.
Our principal interest is in identifying nonlinear programming methods which, under
reasonable assumptions, are capable of ensuring convergence to points at which second-
order necessary optimality conditions are satisfied. When the problem is unconstrained,
it is well known that a number of optimization techniques (principally trust-region-, but
also linesearch-, based, see Moré [14], Shultz, Schnabel and Byrd [17], McCormick [13],
and Moré and Sorensen [15]) are capable of guaranteeing convergence to second-order
points.
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Let `(x, y) be the Lagrangian function

`(x, y) = f(x)−
∑
i∈I

yi ci (x). (3)

Under suitable constraint qualifications (see Gould and Tolle [11], Mangasarian [12],
and the papers quoted therein), it is well known that a (local) solutionx∗ of (1)–
(2), together with an associated set of Lagrange multipliersy∗, satisfies the first-order
(Karush-Kuhn-Tucker) necessary conditions

∇x`(x∗, y∗) = 0 (4)

ci (x∗) ≥ 0 and (y∗)i ≥ 0 for all i ∈ I (5)

and ci (x∗)(y∗)i = 0 for all i ∈ I, (6)

as well as thestrongsecond-order necessary condition

sT∇xx`(x∗, y)s≥ 0 for all s ∈ N+, (7)

where

N+ =
{

s ∈ Rn
∣∣∣∣ sT∇xci (x∗) = 0 for all i ∈ { j ∈ A(x∗) | (y∗) j > 0} and

sT∇xci (x∗) ≥ 0 for all i ∈ { j ∈ A(x∗) | (y∗) j = 0}
}
, (8)

and

A(x) = {i ∈ I | ci (x) = 0}
is the active set atx. The second-order necessary conditions given here are those given
by Fletcher [8] Section 9.3). The difficulty with these conditions is that they are not
expressible in a computationally convenient form. Indeed, even establishing that the
strong second-order conditions are satisfied is, in general, an NP-hard problem (see
Murty and Kabadi [16], and Vavasis [18]). Significantly weaker conditions are given
by, for instance, Fiacco and McCormick [7] Section 2.2) and Gill, Murray and Wright
[10] Section 3.4), which are equivalent to requiring that the solution at the constrained
minima under consideration is strictly complementary, that is

{i ∈ A(x∗) | (y∗)i = 0} = ∅, (9)

and thus that

N+ = N def=
{
s ∈ Rn

∣∣∣ sT∇xci (x∗) = 0 for all i ∈ A(x∗)
}
. (10)

While such an assumption is realistic for linear programming,—all linear programs have
such solutions (see, Wright [20], page 28), and many interior-point methods find one—it
frequently does not hold for nonlinear programs. On the other hand, the advantage of
requiring (9) is that the second-order optimality conditions reduce to checking that the
Hessian of the Lagrangian is positive (semi-) definite on the manifold (10) rather than
in the cone (8). We shall call the requirement that

sT∇xx`(x∗, y)s≥ 0 for all s ∈ N (11)
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a weaksecond-order necessary condition. That (11) is weaker than (7) is clear once
one realizes that the weak condition is satisfied by themaximizerof the quadratic
programming problem

min
x∈Rn

x≥0

−‖x‖22,

while (4)–(6) and the strong condition are together both necessary and sufficient for
local optimality of general quadratic programs (see Contesse [5], and Borwein [4]).

A number of algorithms for solving (1)–(2) have been shown to converge to points
at which the weak second-order necessary conditions hold (see, for example, Gay [9],
Bannert [2], Bonnans and Launay [3], Facchinei and Lucidi [6], and Vicente [19]).
In particular, Auslender [1] has shown that that, if one traces the trajectory of points
at which second-order necessary conditions hold for the barrier function—such points
may be found by applying trust-region or line-search methods to the unconstrained
barrier problems—then the limit point will satisfy the weak second-order conditions
for (1)–(2). However, to our knowledge, no algorithm has been shown to converge to
a point at which the strong conditions hold. In this paper, we ask the natural question as
to whether interior-point (or, specifically, barrier) methods might do so. It is our purpose
to show that, in general, the limit of this barrier trajectory may fail to satisfy the strong
second-order necessary conditions.

2. A simple counter-example

We shall consider the logarithmic barrier function

b0(x, µ) = f(x)− µ
∑
i∈I

logci (x),

and the reciprocal barrier functions

bα(x, µ) = f(x)+ µ
α

∑
i∈I

1

(ci (x))α
, (12)

for α > 0.1 These functions depend on the barrier parameterµ > 0. In a typical
barrier method, (approximate) stationary points of the barrier functions are traced as the
barrier parameter is reduced to zero, and, under reasonable assumptions, this leads to
convergence to a Karush-Kuhn-Tucker point.

The example we shall exhibit is a bound-constrained quadratic program of the form

min
x∈Rn

x≥0

1
2 xT Hx, (13)

1 The scaling factorα in (12) is, perhaps, nonstandard, but may easily be assimilated into the barrier
parameter. This allows for a uniform treatment of both barrier functions, asα = 0 corresponds to the
logarithmic barrier function.



436 Nicholas I. M. Gould, Philippe L. Toint

whereH is a symmetric, indefiniten× n matrix. For future reference, when (1)–(2) is
of the form (13), the first and second derivatives of the barrier functions above are given
by

∇xbα(x, µ) = ∇x f(x)− µX−(α+1)e (14)

and

∇xxbα(x, µ) = ∇xx f(x)+ µ(α+ 1)X−(α+2),

for all α ≥ 0, wheree is the vector of all ones and whereX = diag(x1, . . . , xn). We
also note that

∇xx`(x, y) = H (15)

because of (3).
We now choose a sequence{µk} of barrier parameters converging to zero and we

defineH to be of the form

H = I − (α+ 3
2)

zzT

‖z‖22
(16)

where I is the identity matrix and where we have chosenz = e− ne1, the vectore1
being the first vector of the canonical basis. We then verify that

zTe= eTe− neT
1 e= n− n = 0, (17)

zTe1 = eTe1− neT
1 e1 = 1− n (18)

and

‖z‖22 = eTe+ n2eT
1 e1− 2neT

1 e= n+ n2− 2n = n(n− 1). (19)

The definition (16) and (17) together imply that

He= e. (20)

Now let

xk = µ
1
α+2
k e. (21)

We then verify thatxk is a strict local minimizer of the problem

min
x∈Rn

x≥0

bα(x, µk) (22)

that satisfies second-ordersufficientoptimality conditions for this problem. Indeed, the
first-order optimality condition holds since

∇xbα(xk, µk) = Hxk− µX−(α+1)
k e= µ

1
α+2
k e− µ1− α+1

α+2
k e= µ

1
α+2
k (e− e) = 0,
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where we used (14), (20) and (21), and we have also that

∇xxbα(xk, µk) = H + µk(α+ 1)X−(α+2)
k = 1

2 I + (α+ 3
2)

(
I − zzT

‖z‖22

)

is obviously positive definite since the first term of the last right-hand side is positive
definite and the last term in brackets is an orthogonal projector, which is therefore
positive semidefinite. (Note thatxk is not the global minimizer of (22) for anyα, as
ultimately the negative curvature alonge1 becomes dominant for largex.) As expected,
{xk} converges to zero, a critical point of problem (13). However, using (16), (18) and
(19), we find that

eT
1∇xx`(x, y)e1 = eT

1 He1 = 1− (α+ 3
2)
(eT

1 z)2

‖z‖22
= 1− (α+ 3

2)
(n− 1)2

n(n− 1)
= n− (α+ 3

2)(n− 1)

n
,

which is strictly negative for all values ofn satisfying the inequality

n >
α+ 3

2

α+ 1
2

.

In particular, it is negative forn ≥ 4 if the logarithmic barrier function (α = 0) is
considered. Bute1 belong toN+ = {x ∈ Rn | x ≥ 0}, and thus the strong second-order
necessary conditions do not hold at the origin.

3. Conclusion

We have shown that the strong second-order necessary optimality conditions for in-
equality constrained problems may not hold at limit points of a sequence of barrier
minimizers, even if each of these minimizers satisfies the second-order sufficient condi-
tions for unconstrained minimization. This negative conclusion is valid for a large class
of barrier functions, including the popular logarithmic and reciprocal barriers.

This result casts doubts on the possibility of obtaining strong second-order conver-
gence properties for a number of practical interior-point methods for nonlinear program-
ming. However, it also raises the intriguing question of determining if there are barrier
functions, outside the class considered here, for which the desired strong second-order
convergence properties are satisfied. As active-set methods may also have trouble with
our example (because it has zero Lagrange multipliers), the more general question of
whether there are effective methods which ensure convergence to strong second-order
points remains open.
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