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Abstract. In recent years a number of solvers for the direct solution of large
sparse, symmetric linear systems of equations have been developed. These in-
clude solvers that are designed for the solution of positive-definite systems as
well as those that are principally intended for solving indefinite problems. The
available choice can make it difficult for users to know which solver is the most
appropriate for their applications. In this study, we use performance profiles as a
tool for evaluating and comparing the performance of serial sparse direct solvers
on an extensive set of symmetric test problems taken from a range of practical
applications.

1 Introduction

Solving linear systems of equations lies at the heart of numerous problems in computa-
tional science and engineering. In many cases, particularly when discretizing continuous
problems, the system is large and the associated matrix A is sparse. Furthermore, for
many applications, the matrix is symmetric; sometimes, such as in finite-element appli-
cations, A is positive definite, while in other cases, including constrained optimization
and problems involving conservation laws, it is indefinite.

A direct method for solving a sparse linear system Ax = b involves the explicit
factorization of the system matrix A (or, more usually, a permutation of A) into the
product of lower and upper triangular matrices L and U . In the symmetric case, for
positive definite problems U = LT (Cholesky factorization) or, more generally, U =
DLT , where D is a block diagonal matrix with 1 × 1 and 2 × 2 blocks. Forward
elimination followed by backward substitution completes the solution process for each
given right-hand side b. Direct methods are important because of their generality and
robustness. Indeed, for the ‘tough’ linear systems arising from some applications, they
are currently the only feasible solution methods. In many other cases, direct methods are
often the method of choice because the difficulties involved in finding and computing
a good preconditioner for an iterative method can outweigh the cost of using a direct
method. Furthermore, direct methods provide an effective means of solving multiple
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systems with the same A but different right-hand sides b because the factorization needs
only to be performed once.

Since the early 1990s, many new algorithms and a number of new software packages
for solving sparse symmetric systems have been developed. Because a potential user may
be bewildered by such choice, our intention to compare the serial solvers (including serial
versions of parallel solvers) on a significant set of large test examples from many different
application areas. This study is an extension of a recent comparison by Gould and Scott
[3] of sparse symmetric direct solvers in the mathematical software library HSL [7]. This
earlier study concluded that the best general-purpose HSL package for solving sparse
symmetric systems is currently MA57. Thus the only HSL direct solver included here
is MA57, but for some classes of problems, other HSL codes may be more appropriate.
For full details and results for the HSL symmetric solvers are given in [4].

The sparse solvers used in this study are listed in Table 1. The codes are discussed in
detail in the forthcoming report [5]. Some of the solvers are freely available to academics
while to use others it is necessary to purchase a licence. This information is provided in
Table 2. For each code a webpage address is also given (or, if no webpage is currently
available, an email contact is provided). Note that for non academic users, the conditions
for obtaining and using a solver varies between the different packages.

Table 1. Solvers used in our numerical experiments. A ‘&’ indicates both languages are used in
the source code; ‘F77/F90’ indicates there is a F77 version and a F90 version

Code Date/version Language Authors

BCSLIB-EXT 11.2001, v4.1 F77 The Boeing Company

MA57 01.2002, v1.0.0 F77/F90 I.S. Duff, HSL

MUMPS 11.2003, v4.3.2 F90 P.R. Amestoy, I.S. Duff,

J.-Y. L’Excellent, and J. Koster

Oblio 12.2003, v0.7 C++ F. Dobrian and A. Pothen

PARDISO 02.2004 F77 & C O. Schenk and K. Gärtner

SPOOLES 1999, v2.2 C C. Ashcraft and R. Grimes

SPRSBLKLLT 1997, v0.5 F77 E.G. Ng and B.W. Peyton

TAUCS 08.2003, v2.2 C S. Toledo

UMFPACK 04.2003, v4.1 C T. Davis

WSMP 2003, v1.9.8 F90 & C A. Gupta and M. Joshi, IBM

2 Test Environment

Our aim is to test the solvers on a wide range of problems from as many different
application areas as possible. In collecting test data we imposed only two conditions:

– The matrix must be square and of order greater than 10, 000.
– The data must be available to other users.
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Table 2. Academic availability of and contact details for the solvers used in our numerical exper-
iments. ∗ denotes source code is provided in the distribution

Code Free to Webpage / email contact

academics

BCSLIB-EXT × www.boeing.com/phantom/BCSLIB-EXT/index.html

MA57∗ × www.cse.clrc.ac.uk/nag/hsl

MUMPS∗ √
www.enseeiht.fr/lima/apo/MUMPS/

Oblio∗ √
dobrian@cs.odu.edu or pothen@cs.odu.edu

PARDISO
√

www.computational.unibas.ch/cs/scicomp/software/pardiso

SPOOLES∗ √
www.netlib.org/linalg/spooles/spooles.2.2.html

SPRSBLKLLT∗ √
EGNg@lbl.gov

TAUCS∗ √
www.cs.tau.ac.il/∼stoledo/taucs/

UMFPACK∗ √
www.cise.ufl.edu/research/sparse/umfpack/

WSMP
√

www-users.cs.umn.edu/∼agupta/wsmp.html

The first condition was imposed because our interest is in large problems. The second
condition was to ensure that our tests could be repeated by other users and, furthermore,
it enables other software developers to test their codes on the same set of examples
and thus to make comparisons with other solvers. Our test set comprises 88 positive-
definite problems and 61 numerically indefinite problems. Numerical experimentation
found 5 of the indefinite problems to be structurally singular and a number of others are
highly-ill-conditioned. Any matrix for which we only have the sparsity pattern avail-
able is included in the positive-definite set and appropriate numerical values generated.
Application areas represented by our test set include linear programming, structural
engineering, computational fluid dynamics, acoustics, and financial modelling. A full
list of the test problems together with a brief description of each is given in [6]. The
problems are all available from

ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric

In this study, performance profiles are used as a means to evaluate and compare the
performance of the solvers on our set T of test problems. Let S represent the set of
solvers that we wish to compare. Suppose that a given solver i ∈ S reports a statistic
sij ≥ 0 when run on example j from the test set T , and that the smaller this statistic the
better the solver is considered to be. For example, sij might be the CPU time required
to solve problem j using solver i. For all problems j ∈ T , we want to compare the
performance of solver i with the performance of the best solver in the set S.

For j ∈ T , let ŝj = min{sij ; i ∈ S}. Then for α ≥ 1 and each i ∈ S we define

k(sij , ŝj , α) =

{
1 if sij ≤ αŝj

0 otherwise.
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The performance profile (see [1]) of solver i is then given by the function

pi(α) =

∑
j∈T k(sij , ŝj , α)

|T | , α ≥ 1.

Thus pi(1) gives the fraction of the examples for which solver i is the most effective
(according to the statistic sij ), pi(2) gives the fraction for which it is within a factor of
2 of the best, and limα−→∞ pi(α) gives the fraction for which the algorithm succeeded.

In this study, the statistics used are the CPU times required to perform the different
phases of the solver, the number of nonzero entries in the matrix factor, and the total
memory used by the solver (but in this paper, limitations on space allow us only to present
CPU timings). Since some of the solvers we are examining are specifically designed for
positive-definite problems (and may be unreliable, or even fail, on indefinite ones), we
present our findings for the positive-definite and indefinite cases separately. In our tests,
default values are used for all control parameters.

3 Preliminary Results

The numerical results were obtained on a Compaq DS20 Alpha server with a pair of EV6
CPUs; in our experiments only a single processor with 3.6 GBytes of RAM was used.
The codes were compiled with full optimisation; the vendor-supplied BLAS were used.
All CPU reported times are in seconds. A CPU limit of 2 hours was imposed for each
code on each problem; any code that had not completed after this time was recorded as
having failed. The scaled residual

‖b − Ax‖/(‖A‖‖x‖ + ‖b‖)

of each computed solution was checked before and after one step of iterative refinement;
a residual after iterative refinement greater than 0.0001 causes an error to be flagged. In
the reported tests, the input matrix A was not scaled.

3.1 Positive Definite Problems

The reliability of all the solvers in the positive-definite case was generally high. Only
problem audikw was not solved by any code, this example being one of the two largest –
it is of order roughly 950 thousand, and involves some 39 million nonzeros; the solvers
with no out-of-core facilities were not able to allocate sufficient memory while the CPU
time limit was exceeded for the remaining solvers. We present the performance profile for
the CPU time for the complete solution (that is, the CPU time for analysing, factorising
and solving for a single right-hand side) for the solvers in Figure 1, with the profiles for
the separate analyse, factorise, and solve times in Figures 2 to 4. We see that, with the
exception of SPOOLES and UMFPACK (which is primarily designed for unsymmetric
problems), there is little to choose between the solvers when comparing the complete
solution time. Many of the solvers use the nested dissection ordering from the METIS
package [8] to obtain the pivot sequence and so they record similar analyse times. The
multiple minimum degree algorithm used bySPRSBLKLLT is notably faster whileWSMP
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Performance Profile: 0.AFS.CPU − 88 positive−definite problems, u=default

α

fr
ac

tio
n 

of
 p

ro
bl

em
s 

fo
r 

w
hi

ch
 s

ol
ve

r 
w

ith
in

 α
 o

f b
es

t

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 1. Performance profile, p(α): CPU time (seconds) for the complete solution (positive-definite
problems)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 0.Analyse.CPU − 88 positive−definite problems, u=default
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PARDISO (1 failed)
SPOOLES (2 failed)
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Fig. 2. Performance profile, p(α): CPU time (seconds) for analyse phase (positive-definite prob-
lems)
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Performance Profile: 0.Factorise.CPU − 88 positive−definite problems, u=default
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BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 3. Performance profile, p(α): CPU time (seconds) for the factorization (positive-definite
problems)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 0.Solve.CPU − 88 positive−definite problems, u=default
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MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 4. Performance profile, p(α): CPU time (seconds) for the solve phase (positive-definite
problems)
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computes both a minimum local fill ordering and an ordering based on recursive bisection
and selects the one that will result in the least fill-in. This extra investment pays dividends
with WSMP having the fastest factorise times. In some applications, many solves may be
required following the factorisation. The codes BCSLIB-EXT, MA57, and PARDISO
have the fastest solve times.

3.2 Indefinite Problems

We now turn to the indefinite test suite. For these problems, pivoting is needed to maintain
stability. The pivoting strategies offered by the codes are summarised in Table 3; more
details are given in [5] and the references therein. Since SPRSBLKLLT and the tested
version of TAUCS are designed only for solving definite problems, they are omitted.
We have experienced problems when using SPOOLES for some indefinite systems, and
thus results for SPOOLES are not currently included. MUMPS uses 1 × 1 pivots chosen
from the diagonal and the factorization terminates if all the remaining (uneliminated)
diagonal entries are zero. Because this may mean some of our test problems are not
solved, at the authors’ suggestion, we run both the symmetric and unsymmetric versions
of MUMPS when testing indefinite examples.

Table 3. Default pivoting strategies

BCSLIB-EXT Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MA57 Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MUMPS Numerical pivoting with 1 × 1 pivots.

Oblio Numerical pivoting with 1 × 1 and 2 × 2 pivots.

PARDISO Supernode Bunch-Kaufmann within diagonal blocks.

SPOOLES Fast Bunch-Parlett.

UMFPACK Partial pivoting with preference for diagonal pivots.

WSMP No pivoting.

The profiles for the indefinite results are given in Figures 5to 8. The overall reliability
of the solvers in the indefinite case was not as high as for the positive-definite one, with
all the codes failing on some of the test problems. Because it does not include pivoting,
WSMP had the highest number of failures. The majority of failures for the other codes
were due to insufficient memory or the CPU time limit being exceeded or, in the case of
symmetric MUMPS, no suitable diagonal pivots (singular matrices). The main exception
was PARDISO, which had the fastest factorization times, but for two problems the
computed solutions were found to be inaccurate.

We note that v1.0.0 of MA57 uses an approximate minimum degree ordering and
computing this is significantly faster than computing the METIS ordering; this accounts
for the fast MA57 analyse times. MA57 also has the fastest solve times; the solve times
for PARDISO are slower even though it produces the sparsest factors since by default its
solve phase includes one step of iterative refinement. Overall, PARDISOwas the fastest
code on our set of indefinite problems.
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Performance Profile: 1.AFS.CPU − 61 indefinite problems, scaled, u=default
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BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 5. Performance profile, p(α): CPU time (seconds) for the complete solution (indefinite
problems)
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Performance Profile: 1.Analyse.CPU − 61 indefinite problems, scaled, u=default
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MUMPS (14 failed)
MUMPS−unsym (7 failed)
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Fig. 6. Performance profile, p(α): CPU time (seconds) for analyse phase (indefinite problems)
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Performance Profile: 1.Factorise.CPU − 61 indefinite problems, scaled, u=default
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WSMP (30 failed)

Fig. 7. Performance profile, p(α): CPU time (seconds) for the factorization (indefinite problems)
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Performance Profile: 1.Solve.CPU − 61 indefinite problems, scaled, u=default
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MUMPS−unsym (7 failed)
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PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 8. Performance profile, p(α): CPU time (seconds) for the solve phase (indefinite problems)

4 General Remarks

In this paper, we have introduced our study of sparse direct solvers for symmetric linear
systems and presented preliminary results. Full details of the study together with further
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information on all the solvers used will be given in the forthcoming report [5]. This report
will also contain more detailed numerical results and analysis of the results. Furthermore,
since performance profiles can only provide a global view of the solvers, the full results
for all the solvers on each of the test problems will be made available in a further report
[6]. We note that our preliminary findings have already lead to modifications to a number
of the solvers (notably MA57, PARDISO, and Oblio), and to further investigations and
research into ordering and pivoting strategies.
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