SIAM J. MATRIX ANAL. APPL. (© 2000 Society for Industrial and Applied Mathematics
Vol. 21, No. 4, pp. 1300-1317

CONSTRAINT PRECONDITIONING FOR INDEFINITE LINEAR
SYSTEMS*

CARSTEN KELLER', NICHOLAS 1. M. GOULD*¥, AND ANDREW J. WATHENT

Abstract. The problem of finding good preconditioners for the numerical solution of indefinite
linear systems is considered. Special emphasis is put on preconditioners that have a 2 x 2 block
structure and that incorporate the (1,2) and (2,1) blocks of the original matrix. Results concerning
the spectrum and form of the eigenvectors of the preconditioned matrix and its minimum polynomial
are given. The consequences of these results are considered for a variety of Krylov subspace methods.
Numerical experiments validate these conclusions.
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1. Introduction. In this paper, we are concerned with investigating a new class
of preconditioners for indefinite systems of linear equations of a sort which arise in con-
strained optimization as well as in least-squares, saddle-point, and Stokes problems.
We attempt to solve the indefinite linear system

- IEEH
— —

where A € R™"*" is symmetric and B € R™*™. Throughout the paper we shall assume
that m < n and that A is nonsingular, in which case B must be of full rank.

Ezample 1.1 (quadratic programming problem). Consider the problem of mini-
mizing a function of n variables subject to m linear equality constraints on the vari-
ables, i.e.,

%xTAx — Tz

(1.2) minimmize f(z)

subject to Bx = d.
Any finite solution to (1.2) is a stationary point of the Lagrangian function
L(z,A) = 32" Az — "z + N (Bz — d),

where the \; are referred to as Lagrangian multipliers. On differentiating L with
respect to x and A the solution of (1.2) is readily seen to satisfy n + m linear equations
of the form (1.1), with 1 =z, zo = A, b1 = ¢, and by = d. For this application these
are known as the Karush-Kuhn-Tucker (KKT) conditions.

Ezample 1.2 (saddle-point problems). Mixed finite element approximations of
variational problems are expressible in the following common form.
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Find v and p in certain spaces such that

(1.3) a(u,v) 4+ b(v,p) = (f,v),
b(u, q) = (g,9)-

For appropriate v and ¢ (1.3) leads to systems of the form (1.1), where z; are the
coeflicients of the approximation of u and x5 are the coefficients of the approximation
of p with respect to chosen bases. See, for example, Quarteroni and Valli [23, Chapters
7, 9].

Krylov subspace methods, which are among the most important iterative meth-
ods currently available, apply techniques that involve orthogonal projections onto
subspaces of the form

K(A,b) = span{b, Ab, A%b, ... , A" b, ... }.

The most common schemes that use this idea are the method of conjugate gradi-
ents (CG) for symmetric positive definite matrices, the method of minimum residuals
(MINRES) for symmetric and possibly indefinite matrices, and the generalized min-
imum residual method (GMRES) for unsymmetric matrices, although many other
methods are available; see, for example, Greenbaum [13].

One common feature of the above-mentioned methods is that the solution of the
linear system (1.1) is found within n+m iterations in exact arithmetic; see Joubert and
Manteuffel [15, p. 152]. For very large (and possibly sparse) linear systems this upper
limit on the number of iterations is often not practical. The idea of preconditioning
attempts to improve on the spectral properties, i.e., the clustering of the eigenvalues,
such that the total number of iterations required to solve the system to within some
tolerance is decreased substantially.

In this paper, we are specifically concerned with nonsingular preconditioners of
the form

(1.4) g:[g fff],

where G € R™*"™ approximates, but is not the same as, A. The inclusion of the exact
representation of the (1,2) and (2,1) matrix blocks in the preconditioner, which are
often associated with constraints (see Example 1.1), leads one to hope for a more
favorable distribution of the eigenvalues of the (left-)preconditioned linear system

(1.5) Gl Ax =G '

Since these blocks are unchanged from the original system, we shall call G a constraint
preconditioner. A preconditioner of the form G has recently been used by Luksan and
Vlcek [16] in the context of constrained nonlinear programming problems; see also
Coleman [7], Polyak [21], and Gould, Hribar, and Nocedal [12]. Here, we derive
arguments that confirm and extend some of the results in [16] and highlight the
favorable features of a preconditioner of the form G. Note that Golub and Wathen [11]
recently considered a symmetric preconditioner of the form (1.4) for problems of the
form (1.1), where A is nonsymmetric.

We comment that for certain partial differential equation problems, which give rise
to linear systems of the form (1.1), extremely effective positive definite preconditioners
have been proposed. These make use of particular structures in the underlying prob-
lems but they are not necessarily of the form (1.4). For example, for Stokes problems
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describing slow viscous flow of an incompressible fluid see Silvester and Wathen [26].
The preconditioning discussed in this paper does not assume any underlying structure
except for the algebraic block structure indicated in (1.1).

In section 2, we determine the eigensolution distribution of the preconditioned
system and give lower and upper bounds for the eigenvalues of G~' A in the case
when the submatrix G is positive definite. Section 3 describes the convergence be-
havior of a Krylov subspace method such as GMRES, section 4 investigates possible
implementation strategies, while in section 5 we give numerical results to support the
theory developed in this paper.

2. Preconditioning .A. For symmetric (and in general normal) matrix systems,
the convergence of an applicable iterative method is determined by the distribution of
the eigenvalues of the coefficient matrix. In particular, it is desirable that the number
of distinct eigenvalues, or at least the number of clusters, be small, because in this
case convergence will be rapid. To be more precise, if there are only a few distinct
eigenvalues, then optimal methods like CG, MINRES, or GMRES will terminate (in
exact arithmetic) after a small and precisely defined number of steps. We prove
a result of this type below. For nonnormal systems, convergence, as opposed to
termination, is not so readily described; see Greenbaum [13, p. 5].

2.1. Eigenvalue distribution. The eigenvalues of the preconditioned coeffi-
cient matrix G~'.A may be derived by considering the generalized eigenvalue problem

@ ER M PRI

Let QR = [Y Z ][ RT 0T ]T be an orthogonal factorization of BT, where
R € R™*™ is upper triangular, Y € R™*™ and Z € R"*("=™) is a basis for the
nullspace of B. Premultiplying (2.1) by the nonsingular and square matrix

zZT 0
YT o
0 I

and postmultiplying by its transpose gives

ZTAZ ZTAY 0 T, Zt'Gz ZTGYy 0 T,
(2.2) YTAZ YTAY R T, | =X| YTGZ YTGY R Ty |,
0 RT 0 Y 0 RT 0 Y

with z = Zz,+Y z,, and where we made use of the equalities BZ = 0 and R = (BY)”.
Performing a simultaneous sequence of row and column interchanges on both matrices
in (2.2) reveals two lower block-triangular matrices

i RT 0 0 i RT 0 0
A=| zTay 2zTAz o |, ¢G=| z'cy ZTGZ o |,
YTAY YTAZ R YTGYy YTGZ R

and thus the preconditioned coefficient matrix G=!A is similar to

m (n—m) m

I 0 0 m
(2.3) P=GtA=|0© (ZTGZ)"Y(ZTAZ) 0 | (n—m) .

T T I m
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Here, the precise forms of ©, T, and I' are irrelevant for the argument that follows;
they are in general nonzero. We just proved the following theorem.

THEOREM 2.1. Let A € RTm)X(+m) be o symmetric and indefinite matriz of
the form

A BT
15 0]
where A € R™ " s symmetric and B € R™ " is of full rank. Assume Z is an
n X (n —m) basis for the nullspace of B. Preconditioning A by a matriz of the form

G BT

where G € R™"™ s symmetric, G # A, and B € R™*™ is as above, implies that the
matriz G LA has

(1) an eigenvalue at 1 with multiplicity 2m, and

(2) n —m eigenvalues which are defined by the generalized eigenvalue problem

ZTAZx, = \ZTGZx,.

Note that, if either Z7 AZ is positive definite or we choose G so that Z7 G Z is pos-
itive definite, then the indefinite constrained preconditioner applied to the indefinite
linear system (1.1) yields the preconditioned matrix P which has real eigenvalues.

Remark 2.2. In the above argument, we assumed that B has full row rank and
consequently applied an orthogonal factorization of B, which resulted in an upper
triangular matrix R € R™*™. If B does not have full row rank, i.e., rank(B) = m —k
for some integer kK < m, then k zero rows and columns can be deleted from both
matrices in (2.2), thus giving a reduced system of dimension (n+m—k) x (n+m—k).
This removal of the redundant information does not impose any restriction on the
proposed preconditioner, since all mathematical arguments apply equivalently to the
reduced system of equations.

2.2. Eigenvector distribution. We mentioned above that the termination of a
Krylov subspace method is related to the location of the eigenvalues and the number of
corresponding linearly independent eigenvectors. In order to establish the association
between eigenvectors and eigenvalues, we expand the general eigenvalue problem (2.2),
yielding

(2.4) ZTAZx, + ZTAY xy = N [Z7GZx, + ZTGY x],
(2.5) YTAZzx, + YT AY 2, + Ry=A[Y'GZz, +Y"GYz, + Ry,
Rz, = ARz,

From (2.6), it may be deduced that either A =1 or z, = 0. In the former case, (2.4)
and (2.5) simplify to

ZYAZx, + ZVAY 2, = Z7GZx, + Z'GY z,,
YTAZx, + Y AY 2, =Y GZx, + YT GYx,,

which can consequently be written as

(2.7) QTAQu = Q" GQu,
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where @) = [ Y Z ] and w = [ mg ol ]T. Since @ is orthogonal, the general

eigenvalue problem (2.7) is equivalent to considering
(2.8) Aw = oG,

where w # 0 if and only if ¢ = 1. There are m linearly independent eigenvectors
[ 07 0T 4T ]T corresponding to w = 0, and a further ¢ (1 <4 < n) linearly inde-
pendent eigenvectors (corresponding to eigenvalues o = 1 of (2.8)).

Now, suppose A # 1, in which case =, = 0. Equations (2.4) and (2.5) yield

(2.9) ZTAZx, = \ZTGZx.,,
(2.10) YTAZz,+ Ry =\[Y'GZz. + Ry].

The generalized eigenvalue problem (2.9) defines n — m eigenvalues, where j (1 < j <
n —m) of these are not equal to 1 and for which two cases have to be distinguished.
If x, # 0, y must satisfy

[YTAZ - A\Y'GZ]x. = (A—1)Ry,

T OT

: T

from which follows that the corresponding eigenvectors are defined by [ T
If x, = 0, we deduce from (2.10) that

Y

Ry = ARy,

and hence that y = 0 since A # 1. As [ o x?:; y? ]T = 0 in this case, no extra
eigenvectors arise.

Summarizing the above, it is evident that P has m + ¢ 4+ j eigenvectors. We
now show that, under realistic assumptions, these eigenvectors are in fact linearly
independent.

THEOREM 2.3. Let A € RTm)X(4+m) be o symmetric and indefinite matriz of
the form

A BT
Als %]
where A € R™*" js symmetric and B € R™*" is of full rank. Assume the precondi-
tioner G is defined by a matrix of the form

G BT

where G € R™*™ is symmetric, G # A, and B € R™*™ is as above. Let Z denote an
n x (n —m) basis for the nullspace of B and suppose that ZTGZ is positive definite.
The preconditioned matriz G~* A has n + m eigenvalues as defined by Theorem 2.1
and m + 1 + j linearly independent eigenvectors. There are

(1) m eigenvectors of the form [ or 0T 4T ]T that correspond to the case
A=1;
(2) i (0 < i < n) eigenwectors of the form [zl =zl yT }T arising from

Aw = cGw with w = [ ol o7 ]T linearly independent, 0 = 1, and A = 1;

y
and



(3) j (0 <j <n—m) eigenvectors of the form |
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T OT

to the case A # 1.

Proof. To prove that the m + i + j eigenvectors of P are linearly independent, we

need to show that

0 --- 0
21 0 - 0
RURN

agl) zzgz) xzz(g) ]
+ xygz) xyz(?)
aﬁ) L ?J§2) ny)
n® @]
+ 0 0
yt? ysY

T

Y

@ 7

a)
o

o ]

o

] " that correspond

implies that the vectors a®) (k= 1,...,3) are zero vectors. Multiplying (2.11) by
A and G~!, and recalling that in the previous equation the first matrix arises from

the case A\, =1 (k=1,...,m), the second matrix from the case \y =1 and o, = 1
(k=1,...,i), and the last matrix from A\, # 1 (k=1,...,7), gives
1 2
0 o 0 al" 2,® @[ a?
(2.12) o -~ 0 : + xng) xy§2) :
y§1) o yg) a'y ygz) yz@) az(?)
: (3)
A1 mz(l‘s) xzf) ay 0
+ 0 - 0 Co =
A\ e y o 0

Subtracting (2.11) from (2.12) we obtain

(3)
A —1 ng?’) x2§3) ay 0
A1 ] v o ]| e 0
which simplifies to
(3)
n e[
(2.13) 0 0 S - ,
yEB) yj(_B) a§3) 0
since A\, #1 (k=1,...,7).
The assumption that Z7GZ is positive definite implies that x, ,(j) (k=1,...,7)
in (2.13) are linearly independent and thus that af) =0 (k=1,...,7). Similarly,
a,(cz) =0 (k=1,...,4) follows from the linear independence of | IZECQ)T xy,(f)T 1T

(k=1,...,i), and thus (2.11) simplifies to

1
0O --- 0 ag ) 0
o --- 0 : = :
p e 1] 0
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However, y,(cl) (k = 1,...,m) are linearly independent and thus ag) =0 (k=
1,...,m). d

Remark 2.4. Note that the result of Theorem 2.3 remains true if Z7 (yA + 0G)Z
is positive definite for some scalars v and o; see Parlett [20, p. 343] for details.

To show that the eigenvector bounds of Theorem 2.3 can in fact be attained,
consider the following two examples.

Ezample 2.5 (minimum bound). Consider the matrices

120 1 30
A=|2 2 1], ¢=1|3 4 1],
010 010

so that m = 1 and n = 2. The preconditioned matrix P has an eigenvalue at 1 with
multiplicity 3, but only one eigenvector arising from case (1) in Theorem 2.3. This
eigenvector may be taken to be [ 0 0 1 }T.

Ezample 2.6 (maximum bound). Let A € R3*3 be defined as in Example 2.5, but
assume G = A. The preconditioned matrix P has an eigenvalue at 1 with multiplicity
3 and clearly a complete set of eigenvectors. These may be taken to be the columns
of the identity matrix.

2.3. Eigenvalue bounds. It is apparent from the calculations in the previous
section that the eigenvalue at 1 with multiplicity 2m is independent of the choice of
G in the preconditioner. On the contrary, the n — m eigenvalues that are defined by
(2.9) are highly sensitive to the choice of G. If G is a close approximation of A, we
can expect a more favorable distribution of eigenvalues and consequently may expect
faster convergence of an appropriate iterative method. In order to determine a good
factorization of A, it will be helpful to find intervals in which the n — m eigenvalues
are located. If GG is a positive definite matrix, one possible approach is provided by
Cauchy’s interlace theorem.

THEOREM 2.7 (Cauchy’s interlace theorem). Suppose T € R™ ™ is symmelric
and

T [ H x } 7
* %
where H € R™*™ with m < n. Label the eigenpairs of T and H as

Tzi =iz, i=1,...,n, a;<ay<- < ap,
Hyz:)\zyla 1=1,...,m, A< A <.

Then

akg)\kgakﬂn,m), k=1,...,m.

Proof. See Parlett [20, p. 203]. 0
The applicability of Theorem 2.7 is verified by recalling the definitions of ) and Z
given in the previous section and by considering the generalized eigenvalue problems

(2.14) QTAQu = aQTGQu
and

(2.15) ZTAZw = N\ZT G Zw.
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Since G is positive definite, so is QT GQ, and we may therefore write

0TGQ = ZtGz ZTGy _| L 0 LT RT
YTGZ YTGY R S o ST |
M MT

where LLT = ZTGZ, R=YTGZL™T, and SST = YTGY — RRT. Rewriting (2.14)
and (2.15) gives

(2.16) M'QTAQM Tu = au
and
(2.17) L 1ZTAZL T2 = )z,

where w = MTv and z = LTw.

Now, since the matrix M~ 1QTAQM~T is similar to G=1A, (2.16) defines the
same eigenvalues a; (i = 1,...,n) as G~1A. We may therefore apply Theorem 2.7
directly. The result is that the n — m eigenvalues A; of (2.9) satisfy ap < M\ < @ggm
(k=1,...,n—m). In particular, the \; are bounded by the extreme eigenvalues of
G~'A so that the \; will necessarily be clustered if G is a good approximation of A.
Furthermore, a good preconditioner G for A implies that Z7GZ is at least as good
a preconditioner for ZTAZ. To show that the preconditioner Z7GZ can in fact be
much better, consider the following example, taken from the CUTE collection [5].

Example 2.8. Consider the convex quadratic programming problem BLOWEYC,
which may be formulated as

minimize u(s)? Au(s) + u(s)Tw(s) — v(s)T Au(s) — 2.0v(s) w(s) — u(s)Tv(s)

1
subject to Aw(s) = u(s), wu(s) € [-1,1], and / u(s) ds = 0.4.
0

Selecting a size parameter of 500 discretization intervals defines a set of linear equa-
tions of the form (1.1), where n = 1002 and m = 502. Letting G be the diagonal of
A, we may deduce from the above theory that the extreme eigenvalues of G~ A give
lower and upper bounds for the n — m eigenvalues defined by the general eigenvalue
problem (2.9). In Figure 2.1(a), the 1002 eigenvalues of G~ A are drawn as vertical
lines, whereas Figure 2.1(b) displays the 500 eigenvalues of (ZTGZ)"1ZT AZ.

The spectrum of Figure 2.1(a) is equivalent to a graph of the entire spectrum of
P, but with an eigenvalue at 1 of multiplicity 502 removed. Rounded to two decimal
places, the numerical values of the two extreme eigenvalues of G~'A4 are 0.02 and
1.98, whereas the extreme eigenvalues of (Z7GZ)~'ZT AZ are given by 0.71 and 1.
Note that for this example a large number of eigenvalues of G~ A are clustered in
the approximate intervals [0.02,0.38] and [1.65,1.97]. The eigenvalue distribution in
Figure 2.1(b) reveals that there is one eigenvalue near 0.71 and a group of eigenvalues
near 1. It follows that any appropriate iterative method which solves (1.5) can be
expected to converge in a very small number of steps; this is verified by the numerical
results presented in section 5.

It is readily seen from Example 2.8 that in this case the bounds provided by
Theorem 2.7 are not descriptive in that there is significantly more clustering of the
eigenvalues than implied by the theorem.
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(a) Eigenvalues of G™1A (b) Eigenvalues of (ZTGZ)~'ZTAZ

Fic. 2.1. Continuous wvertical lines represent the eigenvalues of (a) G~'A and (b)
(ZzTGcz)~1zT AZz.

3. Convergence. In the context of this paper, the convergence of an iterative
method under preconditioning is influenced not only by the spectral properties of
the coefficient matrix, but also by the relationship between the dimensions n and m.
In particular, it follows from Theorem 2.1 that in the special case when n = m the
preconditioned linear system (1.5) has only one eigenvalue at 1 with multiplicity 2n.
For m < n, matrix (2.3) gives an eigenvalue at 1 with multiplicity 2m and n —m
(generally distinct) eigenvalues whose value may or may not be equal to 1. Before
we examine how these results determine upper bounds on the number of iterations
of an appropriate Krylov subspace method, we recall the definition of the minimum
polynomial of a matrix.

DEFINITION 3.1. Let A € ROm)x(n+m) — The monic polynomial f of minimum
degree such that f(A) =0 is called the minimum polynomial of A.

The importance of this definition becomes apparent when considering subsequent
results and by recalling that similar matrices have the same minimum polynomial.

Krylov subspace theory states that iteration with any method with an optimality
property such as GMRES will terminate when the degree of the minimum polynomial
is attained; see Saad and Schultz [25, Proposition 2] and also Campbell et al. [6] in
the case of GMRES. (To be precise, the number may be smaller in special cases where
b is a combination of a few eigenvectors that affect the “grade” of A with respect to
b.) In particular, the degree of the minimum polynomial is equal to the dimension
of the corresponding Krylov subspace (for general b) (see Saad [24, Proposition 6.1]),
and so the following theorems are relevant.

THEOREM 3.2. Let A € RTm)X(4+m) be o symmetric and indefinite matriz of
the form

T

Als %]

where A € R™*" is symmetric and B € R™*™ is of full rank. Let m = n. If A is
preconditioned by a matrix of the form
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where G € R™" G # A, and B € R™*" js as above, then the Krylov subspace
KC(P,b) is of dimension at most 2 for any b.

Proof. Writing the preconditioned system (2.3) in its explicit form, we observe
that P is in fact given by

I 0
(3.) ENL
where T is nonzero if and only if A # G. To show that the dimension of the correspond-
ing Krylov subspace is at most 2, we need to determine the minimum polynomial of
the system. It is evident from (3.1) that the eigenvalues of P are all 1 and P — I # 0.
However, (P — I)? = 0 and so the minimum polynomial is of order 2. d

Remark 3.3. It is of course possible in the case n = m to solve the (square)
constrained equation Bz = bs and then to obtain x5 = B_T(bl — Azq). This gives
motivation for why the result of Theorem 3.2 is independent of G.

Remark 3.4. The important consequence of Theorem 3.2 is that termination of
an iteration method such as GMRES will occur in at most two steps for any choice
of b, even though the preconditioned matrix is not diagonalizable (unless A = G).

THEOREM 3.5. Let A € RTm)X(+m) be o symmetric and indefinite matriz of
the form

A BT
Al ]

where A € R™" is symmetric and B € R™*™ is of full rank. Assume m <n and A
is nonsingular. Furthermore, assume A is preconditioned by a matriz of the form

G BT
where G € R™" s symmetric, G # A, and B € R™*" is as above. If ZTGZ is
positive definite, where Z is an n x (n — m) basis for the nullspace of B, then the
dimension of the Krylov subspace IC(P,b) is at most n —m + 2.

Proof. From the eigenvalue derivation in section 2.1, it is evident that the char-
acteristic polynomial of the preconditioned linear system (1.5) is

n—m

(P -1 J[ (P = ND).

i=1

To prove the upper bound on the dimension of the Krylov subspace, we need to show
that the order of the minimum polynomial is less than or equal to n — m + 2.

Expanding the polynomial (P —I) [T'-" (P — A\;I) of degree n—m+1, we obtain
a matrix of the form

0 0 0
(3:2) L= s—xn|e (S=DIL"s-xD) o |,
Dy PISM S - AD) 0

where S = (ZTGZ) 1 ZT AZ and

n—m n—m—1
By =T H (I—=XNI)+T H (S—=MNI)| ©+TT,_,,.
=1 =1
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Here, ¥,,_,, is defined by the recursive formula

n—m—2

IT s-xn

i=1

Vym = |Vpom—1 + (C] (I - )\n—ml) (n —-m > 2)7

with base cases U1 = 0 and Uy = O(1 — A\ 1).

Note that the (2,1), (2,2), and (3, 2) entries of matrix (3.2) are in fact zero, since
the \; (i = 1,...,n —m) are the eigenvalues of S, which is similar to a symmetric
matrix and is thus diagonalizable. Thus, (3.2) may be written as

0 0 0
(3.3) 0o 0 0],
@y 0 0
and what remains is to distinguish two different cases for the value of ®,_,,, that is,
®,,_m =0 and ®,,_,, # 0. In the former case, the order of the minimum polynomial
of P is less than or equal to n —m+1, and thus the dimension of the Krylov subspace
KC(P,b) is of the same order. In the latter case, the dimension of IC(P,b) is less than
or equal to n —m + 2 since multiplication of (3.3) by another factor (P —I) gives the
zero matrix. O
The upper bound on the dimension of the Krylov subspace, as stated in The-
orem 3.5, can be reduced in the special case when (Z1GZ)~1(ZT AZ) has repeated
eigenvalues. This result is stated in Theorem 3.7. The following (randomly generated)

example shows that the bound in Theorem 3.5 is attainable.
Example 3.6. Let A € R6%6 and BT € R6%2 be given by

2.69 1.62 1.16 1.60 0.81 —-1.97 0 —0.59
1.62 6.23 —-1.90 1.89 0.90 0.05 —0.59 0
A— 1.16 -190 401 -0.16 -0.16 -1.60 BT _ 0 2.00
1.60 1.89 —-0.16 1.45 001 —-0.89 [~ 0 0
0.81 0.90 -0.16 0.01 1.94 0.38 —0.02 0
-197 0.06 -1.60 -0.89 0.38 5.38 0.33 0.17

and assume that G = diag(A). For the above matrices the (3,1) entry of (3.3) is

0 —007
®e= [ -0.22 —0.02 ] '

It follows that the minimum polynomial is of order 6, and thus the bound given in
Theorem 3.5 is sharp.

THEOREM 3.7. Let A € RHm)X(4m) be o symmetric and indefinite matriz of
the form

A BT
|5 %)

where A € R™ ™ is symmetric and B € R™*"™ is of full rank. Assume m < n, A is
nonsingular, and A is preconditioned by a matrix of the form

G BT
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where G € R™™ is symmetric, G # A, and B € R™*" is as above. Furthermore,
let Z be an n x (n —m) basis for the nullspace of B and assume (ZTGZ)~Y(ZT AZ)
has k (1 < k < n —m) distinct eigenvalues \; (1 <i <k) of respective multiplicity
i, where Zle i =mn —m. Then the dimension of the Krylov subspace K(P,b) is at
most k + 2.

Proof. The proof is similar to the one for Theorem 3.5. In the case when
(ZTGZ)=1(ZTAZ) has k distinct eigenvalues of multiplicity u;, we may, without
loss of generality, write the characteristic polynomial of P as

k k
(P—1> 2| [[(P - XD | (P—1)( )| ] - u]
1=1 1=1
()
Expanding (t), we obtain the matrix
0 0 0
(3.4) MEu(s=xD]e (5= DITLi(S—xD) 0 |,
By, LI (S—=xnI) 0
where S = (ZTGZ) 1 ZT AZ and
k k—1
o =Y [Jd = XD +T |J](S = NI)| © + T,
i=1 i=1

Here, Uy, is given by the recursive formula

k—2

[ =D

i=1

with base cases U1 = 0 and Uy = O(1 — A\o1).

Note that the (2,1), (2,2), and (3,2) blocks of matrix (3.4) are in fact zero. It
follows that, for @ # 0, a further multiplication of (3.4) by (P — I) gives the zero
matrix and thus the dimension of Krylov subspace IC(P,b) is less then or equal to
k+2. |

To verify that the bound in Theorem 3.7 is attainable, consider the following

example.
Example 3.8. Let A € R*¥*4 G € R4, and BT € R**! be given by

U= (Vr_1+ © (I - )\kI) (]f > 2),

6 000 300 0
06 00 0300
A‘0020’G_00%0’
000 2 00 0 3

and B=[0 0 1073 107 ]. Then two of the n —m eigenvalues that are defined
by the generalized eigenvalue problem (2.9) are distinct and given by [2,4]. It follows
that the (3,1) entry of (3.4) is nonzero with

Py = [ —1071.41 |,

and so the minimum polynomial is of order 4.
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4. Implementation. There are various strategies that can be used to imple-
ment the proposed preconditioner, two of which are used in the numerical results in
section 5. The first strategy applies the standard (preconditioned) GMRES algorithm
[25], where the preconditioner step is implemented by means of a symmetric indefinite
factorization of (1.4). Such a factorization of the preconditioner may be much less
demanding than the factorization of the initial coefficient matrix if G is a considerably
simpler matrix than A. The second approach, discussed in the next section, is based
on an algorithm that solves a reduced linear system [12].

4.1. CG on a reduced linear system. In [12], Gould, Hribar, and Nocedal
propose a CG-like algorithm to solve equality constrained quadratic programming
problems such as the one described in Example 1.1. The algorithm is based on the
idea of computing an implicit basis Z which spans the nullspace of B. The nullspace
basis is then used to remove the constraints from the system of equations, thus allowing
the application of the CG method to the (positive definite) reduced system.

Assume that W,, = ZTGZ is a symmetric and positive definite preconditioner
matrix of dimension (n—m) x (n—m) and Z is an n X (n —m) matrix. The algorithm
can then be stated as follows.

ALGORITHM 4.1. PRECONDITIONED CG FOR A REDUCED SYSTEM.

(1) Choose an initial point x; satisfying Bz = bs.

(2) Compute

r = Axi — by,
(4.1) r—r— BTy,
(4.2) A USRYARS

p=-g

(3) Repeat the following steps until | (r*)TgT | — 0 is satisfied:

a=1rTg/p" Ap,
T < T1 + ap,
rt =1+ adp,
(4.3) rT T — BTy,
(4.4) gt = 2w Z7r T,
B=("Tgt /1"y,
p— —gt+PBp,
g—g",

7'%7”'+.

The vectors y in (4.1) and (4.3) are arbitrary, but in practice they are chosen to
try to make r and r* close to B”y. The computation of the preconditioned residual
in (4.4) is often the most expensive computational factor in the algorithm. Gould,

Hribar, and Nocedal [12] suggest avoiding the explicit use of the nullspace Z, but
instead computing g* by applying a symmetric indefinite factorization of

o 5 L]

This factorization also determines the vector y in (4.3), where y = v*. The vector
y in (4.1) and the preconditioned residual (4.2) are determined in a similar manner.
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In practice, (4.5) can often be factored efficiently by using the MA27 package of the
Harwell Subroutine Library when G is a simple matrix block, whereas the direct
application of MA27 to the original system (1.1) is limited by space requirements as
well as time for large enough systems [8]. In this context, the factorization consists
of three separate routines, the first two of which analyze and factorize the matrix in
(4.5). They need to be executed only once in step (1) of Algorithm 4.1. Repeated
calls to the third routine within MA27 apply forward- and backward-substitutions to
find the initial point 7 in step (1), solve for y in (4.1) and g in (4.2), and also find y
in (4.3) and g* in (4.4).

Remark 4.2. The computation of the projected residual g% is often accompanied
by significant roundoff errors if this vector is much smaller than the residual r*. Fized
precision iterative refinement is used in (4.3) to redefine r* so that its norm is closer
to that of g7. In the same manner, (4.1) is used to refine the initial residual r. The
result is a dramatic reduction of the roundoff errors in the projection operation; see
Gould, Hribar, and Nocedal [12].

Remark 4.3. The current implementations, which apply the proposed precondi-
tioner, require an explicit factorization of the indefinite matrix G. For larger systems,
the complexity of the two methods introduced in this section can grow substantially
for increasing problem dimensions and may not be feasible in comparison to the com-
plexity of methods such as (block-) diagonal and triangular preconditioners. The
authors are currently investigating a new implementation approach which is mainly
based on an adaptation of the direct solver MA27. Preliminary numerical results show
the beneficial features of the proposed approach.

5. Numerical results. We now present the results of numerical experiments
that reinforce the analysis given in previous sections. The test problems employed
are partly matrices that arise in linear and nonlinear optimization (see, for instance,
Example 1.1) and partly randomized sparse matrices which arise in areas such as
those described by Example 1.2. In particular, the problems in Table 5.1 are of the
form (1.3), with A representing a stiffness matrixz, whereas the examples in Table 5.2
are of the same form, but with A being a mass matriz or a discrete Laplacian. The
four test examples of Table 5.3 are taken from the constrained and unconstrained
testing environment (CUTE) [5], where the individual problems have the following
characteristics.

BLOWEYC is the convex quadratic programming problem

minimize u(s)? Au(s) + u(s)Tw(s) — v(s)T Au(s) — 2.00(s)Tw(s) — u(s)Tv(s)

1
subject to Aw(s) = u(s), u(s) € [-1,1], and / u(s) ds = 0.4,
0

which is a simplification of a problem given in [4]. It is part of a modeling exercise,
and the actual value of the solution is not used in a genuine practical application.

CVXQP1 is a convex quadratic program whose constraints are linear and which
has continuous first and second order derivatives. It is a purely academic problem
and has been constructed specifically for test purposes.

MOSARQP2 is also a convex quadratic problem which was first proposed by
Morales-Pérez and Sargent [17]. Once again, it is a purely academic problem which
has been constructed specifically for test purposes.

FIT2P is a dual version of a problem that originates from a model for fitting
linear inequalities to data by minimization of a sum of piecewise linear penalties.
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TABLE 5.1
Random test problems with A being a stiffness matriz (G = diag(A)).

Stiff I Stiff II  Stiff IIT Stif IV Stiff V. Stiff VI

n 578 2178 8450 8450 33282 33282
m 32 128 236 46 128 512

Nonzero entries in A 2316 9740 39948 39948 161804 161804

Nonzero entries in B 427 1871 3600 685 7726 15830
MINRES # of iterations 174 387 639 515 1579 1571
Time in seconds 0.4 3.0 18.1 12.7 170.4 175.5
PGMRES # of iterations 46 87 228 242 313 319
Time in seconds 0.2 3.5 92.4 104.2 695.7 730.6
RCG # of iterations 35 72 197 214 294 295
Time in seconds 0.1 1.0 7.7 7.6 44.8 48.7
MA27 Time in seconds 0.1 0.3 1.7 2.1 7.2 11.8

As indicated throughout, all matrices are of the form
A BT
(5.1) FE

where A € R™ " is symmetric, B € R™*™ has full rank, and m < n. Four different
approaches to finding solutions to (1.1) are compared: three iterative algorithms based
on Krylov subspaces, and the direct solver MA27, which applies a sparse variant of
Gaussian elimination; see Duff and Reid [8]. To investigate possible favorable aspects
of preconditioning, it makes sense to compare unpreconditioned with preconditioned
solution strategies. The indefinite nature of matrix (5.1) suggests the use of MINRES
in the unpreconditioned case. Of course, positive definite preconditioning could be
employed with MINRES; see, for example, Murphy, Golub, and Wathen [18], or Sil-
vester and Wathen [26], and Wathen and Silvester [27] in case of the Stokes problem.
However, this is not done here. We refer to Battermann and Heinkenschloss [3] for
some numerical results of this type.

As outlined in section 4, we employ two slightly different strategies in order to im-
plement the preconditioner G. The first method applies a standard (full) GMRES(.A)
code (PGMRES in Tables 5.1, 5.2, and 5.3), which is mathematically equivalent to
MINRES(A) for symmetric matrices A, whereas the second approach implements
Algorithm 4.1 (RCG in Tables 5.1, 5.2 and 5.3). The choice G = diag(A) in the
preconditioner is made for both PGMRES and RCG.

All tests were performed on a SUN Ultra SPARCII-300MHz (ULTRA-30) work-
station with 245 MB physical RAM and running SunOS release 5.5.1. Programs
were written in standard Fortran 77 using the SUN WorkShop f77 compiler (version
4.2) with the -0 optimization flag set. In order to deal with large sparse matrices,
we implemented an index storage format that only stores nonzero matrix elements;
see Press, Teukolsky, and Vetterling [22]. The termination criterion for all iterative
methods was taken to be a residual vector of order less than 107% in the 2-norm.

As part of its analysis procedure, MA27 accepts the pattern of some coefficient
matrix and chooses pivots for the factorization and solution phases of subsequent
routines. The amount of pivoting is controlled by the special threshold parameter
u (=1/2 <u <1/2). Modifying u within its positive range influences the accuracy
of the resulting solution, whereas a negative value prevents any pivoting; see Duff
and Reid [8]. In this context, the early construction of some of the test examples
with the default value u = 0.1 was accompanied by difficulties in the form of memory
limitations. We met the trade-off between less use of memory and solutions of high
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TABLE 5.2
Random test problems with A being a mass matriz (G = diag(A)).

Mass I Mass II  Mass IIT  Mass IV Mass V. Mass VI
n 578 2178 8450 8450 33282 33282
m 32 128 236 46 128 512
Nonzero entries in A 3128 13400 55448 55448 225560 225560
Nonzero entries in B 427 1871 3600 686 7726 15830
MINRES # of iterations 135 312 162 67 473 845
Time in seconds 0.3 2.9 6.8 3.5 65.1 117.9
PGMRES # of iterations 11 11 11 11 12 12
Time in seconds 0.1 0.7 2.6 2.4 21.0 31.3
RCG # of iterations 9 10 11 11 12 12
Time in seconds 0.1 0.7 2.6 2.3 20.3 26.6
MA27 Time in seconds 0.1 0.4 6.5 4.5 — 24.1
TABLE 5.3

CUTE test problems (G = diag(A)).

BLOWEYC CVXQP1 MOSARQP2 FIT2P
n 1002 100 930 13525
m 502 100 30 3000
Nonzero entries in A 3004 672 1020 13525
Nonzero entries in B 2503 295 148 50284
MINRES # of iterations 363 > 200 51 180
Time in seconds 1.8 — 0.1 14.6
PGMRES # of iterations 2 2 6 1
Time in seconds 0.4 0.1 0.2 13.2
RCG # of iterations 2 2 4 1
Time in seconds 0.3 0.1 0.1 12.1
MA27 Time in seconds 0.2 0.1 0.1 11.5

enough accuracy by choosing the parameter value v = 0.01 for the results in Tables 5.1,
5.2, and 5.3. However, this resulted in a floating point exception when using MA27
with one of the larger examples in Table 5.2, which is indicated by a dash.

The numerical results suggest that the inclusion of the (1,2) and (2,1) block
of A into the preconditioner, together with G = diag(A), results in a considerable
reduction of iterations, where the appropriate bounds of Theorems 3.2, 3.5, and 3.7
are attained in all cases. Specifically, Theorem 3.2 applies in the context of problem
CVXQP1.

Test problems Stiff IIT to Stiff VI in Table 5.1 emphasize the storage problems
that are associated with the use of long recurrences in the PGMRES algorithm. The
time required to find solutions to Stiff III to Stiff VI via the PGMRES algorithm is
not comparable to any of the other methods, which is due to the increased storage
requirements and the data trafficking involved. A solution to the memory problems is
to restart PGMRES after a prescribed number of iterations, but the iteration counts
for such restarts would not be comparable with those of full PGMRES.

The examples in Table 5.2 indicate the beneficial strategy of preconditioning the
mass matrix A with its diagonal (G = diag(A)); see Wathen [28]. As expected from
the theory described in [28], PGMRES, as well as RCG, converge in virtually all cases
in only a few number of steps and also outperform the solutions found by the direct
solver MA27 as far as the time measurements are concerned.

These measurements for MA27 suggest that the preconditioned CG algorithm,
discussed in section 4.1, is a suitable alternative to the direct solver. Whereas both
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MINRES and especially PGMRES are in most cases considerably slower than MA27,
the timings for RCG are in virtually all cases comparable. For problems of large
enough dimension or bandwidth, the resources required by MA27 must become pro-
hibitive, in which case RCG becomes even more competitive.

6. Conclusion. In this paper, we investigated a new class of preconditioner for
indefinite linear systems that incorporate the (1,2) and (2,1) blocks of the original
matrix. These blocks are often associated with constraints. In our numerical results,
we used a simple diagonal matrix G to approximate the (1, 1) block of A, even though
other approximations, such as an incomplete factorization of A, are possible. We first
showed that the inclusion of the constraints into the preconditioner clusters at least
2m eigenvalues at 1, regardless of the structure of G. However, unless G represents
A exactly, P does not have a complete set of linearly independent eigenvectors and
thus the standard convergence theory for Krylov subspace methods is not readily
applicable.

To find an upper bound on the number of iterations required to solve linear
systems of the form (1.1) by means of appropriate subspace methods, we used a
minimum polynomial argument. Theorem 3.2 considers the special condition n = m,
in which case termination is guaranteed in two iterations. For m < n, Theorem 3.5
gives a general (sharp) upper bound on the dimension of the Krylov subspace, whereas
Theorem 3.7 defines a considerably stronger result if some of the n — m eigenvalues,
defined by (ZTGZ)=1(ZT AZ), are repeated.

In the special case when G is a positive definite matrix block, we were able to
apply Cauchy’s interlacing theorem in order to give upper and lower bounds for the
n —m eigenvalues that are defined by the (2, 2) block of matrix (2.3).

To confirm the analytical results in this paper, we used three different subspace
methods, MINRES of Paige and Saunders [19] for the unpreconditioned matrix system
and RCG of Gould, Hribar, and Nocedal [12] and PGMRES of Saad and Schultz [25]
for the preconditioned case. Overall, the results show that the number of iterations is
decreased substantially if preconditioning is applied. The Krylov subspaces, which are
built during the execution of the two preconditioned implementations, are in theory
of equal dimension for any one of the 16 test examples, and thus PGMRES and RCG
can be expected to terminate in the same number of steps. However, convergence to
any prescribed tolerance may occur for a different number of steps since PGMRES
and RCG minimize different quantities. This can be seen in some of the examples.
Nevertheless, we note that convergence for both methods is attained much earlier
than suggested by the bounds in Theorems 3.2, 3.5, and 3.7.

We have not compared our results with positive definite preconditioning in con-
nection with MINRES—this is known to be a very competitive approach in various
applications.
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