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We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle
point search tasks that are common in the atomic scale simulation of materials. Our preconditioner
is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in
a wide range of materials that include metals, insulators, and molecular solids. The simple structure
of the preconditioner means that the gains can be realised in practice not only when using expensive
electronic structure models but also for fast empirical potentials. Even for relatively small systems
of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with
system size. An open source Python implementation within the Atomic Simulation Environment is
available, offering interfaces to a wide range of atomistic codes. C 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4947024]

I. INTRODUCTION

Geometry optimisation, i.e., finding a nearby local
minimum of the potential energy surface, is the most common
routine task of atomistic modelling, not only used for finding
the equilibrium geometries of molecules and crystals, but
also used as a fundamental building block of more complex
algorithms for global optimisation,1 structure prediction by
random search,2 and sampling.3 The closely related task
of finding saddle points is also used for finding transition
states of reactions, global optimisation, and accelerated
sampling.

It is well recognised in the optimisation community how
important preconditioners are in creating efficient algorithms.
An example familiar in the electronic structure community
is using the kinetic energy operator as a preconditioner
when solving the electronic energy minimisation problem
in plane wave pseudopotential density functional theory
(DFT) codes.4 Preconditioning in linear algebra and numerical
partial differential equation problems is well established, but
“universal” preconditioners do not work particularly well,
and most practitioners advocate constructing preconditioners
specifically designed to suit each problem.5 There is a
middle ground, which is to reduce the domain enough
to be able to give a good preconditioner but keep it
general enough that many problems that need solving fall
into it.

a)Electronic mail: j.r.kermode@warwick.ac.uk
b)Electronic mail: c.ortner@warwick.ac.uk
c)Electronic mail: gc121@cam.ac.uk

The hallmark of a good preconditioner is that it captures
some aspects of the local curvature of the potential energy
landscape, e.g., some of the directions in which the minimum
is much shallower than in other directions. In this way, using
the preconditioner enhances the convergence by reducing the
condition number (see (2)). For example, it was recognised
by many that geometry optimisation with a computationally
expensive electronic structure model can be preconditioned
using a cheap empirical interatomic model. This approach
is clearly not feasible for large scale problems in which
the modeling method itself is a relatively cheap interatomic
model.

A universal goal in preconditioning of condensed phase
atomistic systems is to take account of the long wavelength
vibrational modes, whose energies tend towards zero as the
system size increases, while the eigenvalues corresponding
to the high frequency optical modes stay constant. In order
to capture this geometry, due to the intrinsic locality of the
interaction Hamiltonian, it is enough to build a model that is
aware of the neighbourhood structure of the constituent atoms
or molecules.

In this work, we use the simplest preconditioner that is
capable of capturing this structure, the adjacency matrix of
the atoms, or a smoothed variant using a distance cutoff. The
only requirement of the cutoff is that it is chosen such that
all atoms are assigned some neighbours. We choose example
systems of current interest, which have a wide range of system
sizes.

For a steepest descent (SD) or nonlinear conjugate
gradient (CG) scheme with preconditioner P, one expects
that the number nP of iterations required to reach a relative

0021-9606/2016/144(16)/164109/8 144, 164109-1 © Author(s) 2016.
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residual τ is6

nP ∼ | log τ | ×



κP (SD)
√
κP (CG)

, (1)

where κP is the condition number of the preconditioned
Hessian H at equilibrium,

κP = λmax/λmin, (2)

and

λmax = max
u

uTHu
uTPu

, (3)

λmin = min
u

uTHu
uTPu

(4)

are the largest and smallest eigenvalues.
For a material system with a diameter of R atomic spac-

ings, without preconditioning (i.e., P ≡ I), one expects κ I ∼ R
while our preconditioner achieves that κP is independent of R.
Therefore the expected efficiency gain is

nP

nI
≈



R−1 (SD)
R−1/2 (CG)

. (5)

The theory of the most commonly used Broyden-Fletcher-
Goldfarb-Shanno (BFGS) and similar quasi-Newton type
schemes are less clear, but numerical evidence suggests that a
similar conclusion as in the CG case can be drawn.

II. METHODS

A. Geometry optimisation

Throughout, we let f (x) denote the energy for a
configuration x. If xk is an iterate of an optimization algorithm,
then we denote the gradient and Hessian at xk, by gk = ∇ f (xk)
and Hk = ∇2 f (xk), respectively.

The most basic geometry optimisation schemes are
steepest descent and (undamped) Newton’s method,

xk+1 = xk − αkgk, (6)
xk+1 = xk − H−1

k gk . (7)

While the former suffers from slow convergence to equili-
brium due to ill-conditioning of the energy-landscape, the
latter is usually impractical since analytical Hessians (i)
are typically unavailable for complex interatomic potentials
and electronic structure methods and (ii) are expensive to
invert.

Line search is an essential part of all the above gradient
descent algorithms, and preconditioning the line search (as
opposed to preconditioning the Newton step) can be thought
of as a middle ground, replacing Hk with an approximate
Hessian Pk,

xk+1 = xk − αkP−1
k gk . (8)

The usual requirements on Pk are that it is (1) cheap to build;
(2) cheap to invert; and (3) positive definite to ensure descent
in energy.

The most common way to construct Pk is via a quasi-
Newton approach, typically BFGS or Limited-memory BFGS

(LBFGS). This works poorly for large systems since many
iterations are required to “learn the Hessian” to a useful degree
of accuracy. Physical intuition and mathematical analysis can
be used to develop an improved initial guess for the Hessian
to speed up convergence.7

An alternative approach (sometimes used in the electronic
structure community8) is to take Pk = ∇2 f̃ (xk) to be the
Hessian of a surrogate interatomic potential model f̃ . This
has considerable potential for performance gains if a good
surrogate model f̃ can be found. Downsides of this approach
are (i) the challenge of finding or constructing such a surrogate
model; (ii) indefiniteness of the surrogate Hessian in the
nonlinear regime (and potentially even in the asymptotic
regime); and (iii) lack of transferability of the preconditioner:
changing the system requires the construction of a new
surrogate model.

B. Metric preconditioning

Assume, for the moment, that we use the same
preconditioner throughout the optimization process, Pk ≡ P
in (8). An alternative point of view, which is common
in the numerical linear algebra and nonlinear optimisation
communities, is to think of P as defining a metric on the space
of configurations. To see this, note that calling−gk = −∇ f (xk)
the direction of steepest descent is with reference to
the ℓ2-norm ∥u∥I B ( |ui |2)1/2 (where u is a direction in
configuration space). If we measure distances in configuration
space with respect to the P-norm, ∥u∥P = (uTPu)1/2, then the
direction of steepest descent becomes

arg min
∥u∥P=1

uT∇ f (x) ∝ −P−1∇ f (x). (9)

That is, (8) is the natural steepest descent scheme with respect
to the metric Pk. The advantage of this point of view is
that it frees us from the constraint of aiming to approximate
the Hessian. Instead we are now searching for an alternative
notion of distance in configuration space, which is a more
general concept, and a fixed choice of metric may exist that is
suitable for a wide range of atomistic systems.

Equivalently, we may think of (8) in terms of a change of
coordinates. Let x̃k B P1/2xk, and F(x̃) = f (P−1/2x̃), then the
“standard” gradient descent scheme x̃k+1 = x̃k − αk∇F(x̃k) is
equivalent to (8).

Since ∇2F(x̃) = P−1/2∇2 f (P−1/2x̃)P−1/2, it follows that
the rate of convergence xk → x of (8) to a limit x is given by9

∥xk − x∥P . � κP−1
κP+1

�k∥x0 − x∥P,
where κP is the condition number of P−1/2HP−1/2. The latter
can be computed from the generalised eigenvalue problem

Hv = λPv. (10)

While approximating the Hessian would lead us to aim
for P such that κP ≈ 1, we shall be content with a good notion
of distance, which will lead to a P such that κP is bounded
by some moderate constant for a wide range of systems of
interest.

Our final remark in this abstract context is that while
the discussion of convergence rates applies strictly to the
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asymptotic regime of the iteration, preconditioning also
improves performance in the pre-asymptotic regime: a
moderate upper bound on κP implies, loosely speaking, that
(8) relaxes all wavelength modes simultaneously rather than
focusing on short wavelength modes first.

C. Preconditioned LBFGS

The usage of a preconditioner is not restricted to the
steepest descent method, but it can be readily applied to
improved optimisation algorithms such as nonlinear conjugate
gradients. It is particularly effective when combined with
the LBFGS scheme,6 for which we briefly outline the
implementation.

Using sk = xk − xk−1, yk = ∇ f (xk) − ∇ f (xk−1), ρk
= 1/yT

k
sk, the action of the inverse Hessian can be efficiently

approximated,

input q = ∇ f (xk),
output z ≈ ∇2 f (xk)−1∇ f (xk),
for i = k, . . . , k − m,

αi = ρisTi q,

q = q − αi yi,

z = P−1
k q

for i = k − m, . . . , k,

βi = ρi y
T
i z,

z = z + (αi − βi)si.

(11)

This formulation of LBFGS does not require the approximate
Hessian itself to be stored, only the positions and gradients at
previous iterates. For the initial iterate, we simply obtain
z = P−1

0 ∇ f (x0). The boxed step is the only modification
needed to the standard algorithm to achieve preconditioning.
After obtaining the output pk = z from (11), the LBFGS step
takes the form

xk+1 = xk + αkpk, (12)

for a suitable choice of step length αk.

D. A simple and general metric for materials

Changes in energy of atomistic systems occur through
changes in bonding, for which the simplest measure is change
in bond length. Motivated by this observation, we propose
the following preconditioner for materials systems: given
parameters rcut,rnn, A, µ (we will discuss below how to choose
these automatically), we define P via the quadratic form

uTPu = µ


0< |ri j |<rcut

ci j |ui − u j |2,

ci j = exp
(
− A

( ri j
rnn
− 1

))
,

or, written in matrix form

Pi j =



−µci j, |ri j | < rcut

0, |ri j | ≥ rcut
,

Pii =−

j,i

Pi j .
(13)

Default parameters are discussed in Section II E.
Remarks. (i) The exponential form of ci j is for

convenience and has no deeper physical meaning; A = 0
corresponds to using the adjacency matrix with a hard cutoff.
(ii) We use this metric even for multi-component systems;
however, if the interaction strength and/or distances between
different components vary significantly, then it would be
straightforward to generalise it by distinguishing different
types of bonds. (iii) As shown in Appendix B, for Bravais
lattices, phonon stability is equivalent to the lower bound
uTHu ≥ cuTPu for some constant c > 0.

Together with the generic and elementary upper bound
uTHu ≤ CuTPu and Equations (2)-(4), we obtain that for finite
periodic supercells in a Bravais lattice state, the condition
number κP for the preconditioned system is bounded above
by C/c independently of the system size. In the presence of
defects (crystal surfaces, point defects, dislocation lines) or
even disorder, partial results in this direction likely still hold
because P contains the nearest neighbour bonds that dominate
in H .

E. Default parameters

The parameters A and rcut are user inputs; however,
P is fairly insensitive to their choice, provided their
interdependency illustrated in Figure 1 is taken into account.
Hence, we suggest generic default parameters below. The
parameters µ and rnn are computed in a preprocessing step
from the initial configuration of the optimisation.

1. The nearest-neighbour distance rnn is obtained
as the maximum of nearest neighbour bond lengths: if
r (i)nn = min j,i ri j, then rnn = maxi r (i)nn .

2. The exponent A should be large enough to ensure
that nearest neighbours dominate but not so large that small
changes in the configuration lead to large changes in P. All
our tests are performed with A = 0 and A = 3, with A = 3
giving slightly better performance.

FIG. 1. Spectra of the Lennard-Jones Hessian in the fcc ground state and
of the preconditioner with A ∈ {0,3} and rcut ∈ {1.2,2.5,5.1}rnn (top to
bottom, with increasing line thickness). The graphs for A= 0,3 with rcut= 1.2
overlap. Left panel: (1,1,0) direction, right panel: (2.7,4.2,3.0) direction.
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3. The cutoff rcut should be larger than rnn; however,
then exponential decay of the preconditioner entries ensures
that additional entries have a small influence. For A = 0, we
choose rcut = 1.1rnn, and when A = 3, we use rcut = 2rnn. The
latter choice is intuitively preferable since it accommodates
the possibility of significant bond stretching.

4. Finally, the energy-scale µ is chosen to ensure that the
LBFGS algorithm can choose the unit step-length as default.
We achieve this by equating

vT
�
∇E(x0 + v) − ∇E(x0)� = µvTPµ=1v, (14)

where Pµ=1 is the metric with µ = 1 and v is a test displacement
of the form

v(x, y, z) = M
�

sin(x/Lx),sin(y/Ly),sin(z/Lz)�, (15)

where Li are the lengths of the periodic lattice vectors and M
is a user-defined matrix with default value M = 10−2rnnI.

F. Implementation details

1. Preconditioner application

It is important that the cost of applying the preconditioner
does not dominate the cost of the calculation over the
evaluation of energy and gradient. For inexpensive models
(Lennard-Jones, Embedded Atom Method, Stillinger–Weber,
etc.), the choice of method to solve z = P−1

k
q in (11) is crucial.

Our implementation uses a smoothed aggregation algebraic
multigrid method.10 As a further optimisation, we only rebuild
the preconditioner when the maximum atomic displacement
since the last update exceeds rnn/2.

2. Line search

Irrespective of the choice of the search direction used
(e.g., SD (8), CG,6 or LBFGS (12)), a line search algorithm
must be implemented to choose the length of the step, αk.
The standard choice is a bracketing algorithm, which enforces
sufficient decrease and approximate orthogonality between
subsequent directions (Wolfe conditions). We observed in our
tests that a backtracking algorithm imposing only sufficient
decrease (Armijo condition), although less robust in theory,
was more efficient in practice. We give the details of our
implementation, and additional discussion, in Appendix A.

3. Robust energy differences

The computation of the energy differences and inner
products in the Wolfe conditions (A1) and (A2) must
be performed with a high degree of accuracy, since the
optimization algorithm relies on robustly detecting the change
in energy. A common difficulty in implementing a line search
strategy based on (A1) and (A2) is the numerical round-off
error that arises for large numbers of atoms (typically 105

or higher). Numerically robust inner products are equally
important in the inversion of the preconditioner and in
the LBFGS algorithm. Numerically robust evaluation of
energy differences and inner products may, for example, be
implemented using compensated summation algorithms.11 A

simpler strategy that proved sufficient in our case is to use
128 bit floating point numbers for these steps.

4. Stabilisation

If the system contains clamped atoms, then the
preconditioner defined in (13) is strictly positive definite,
but in order to improve its conditioning and ensure positive
definiteness for cases where there are no clamped atoms, we
stabilize the preconditioner by adding a diagonal term,

Pi j =



−µci j |ri j | < rcut

0 |ri j | ≥ rcut
,

Pii =−

j,i

Pi j + µCstab.
(16)

In all our results, we choose Cstab = 0.1. Even when there
are clamped atoms, we find that setting Cstab = 0.1 improves
overall performance.

5. Variable cell optimisation

We confirmed that our preconditioner also gives good
performance when degrees of freedom associated with the
periodic unit cell are included as well as the atomic positions.
Following the approach of Tadmor et al.,12 we consider a
combined objective function Φ(x,D) = f (Dx) with 3N + 9
degrees of freedom: 3N for the atomic positions x and 9
components of the deformation tensor D, which is with
respect to the original undeformed unit cell. The combined
gradient is then given by

∇x,DΦ(x,D) =
(
D∇x f (x), V

µc
σ
�
D−1�T

)
, (17)

where V is the cell volume and σ the stress tensor, and we
have introduced an additional preconditioner parameter µc to
set the energy scale for the cell degrees of freedom. µc can be
pre-computed at the same time as µ for no additional cost by
including a trial perturbation of the cell in (15), with default
v(xc) = M/rnn = 10−2I.

III. RESULTS

We have selected a broad range of materials’ examples
to test our preconditioner. The first is a 160 Si atom
1 × 1 × 20 supercell of the cubic diamond structure cell in
a slab geometry, with periodic boundary conditions along
x and y and free boundaries in z, simulated with the
Stillinger-Weber interatomic potential.13 The two halves of
the cell (along z) are uniformly displaced toward each other
by 0.5 Å, creating a large but very localized strain in the
center of the slab. The problem is ill-conditioned because the
initial strain is localized, but reaching the relaxed geometry
requires all the slab atoms to move out towards the free
surfaces. As shown in Fig. 2, both the A = 0 and A = 3
preconditioners dramatically reduce the computational cost
of the minimization, by a factor of about 6 compared to the
non-preconditioned minimizer. Results using the Pfrommer
et al.7 block-diagonal approximation to the initial inverse
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FIG. 2. Convergence of the geometry optimisation of a 160-atom silicon
slab using the Stillinger-Weber potential in fixed unit cell. The parameters
of the preconditioner (or not using a preconditioner) are given in the legend.
The lower panel shows the time required to solve the problem in each case,
indicating that the overhead of constructing and applying the preconditioner
is minimal in comparison to the cost of computing forces with the interatomic
potential.

Hessian are also shown for comparison. Note that even for
this relatively fast interatomic potential, the computational
cost of applying the preconditioner is nearly negligible, so
the reduction in computational time is nearly equal to the
reduction in number of energy evaluations.

Next we consider a 33 696-atom Si model of the
(111)[112̄] cleavage system (Fig. 3) in a quasi-two-
dimensional thin strip geometry with dimensions 717 × 242
× 3.84 Å3. The applied strain was chosen so that the crack
is lattice trapped,14 leading to a stable ground state with
the Stillinger-Weber13 interatomic potential. Strong coupling
between length scales makes this a difficult system to
optimize and hence a good test of our preconditioner. A

FIG. 3. Convergence of the geometry optimisation of a silicon crack using
the Stillinger-Weber potential in a fixed unit cell with 33 696 atoms. Solid and
dashed lines correspond to using line searches enforcing Armijo and Wolfe
conditions, respectively. The parameters of the preconditioner (or not using a
preconditioner) are given in the legend.

complex trade off between local chemical cost and long-range
elastic relaxation makes it favourable for a 5–7 crack tip
reconstruction to form via a bond rotation.15 Here, we find
that both the A = 0 and A = 3 preconditioners lead to a
significant speed up over both unpreconditioned LBFGS and
the approach of Pfrommer et al.7 Fig. 3 also includes a
comparison between the Armijo and Wolfe line searches. As
noted above, enforcing only the Armijo condition leads to a
further increase in performance.

To investigate whether the theoretical independence of
the cost of preconditioned minimisations from system size
(Eq. (5)) is achieved in real systems, we carried out tests in
a series of N × 1 × 1 Si supercells, again using the Stillinger-
Weber potential. The atomic positions were perturbed by
random displacements of magnitude 0.1 Å and also subjected
to a compressive strain of 0.5% to introduce a long-wavelength
deformation. The results shown in Fig. 4 indicate that our
preconditioner achieves convergence after an approximately
constant number of force evaluations as the system is made
larger, in contrast to not using a preconditioner or to the
approach of Pfrommer et al.,7 which does not use connectivity
information. Our new method is therefore expected to be
particularly useful for very large systems.

Since large systems inherently have a wide range of
displacement wavelengths and corresponding stiffnesses, it
is not obvious a priori how much preconditioning will help
for a smaller system, for example, one that can feasibly
be simulated using density functional theory. We therefore
simulated a perovskite structure oxide, LaAlO3, in a 220-
atom slab geometry with periodic boundary conditions in-
plane and free surfaces separated by a vacuum region in the
normal direction. Energy and force evaluations used DFT
with the Perdew, Burke and Ernzerhof (PBE) generalised
gradient approximation (GGA) to the exchange correlation
functional, projector-augmented waves (PAW) with a 282.8 eV
cutoff plane-wave basis, and a 2 × 2 × 1 Monkhorst-Pack k-
point sampling, evaluated using the QUIP interface to the
VASP software.16–18 In this system, as shown in Fig. 5, we
find that the preconditioning still significantly reduces the
computational cost, but the improvement is not as dramatic as

FIG. 4. Scaling with system size for geometry optimisations in N ×1×1 Si
supercells containing from 32 to 512 atoms with the Stillinger-Weber poten-
tial, using unpreconditioned LBFGS (red), the inverse Hessian approximation
of Pfrommer et al. (magenta), and our new preconditioner (blue).
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FIG. 5. Convergence of the geometry optimisation of a 220-atom LaAlO3
slab using DFT in a fixed unit cell. The parameters of the preconditioner (or
not using a preconditioner) are given in the legend.

for the larger systems discussed above. With our convergence
criterion, the reduction is about a factor of two, although
the non-preconditioned minimization stagnates just before
reaching convergence, and with a slightly looser criterion,
the reduction would only be a factor of 1.6. Note that the
computational cost of the DFT energy and force evaluations
is so large that the application of the preconditioner is
completely negligible in comparison. In this case, the approach
of Pfrommer et al.7 does not make a significant improvement
over not using a preconditioner.

For a test of the relaxation of both atomic positions and
unit cell size and shape, we used a 1 × 1 × 2 supercell of a
γ-Al2O3 structure, with methods similar to those described
above for LaAlO3, except for a 530 eV plane wave cutoff and a
Γ-centered k-point mesh. For this system, plotted in Fig. 6, the
reduction in computations for both preconditioners is about a
factor of 5, a very significant improvement. While the non-
preconditioned minimizer fails to make progress at several
points during the relaxation, both our new preconditioners
allow the LBFGS minimizer to rapidly and steadily reduce the
gradient until convergence. Here, the approach of Pfrommer
et al.7 actually results in slightly worse performance than
unpreconditioned LBFGS. This could perhaps be improved

FIG. 6. Convergence of the geometry optimisation of a 106-atom γ-Al2O3
system in a variable cell. The parameters of the preconditioner (or not using
a preconditioner) are given in the legend.

FIG. 7. Convergence of the geometry optimisation of a 432-atom ice VIII
system with fixed (solid lines) and variable (dashed lines) unit cells. The
parameters of the preconditioner (or not using a preconditioner) are given
in the legend.

by careful tuning of the bulk modulus and optical phonon
frequency parameters used to construct the approximation
to the inverse Hessian; however, we note that our new
preconditioner does not require any user input as all parameters
are computed automatically. The addition of the cell degrees
of freedom, which are preconditioned in magnitude but not
coupled to the positional degrees of freedom, does not reduce
the effectiveness of our preconditioners.

Finally, we tested the new preconditioner for a molecular
system, ice VIII. The system contained 432 atoms with an
initial cell dimension of 13.65 × 13.65 × 13.16 Å3. A DFT
potential with BLYP exchange-correlation functional was
used with DZVP basis set and Goedecker-Teter-Hutter (GTH)
pseudopotentials. Calculations were performed by the CP2K
program package using the QUIP interface.16,19,20 Fig. 7 shows
the number of energy evaluations of the different optimisations
for fixed and variable cells using a maximum force threshold
of 10−3 eV Å−1. Similarly to previous systems, the Armijo
condition performed better than Wolfe, so we present here
only the results with the former line search. In the A = 0 case,
we slightly increased the default cutoff parameter (rcut = 2.25
Å) to include hydrogen bonded neighbours too. For both the
fixed and variable cells, the computational costs compared to
the unpreconditioned optimisation were reduced by 3 and 4
times using A = 0 and A = 3, respectively.

IV. SADDLE SEARCH

To demonstrate the transferability of our preconditioner
not only across problem classes but also across algorithms, we
apply it to the dimer saddle search algorithm.21,22 A modified
variant of the algorithm proposed in Ref. 22 reads as

xk+1= xk − α
�
P−1
k − 2vkvTk

�∇ f (xk+hvk)+∇ f (xk−hvk)
2 ,

v ′k+1= vk − β
�
I − Pkvkv

T
k

�∇ f (xk+hvk)−∇ f (xk−hvk)
2h ,

vk+1= v ′k+1/∥v ′k+1∥Pk+1.

The translation step is obtained as coordinate transfor-
mation of the standard dimer step with the variables x̃k
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FIG. 8. Performance of the preconditioned dimer method for a vacancy in a
Lennard-Jones fcc crystal (solid lines), and without a preconditioner (dashed
lines), for two system sizes.

= P1/2
k

xk, ṽk = P1/2
k

vk (cf. Section II B). The orientation
step is an ℓ2-steepest descent step (without preconditioning)
for the Rayleigh-quotient vT∇2 f (xk)v/vTPkv , with a finite-
difference approximation of ∇2 f (xk)v . Interestingly, naive
preconditioning of the orientation steps led to poorer
performance in our tests.

We test this preconditioned dimer algorithm by computing
the saddle configuration of a vacancy in a Lennard-Jones fcc
crystal, with a cubic computational cell. Given two states
x(0), x(1), which have two neighbouring lattice sites removed,
we choose the starting configuration x0 =

1
3 x(0) + 2

3 x(1) and
v0 ∝ x(1) − x(0). The step sizes are chosen by hand-optimising
for a small setup with 33 unit cells: α = 0.01, β = 0.005 for the
unpreconditioned variant (Pk = I) and α = 0.5, β = 0.01 for
our preconditioner with parameters A = 3.0,rrcut = 2rnn. For
both variants, we chose h = 10−2. The results are displayed
in Figure 8, demonstrating analogous improvements to the
energy minimisation examples.

V. CONCLUSIONS

In summary, we have presented a simple preconditioner
for geometry optimisation and saddle search that is universally
applicable in a wide range of atomistic and molecular
condensed phase systems, offering at least a factor of two
in performance gain in our examples of small systems and
up to factor of ten in systems of tens of thousands of atoms.
The extra cost of using the preconditioner is small enough
that it is worth using even with inexpensive interatomic
potentials, while the performance gain is expected to scale as
the square root of the system size. A Python implementation
within the Atomic Simulation Environment23 is available at
https://gitlab.com/jameskermode/ase, offering interfaces to a
wide range of atomistic codes such as VASP,17 CASTEP,24

CP2K,19 LAMMPS,25 and many others. All data created
during this research are openly available from the Uni-
versity of Warwick Research Archive Portal (WRAP) at
http://wrap.warwick.ac.uk/78579.
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APPENDIX A: LINESEARCH

We present the details of our line search algorithm. The
standard requirement for the LBFGS and CG methods is that
the step-size, α, satisfies the Wolfe conditions

f (xk + αpk) ≤ f (xk) + c1α∇ f Tk pk, (A1)

|∇ f (xk + αpk)Tpk | ≤ c2|∇ f Tk pk |, (A2)

where 0 < c2 < c1 < 1. Line search methods that guarantee
(A1) and (A2) employ a bracketing strategy, which often
requires several additional energy and force evaluations at
each iteration.

For the steepest descent method, it is theoretically
sufficient to impose only Armijo condition (A1). We have
observed that this was also sufficient in all our tests to ensure
convergence of the LBFGS method and leads to a consistent
performance improvement. Our implementation minimises the
quadratic interpolating fk,∇ f T

k
pk, and f (xk + αpk), iterating

until (A1) is satisfied. For c1 < 1/2, this yields a backtracking
guarantee and hence ensures that the line search terminates
after finitely many steps. Our default parameter is c1 = 0.1.
The initial estimate on the step length is α̃ = 1.0,

input x, α̃ > 0,c1 ∈ (0,1/2),p s.t. ∇ f (x) · p < 0,
output α̃,
while f (x + α̃p) > f (x) + c1α̃∇ f (x) · p,

α̃′ ←
− 1

2 α̃∇ f (x) · p
f (x+α̃p)− f (x)

α̃
− ∇ f (x) · p ,

α̃ ← max(α̃′, α̃/10).

(A3)

Unlike for a bracketing line-search, the only additional
evaluations required during line search are energy evaluations
at the end-point of the search interval, which reduces compu-
tational cost in the pre-asymptotic regime of the optimisation.

In the asymptotic regime, the step-length αk = 1 is always
accepted and will satisfy both Wolfe conditions (A1) and
(A2) provided that c1 < 1/2. Since, through the use of our
proposed preconditioner, we substantially reduce the number
of iterations, it is unlikely that the potential instabilities
associated with Armijo line search for the LBFGS direction
will be observed. Moreover, in our implementation, if the
Armijo linesearch fails, we simply reset the LBFGS Hessian
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history and repeat the linesearch, which removes any concern
about robustness.

APPENDIX B: PHONON STABILITY

Consider a d-dimensional Bravais latticeΛ = AZd, where
Z is the set of integers and the columns of A are the lattice
directions, which is the ground state for some material system
under a potential energy f . Let H = ∇2 f denote the Hessian
of the potential energy in the ground state. For displacements
ur of each atom r ∈ Λ, we can write

[Hu]r =

s∈Λ

Hr sus, (B1)

where Hr s ∈ Rd×d are the blocks of H . We now prove
the claim that phonon stability is equivalent to the bound
uTHu ≥ uTPu, where P is the preconditioner defined in (13),
for all displacements of the lattice.

The discrete translation invariance of the lattice, Λ + r
= Λ for all r ∈ Λ, implies that Hr s = H0,s−r C hs−r , where
h ∈ Rd×d. For any virtual displacement u = (ur) with compact
support, we have

uTHu =


BZ
û∗ĥû dk, (B2)

where û and ĥ denote the Fourier transforms of u and h,
respectively, and the integration is over the first Brillouin
zone. Phonon stability means that the natural frequencies are
positive and linear near the origin. In terms of ĥ, this translates
to ĥ(k) ≥ cH |k |2I for some constant cH > 0. The upper bound
ĥ(k) ≤ CH |k |2I follows from the boundedness of the phonon
bandwidth. (A sufficient condition is that


r ∈Λ |hr ||r |2 < ∞.)

Let Pr s = ps−r ∈ Rd×d denote the corresponding blocks
of the preconditioner operator. The upper bound p̂ ≤ CP |k |2I
follows simply from the fact that the preconditioner has a finite
interaction range. This upper bound and phonon stability of
H imply

uTHu ≥ cH


BZ

|k |2|û|2dk

≥ cH
CP


BZ

û∗p̂û

=
cH
CP

uTPu.

Conversely, if uTHu ≥ cuTPu, then phonon stability of P
implies phonon stability of H . But the former is an immediate
consequence of the fact that the coefficients in the definition
of P are positive.26
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