RAL-TR-97-054

A numerical comparison between the
LANCELOT and MINOS packages
for large-scale constrained optimization

I. Bongartz!', A. R. Conn?, N. I. M. Gould®*#, M. A. Saunders® and Ph. L. Toint5"

ABSTRACT

We present the results of a numerical comparison of two nonlinear optimization packages
capable of handling large problems, MINOS 5.5 and LANCELOT (Release A). The com-
parison was performed using over 900 constrained and unconstrained problems from the
CUTE collection.

With the default options, LANCELOT makes use of first and second derivatives, while
MINOS requires gradients but cannot use higher derivatives.

We conclude that LANCELOT is usually more efficient in terms of the number of function
and derivative evaluations. If the latter are inexpensive, MINOS may require less CPU
time unless there are many degrees of freedom. LANCELOT proves to be less reliable
than MINOS on linear programming problems, but somewhat more reliable on problems
involving nonlinear constraints.

I ProMIRA Software Inc, 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6 Canada
Email: ingridb@promira.com

2 IBM T.J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598, USA
Email : arconn@watson.ibm.com

3 Department for Computation and Information, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, 0X11 0QX, England, EU
Email : nimg@letterbox.rl.ac.uk

4 Current reports available from “ftp://joyous-gard.cc.rl.ac.uk/pub/reports”.

5 Department of EESOR, Stanford University, Stanford, CA 94305-4023, USA
Email: mike@SOL-michael.stanford.edu

6 Department of Mathematics, Facultés Universitaires ND de la Paix, 61, rue de Bruxelles,
B-5000 Namur, Belgium, EU.
Email : pht@math.fundp.ac.be

" Current reports available from “ftp://thales.math.fundp.ac.be/pub/reports”.

Department for Computation and Information
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

October 10, 1997.

1 Introduction

MINOS (Murtagh and Saunders, 1993) and LANCELOT (Conn, Gould and Toint, 1992a)
are two popular packages for solving large and small, constrained and unconstrained, non-
linear optimization problems of the form

minimize f(z)

z (1.1)
subject to [< Az < u,

where A is a p x n matrix and where ¢(z) € R™. The objective function f(z) and the
constraint functions c;(z) are assumed to be smooth.

Algorithmically, the packages are quite different. MINOS uses a reduced-space approach
to handle linear constraints and linearizations of any nonlinear constraints. LANCELOT uses
an augmented Lagrangian technique in which only the bound constraints are enforced di-
rectly. The numerical performance of the various algorithmic options within LANCELOT
has been analyzed by Conn, Gould and Toint (1996), but little has been published con-
cerning the numerical performance of MINOS, and even less is known about how these
packages compare in reliability and efficiency. Our aim is to provide such a comparison.
(Recently Gill, Murray and Saunders, 1997, have compared MINOS and SNOPT on many
test problems, including the CUTE collection used here.)

A fair comparison between two pieces of software such as LANCELOT and MINOS
seems extremely difficult for several reasons:

e A specific set of test problems must be chosen to which both packages can be applied
without biasing the conclusions. This requires careful thought and a sufficient number
of test problems; otherwise, the statistics presented can be of only limited value.

e Various measures of algorithmic efficiency are possible—for example, function evalu-
ation counts or CPU time. Thus, even on a common set of problems, the conclusions
can be sensitive to a particular choice.

e Certain algorithmic options must be selected for each package because comparing all
possible combinations is not practical. In addition, some options may be particularly
suitable for certain special situations; for example, each algorithm has an associated
folklore about options that are best under certain circumstances. Moreover, options
are not always independent.

e Decisions about stopping criteria and memory allocation are important in practice
but it may be very difficult to determine the best choice in any given circumstance.

e Finally, there always remains the difficulty of presenting the comparison data itself,
where a compromise has to be sought between exhaustive and concise presentations.
The main tendencies need to be captured, yet the detail must be such that the con-
clusions are clearly supported by the presented evidence.

The paper is organized as follows. Section 2 briefly recalls the algorithmic features of
both packages. Section 3 describes the comparison methodology and indicates how the

above-mentioned difficulties have been tackled. Section 4 presents the principal numerical
comparison using default options for both packages. Finally, some conclusions are drawn in
Section 5.

2 A brief outline of LANCELOT and MINOS

2.1 LANCELOT

The kernel algorithm for LANCELOT is an adaptation of trust-region methods to optimiza-
tion problems with simple bounds. The method is extended to general constraints by using
an augmented Lagrangian function, and the bounds are handled directly via projections
that are easy to compute. We use group partial separability (a generalization of sparsity,
introduced by Griewank and Toint, 1982) to allow efficient storage and updating of matri-
ces in matrix-vector product form. This approach has the further advantage that accurate
approximations to the second derivatives of the element functions, which are normally of
low rank, are easier to obtain than for the assembled matrices. An introduction to group
partial separability, a remarkably general structure, is given by Conn, Gould and Toint
(1990). There is also a book (Conn et al., 1992q) to accompany the LANCELOT software.

The basic idea of the trust-region scheme is to model the objective function about the
current point z¥. One ‘trusts’ this model in a neighbourhood (called the trust region) of
zF. The model is approximately optimized within the trust region, producing a new point
zFt1 = 2 4 sk, One then determines how well the model actually predicted the change in
the true objective function. If good agreement is obtained, the trust region is expanded,
while if the agreement is moderate, the trust region remains unchanged. If the agreement is
poor, zFt1 is reset to z* and the trust region is contracted. The beauty of such an approach
is that, when the trust region is small and the problem is smooth, the approximation will
be reliable so long as the model and true objective function gradients are close. Moreover,
provided that one finds an approximate minimizer of the model within the trust region
whose value is at least as small as the minimum along the steepest-descent direction (this
determines the so-called Cauchy point), one can ensure convergence to a stationary point.
In addition, the trust region will eventually be sufficiently large that it does not interfere
with the subsequent iterates. Thus, providing that the underlying model minimization is
sufficiently sophisticated in this situation, one can ensure fast asymptotic convergence. For
further details, see Moré (1983).

To extend these ideas to the case of simple bounds, we generalize the Cauchy point to the
minimum along the projected gradient path within the trust region, where the projection is
with respect to the simple bounds. As in the unconstrained case, global convergence can be
guaranteed, provided one finds a model value which is at least as small as at the generalized
Cauchy point. A satisfactory asymptotic convergence rate can be obtained by suitable
further reductions of the model function. In the context of LANCELOT, this is achieved by
fixing the variables which are active at the generalized Cauchy point, and further reducing
the model within the feasible region and trust region using just the remaining free variables.
Updating of the trust-region size is performed exactly as in the unconstrained case.

Provided the quadratic model is reasonable, we are able to prove convergence to a
Kuhn-Tucker point. Moreover, we identify the correct active bound constraints after a
finite number of iterations, provided that strict complementarity is satisfied and the free

variables determined by the generalized Cauchy point remain free when the model is further
reduced. Details are given in Conn, Gould and Toint (1988).

The extension to general constraints is carried out by means of an augmented Lagrangian
function. Linear constraints are treated no differently from nonlinear constraints, and we
may thus assume that p = 0 in (1.1). LANCELOT first introduces slack or surplus variables,
if necessary, to change general inequality constraints to equations. Subsequently a sequence
of augmented Lagrangian functions of the form

®(z,\, S, 1) = f(z) + Me(z) + ic(m)Tc(:v) (2.1)
are (approximately) minimized subject to explicit bounds, using the earlier algorithm. The
Lagrange multiplier estimates A and penalty parameter p may be suitably adjusted so
that convergence to a first-order stationary point for the original nonlinear program is
ensured under suitable conditions. Furthermore, if there is a single limit point, the penalty
parameter p is bounded away from zero. Under somewhat stronger conditions, we can
show that only a single iteration of the simple bounds algorithm is required to satisfy the
convergence conditions for the inner problem (the optimization for the given A and pu).
Details of these important properties are given by Conn, Gould and Toint (1991, 19925).

A significant, often dominant, cost in optimization is solving a linear system to obtain a
search direction. Typically the system is symmetric and arises from the need to determine
an approximate stationary point for a quadratic function. If the system is large there are
two common approaches. The first is to apply a direct method based upon multifrontal
techniques, involving partial assembly and dense-matrix technology on sparse matrices.
General details are given in Duff, Erisman and Reid (1986), and an application in the
context of LANCELOT is given in Conn, Gould, Lescrenier and Toint (1994). Our experience
to date, however, has been that an iterative approach is more robust. The most popular
such method is preconditioned conjugate gradients, and LANCELOT provides a variety of
suitable preconditioners.

2.2 MINOS

For practitioners familiar with linear programming methods, the MINOS package of Murta-
gh and Saunders (1978, 1982) serves as a very useful bridge to nonlinear programming. So
let us first assume that all the constraints are linear and there is no ¢(z).

Linearly constrained (LC) problems are dealt with most easily, using sparse basis-
handling techniques as in the simplex method. Since nonlinearities generally move optimal
points away from a vertex of the feasible region (where fewer than n constraints are active),
the set of active constraints is represented in the form

I
>

Az = (AP)(PTz) = (B g]{/’) Ts

TN

where Az is a subset of the rows of (z, Az) in (1.1), P is a permutation, b are the active
bounds from [and u, and B is square and nonsingular. The variables associated with B, S
and N are called basic, superbasic and nonbasic respectively.

We define ng, the number of degrees of freedom at the current point, to be the number
of superbasic variables (the column dimension of S). It is the number of variables minus the
number of active constraints, and is often quite small for constrained nonlinear problems
regardless of the number of nonlinearities. Optimization algorithms differ in their ability
to deal with many degrees of freedom, and this is one of the trends we shall examine in
our numerical experiments. In MINOS, a triangular matrix R of dimension ng is needed
to perform unconstrained optimization in an appropriate subspace. Quasi-Newton updates
are used to approximate the reduced Hessian in the form

—B~71S
RTR~7"HZ, Z=P I : (2.2)
0

where H = V2f(z) and Z spans the null space of A. Normally, R is stored as a dense
upper-triangular matrix, but when there are many degrees of freedom, MINOS works with

a “partial Hessian” of the form
R, 0
R= (") : (2.3)
D

where R, is a dense triangle and D is diagonal. In our numerical tests, we set Hessian
dimension to 500 to define the maximum size of R,.. MINOS treats Z as an operator
without forming its columns explicitly, using sparse LU factors of B to compute the products
Zd and Z'g. The main workspace required by MINOS is for L, U and the dense triangle
R,.

For nonlinearly constrained (NC) problems, MINOS applies the above algorithm to a
sequence of LC subproblems, in which the constraints are linearized at the current point x
and the objective is a modified augmented Lagrangian. Thus, each major iteration involves
an L.C subproblem of the form

minimize f(z) — Ald, (2, zk) + 3k dv (7, 21|

reR?
. N (2.4)
subject to [< Az < u,
Cr (',If‘a l'k)

where ¢ (z,zr) = c(xr) + Ve(zy)(x — zx) is the constraint linearization and dp(x,zy) =
c(z) —cp(z, zk) is the departure from linearity. The vector)y is a set of Lagrange multiplier
estimates for the nonlinear constraints, and py is a penalty parameter.

Ideally, the final primal and dual variables from the subproblem become the next ap-
proximation to the solution, (zx11,Ak+1). A major theoretical difficulty lies in choosing a
steplength from (z, A\x) towards that point. MINOS usually takes a full step, but heuris-
tically may shorten the step to prevent large changes to ||zg|| and |[Ak||. This strategy has
not, as yet, been shown to ensure convergence to a suitable first-order constrained station-
ary point. This may be the main reason why LANCELOT proves to be more reliable on
problems with nonlinear constraints in our numerical experiments.

3 The comparison methodology

Having recalled the main algorithmic features of LANCELOT and MINOS, we now describe
the procedure that has been used to compare these packages. As mentioned in the intro-
duction, there are a number of intrinsic difficulties that arise in such a comparison. The
purpose of this section is to discuss the options taken, many of which were influenced by
the choices made in a similar context by Conn et al. (1996).

Unfortunately, there is little consensus in the community as to the most appropriate
criteria for such comparisons, no doubt because such judgements are both difficult and
inherently subjective. Inevitably our comparison procedure could be improved. However,
we believe that we have taken adequate precautions to ensure that the resulting methodology
makes the numerical comparison meaningful and of interest.

3.1 The test problems

The first decision taken was to test and report on a large number and variety of test
problems. In our experience, this is essential for a valid assessment of software reliability
and performance. Smaller test sets are more likely to introduce unwanted bias and make
the statistical results less useful.

We have chosen 112 linear programs, 225 quadratic programs, 300 unconstrained or
bound-constrained, 58 linearly constrained and 218 nonlinearly constrained problems. Most
of the linear programs are from the NETLIB collection (Gay, 1985). The remaining prob-
lems are from the CUTE collection (Bongartz, Conn, Gould and Toint, 1995), the largest
single set of optimization problems currently available. They include almost all of those
tested by Conn et al. (1996), augmented by new problems that were not available at the
time. Only two instances of each of the variable-dimension problem were used, one large
and one small. We felt that the inclusion of further instances would provide little additional
information and perhaps bias the overall conclusions.

Care was taken to ensure that both packages could be started on each problem. Thus
it was necessary to eliminate some large problems whose memory requirements exceeded
the storage provided. Of course, the sparse factorizations in MINOS and some of the
algorithmic variants of LANCELOT might subsequently request additional memory that is
not available. This infrequent occurrence is treated as early termination, and was not used
to eliminate test problems.

It was also decided that smaller problems should not be excluded from the comparison,
despite the fact that both packages are known particularly for their ability to handle larger
problems. Indeed, experience shows that both LANCELOT and MINOS are useful for
solving problems of moderate (and even small) size. Ultimately, 913 test problems were
included, derived from 704 different problems, the additional examples being determined
by varying the dimension.

Of course we cannot include here all details of the test problems. Suffice it to say, our
test set includes the following collections:

e The NETLIB linear programming examples.

e The “Argonne test set” of Moré, Garbow and Hillstrom (1981), the Testpack suite
of Buckley (1989), the collection of Hock and Schittkowski (1981), the quadratic

problems of Moré and Toraldo (1991), and the network problems of Dembo (1984)
and Toint and Tuyttens (1990).

e Most problems from the PSPMIN collection of Toint (1983). Some trivial problems
were skipped, as were problems for which different local minima were known.

e Problems inspired by the orthogonal regression report by Gulliksson (1990).

e Those problems from the MINPACK-2 collection of Averick, Carter and Moré (1991)
and Averick and Moré (1991) that we could reconstruct from the data given in the
reports.

e Some of the second Schittkowski (1987) collection.
e A number of original problems from various application areas.

Following Conn et al. (1996), we present some of the problem characteristics in Figures 1
and 2 and Table 1.

e Figure 1 shows the distribution of the problem dimensions.

500+
400+
300+
200+
100+
— >
[0,50] [101,500] [1001,5000]
[51,100] [501,1000] [5001,00]

Figure 1: Distribution of problem dimensions n

¢ Figure 2 illustrates the distribution of the ratio m/n, where m is the total number
of general equality and inequality constraints. The higher this ratio, the more con-
strained the problem. Only constrained problems (m > 0) are considered in this
statistic.

e Figure 3 shows the distribution of the “number of degrees of freedom” in the problems;
that is, the difference between the number of variables n and the number of constraints
(including bounds) that are active at the solution'. We obtained these as the number

!Note that, for all unconstrained and bound constrained problems, this number was reset to the actual
number of variables in the problem, because the number given by MINOS sometimes underestimates the
true number of degrees of freedom in the case where some variables have the same value at the starting
point and the solution.

150+

100+

50

0 []

(3,3] ($1] (1,5 (5,10] (10,00]

Figure 2: Distribution of the relative number of constraints m/n

of superbasic variables reported by MINOS (see Section 2.2). The set of problems
considered here therefore excludes 37 problems for which MINOS failed before giving
this information; see Table 2 below.

500+

400+

300+

200+

100+

. e

0 [1,50] [101,500] [1001,5000]
[51,100] [501,1000] [5001,00]

Figure 3: Distribution of the number of degrees of freedom per problem

e Table 1 reports the number of problems for which a given characteristic lies in one
of five possible intervals [0,0.2], (0.2,0.4], (0.4,0.6], (0.6,0.8] and (0.8,0.1]. Four
characteristics are examined:

1. The relative nonlinearity of the objective function:

def number of nonlinear groups in the objective

D= . 3.1
Vob] number of groups in the objective (3-1)

See Conn et al. (1990) or Conn et al. (1992q) for the precise definition of groups.

2. The relative nonlinearity of the constraints:

def number of nonlinear constraints
Veons = m ’ (3'2)

where the denominator is the total number of constraints excluding bounds.
3. The proportion of variables subject to bound constraints: ny/n

4. The proportion of equality constraints:

def number of equality constraints
= .

0,41 (2 (2 (B3 (51
Vobj 163 1 13 12 725
Veons 307 8 29 7 153
ny/n | 448 22 37 39 368
0% 155 8 28 11 302

Table 1: Further problem characteristics

Note that most problems are not very large. However, we recall that testing LANCELOT
and MINOS on small problems is useful because the packages are widely applied to such
problems. Furthermore, the classes of larger problems are far from empty. We also observe
that most large problems tend to have a somewhat regular structure. This is noticeable in
the distribution of the relative nonlinearity of the constraints, where either most or very
few, if any, are nonlinear. The same phenomenon is observed for the proportion of bounded
variables, which tends to be either very low or close to one. Finally, a relatively important
class of problems have the same number of variables and general constraints—they are
systems of nonlinear equations. A fair proportion of the other constrained problems have
approximately half as many constraints as variables, and very few involve significantly more
general constraints than variables.

3.2 The performances measures

We have chosen to compare LANCELOT amd MINOS on reliability and numerical efficiency
only. Other issues such as ease of use are not unimportant, but they are less amenable to
a quantitative analysis.

Numerical efficiency itself has several possible aspects. We have chosen to focus on
the number of function and derivative evaluations required by the packages for solving a
given problem, as well as on the CPU time needed. Comparing iteration numbers is not
meaningful because the iterations in MINOS and LANCELOT are defined quite differently,
and involve very disparate amounts of computation.

3.3 The algorithmic options

Comparing all possible algorithmic combinations of LANCELOT with all possible algorithmic
combinations of MINOS is, of course, not practical. Instead, we have chosen to compare
the “default” version of the package, for each problem and each package.

The default version of LANCELOT is specified by running it with the algorithmic speci-
fication file (SPEC.SPC) given in Figure 4. These options specify the use of first and second
derivatives (which are known for all problems in the CUTE collection).? They also specify
the use of preconditioned conjugate gradients for solving the linear system defining the step
between two successive iterates, where the preconditioner is a banded restriction of the
relevant system matrix, with semi-bandwidth five.

The default version of MINOS 5.5 is not explicitly defined by Murtagh and Saunders
(1993), but a number of tolerances and thresholds are provided by default. We have chosen
to use those and alter the algorithmic specifications only to ensure that the memory alloca-
tion and the maximum number of iterations are roughly comparable to the “large” version
of LANCELOT used in these tests. (See Chapter 6 of Conn et al. (1992a) for a detailed
description of the sizing options in LANCELOT.) Thus, the “default version of MINOS”
means MINOS 5.5 (Dec 1995) using the SPECS file given in Figure 5. The perhaps more
widely-used MINOS 5.4 is functionally very similar.

BEGIN
check-derivatives
ignore-derivative-bugs
exact-second-derivatives-used
bandsolver-preconditioned-cg-solver-used 5
exact-cauchy-point-required

trust-region-radius 1.0D+0

maximum-number-of-iterations 10000000

print-level -1

start-printing-at-iteration 0

stop-printing-at-iteration 10000000
END

Figure 4: The LANCELQT default specification file

As is clear from these specification files, we have chosen not to limit the number of
iterations (the maxima indicated are infinite for all practical purpose), because what is
meant by an iteration is very different for each package. Otherwise a comparison would be
very difficult to interpret.

21t should be noted that one of the advantages of the group partial separable structure that underlies all
CUTE test problems is that this structure facilitates the specification of derivatives.

Begin MINOS Problem
Minimize
Jacobian Sparse
Derivative Level 3
Hessian Dimension 500
Superbasics Limit 5000
Iterations 99999999
Major Iterations 99999999
Minor Iterations 40
Print Level 0
End MINOS Problem

Figure 5: The MINOS default specification file

4 Comparison of the default versions

Given the number of test problems, it is clearly undesirable to report here the detailed
results for both packages on each instance. We therefore discuss only statistics and sum-
maries below. The complete results are given in a separate report (Bongartz, Conn, Gould,
Saunders and Toint, 1997), which is available by anonymous ftp from the authors’ technical
report sites.

All numerical tests were performed on a 333MHz DEC Alphastation 500 under Digital
Unix 4.0A using the default options of the f77 Fortran compiler.

4.1 Reliability

We first compare the reliability of the default versions of both packages, and report in Table 2
the results of our runs. In this table, the column heading “BC” indicates the results for
the 300 unconstrained or bound-constrained problems, and “LC” and “NC” refer to the
58 linearly constrained and 218 nonlinearly constrained cases of our test set, respectively.
These results immediately prompt some comments on the stopping criteria used by both
packages. Note that LANCELOT reported failure for 44 problems?, although the solution
was actually found to several significant digits. These reported failures are probably due to
too stringent stopping criteria. This is especially noticeable for linear programs (22 cases).
The same phenomenon happened 17 times* for MINOS. All of these reported LANCELOT
and MINOS “failures” were counted as having been successfully solved. On the other

3AGG, AGG2, AGG3, BOEING2, CVXQP1 (1000), CVXQP3 (1000), CZPROB, FINNIS, FIT2P,
GANGES, GFRE-PNC, HS69, HS75, HS84, HS100MOD, HS101, HS102, HS103, HS109, HS166, HUESTIS
(1000), METHANBS, MODEL NCVXQP7 (1000), POROUS1 (5184), POROUS2 (5184), POWELL20
(1000), PRODPL1, PRODPL2, QPCBOEI2, QPCSTAIR, SCAGR7, SCAGR25, SCORPION, SHELL,
SHIP04S, SHIP0SL, SHIP08S, SHIP12L, SIERRA, SIPOW4, STANDATA, STANDMPS and WOODI1P.

“ARGLINB (100), ARGLINC (100), CATENARY (15), EXTROSNB (1000), HS65, HS95, HS96,
HS97, HS114, HS117, LEAKNET, LISWETS5 (2002), MEYER3, PRODPL0, PRODPL1, SSEBNLN and
SPANHYD.

10

hand, MINOS reported solving 22 of the problems® when the final point was significantly
different from the known (and unique) solution of the problem. These cases were counted as
failures. Note that this situation did not occur with LANCELOT. These erroneous reports
seem to suggest that LANCELOT’s stopping criteria are slightly more stringent than those
of MINOS, and therefore cause it to report failure for solved problems more than MINOS,
whose somewhat looser criteria resulted in some premature terminations.

LP QP BC LC NC
Both succeed 73 197 261 55 159
Only LANCELOT succeeds 0 13 29 1 31
Only MINOS succeeds 39 6 4 1 13
Both fail 0 9 6 1 15

Table 2: Reliability on 112 linear, 225 quadratic, 300 unconstrained, 58 linearly constrained
and 218 nonlinearly constrained problems using the default versions of LANCELOT and
MINOS

The corresponding relative reliabilities are shown in Table 3. One immediately notices
the disappointing reliability of LANCELOT on linear programs, especially given the perfect
reliability of MINOS on such problems. By contrast both packages seem reasonably reliable
on other problem types, with a noticeable advantage for LANCELOT on general nonlinear
unconstrained and constrained problems.

LP QP BC LC NC
LANCELOT | 65% 93% 97% 97% 87%
MINOS 100% 90% 88% 97% 79%

Table 3: Relative reliability on 112 linear, 225 quadratic, 300 unconstrained, 58 linearly con-
strained and 218 nonlinearly constrained problems using the default versions of LANCELOT
and MINOS.

We also report the various causes of failures for each class of problems and for both
packages in Table 4. Here, “No progress” indicates that the package was stopped because
no further significant progress could be made, “Maximum CPU” that the maximum CPU
time allowed (namely 12000 seconds) was exceeded, and “Arith. error” that an arithmetic
error (overflow or division by zero) occurred, causing the package to fail. Finally, “False
conv.” denotes cases where convergence was erroneously reported.

We note that MINOS often fails because of arithmetic errors (typically overflows in
function evaluations at infeasible points), while LANCELOT’s failures are mostly caused by
a lack of significant progress or excessive time requirements. The latter cause is probably
the most acceptable because it suggests at least that more time might produce a solution.

SBEALE, DENSCHNC, HS41, LIARWHD (500), LISWET1 (103), LISWET1 (2002), LISWET7 (2002),
LISWETS (2002), LISWET9 (103), LISWET9 (2002), LISWET10 (2002), LISWET11 (103), LISWET11
(2002), LISWET12 (103), LISWET12 (2002), NONDIA (10), NONDIA (10000), OSBORNEB, SPMSRTLS
(499), TOINTGSS (10), WEEDS and YAO(2002).

11

Failure type package LP QP BC LC NC
No progress LANCELOT 3 12 7 2 19
MINOS 0 8 3 0 7
Maximum CPU | LANCELOT | 36 3 0 0 6
MINOS 0 1 7 0 1
Arith. error LANCELOT 0 0 3 0 3
MINOS 0 1 16 1 38
False conv. LANCELOT 0 0 0 0 0
MINOS 0 12 9 1 0

Table 4: Failure causes for the default versions of LANCELOT and MINOS.

4.2 Efficiency: number of function evaluations

If we now wish to compare the efficiency of the packages on problems that both could solve,
we must eliminate cases that converged to different local minima. We therefore discarded
problems for which the optimal objective value differed by more than 1%, keeping for further
consideration the 259 unconstrained, 52 linearly constrained and 153 nonlinearly constrained
problems that were coherently solved in that sense. We emphasize that these are the only
problems considered in the rest of this numerical comparison. We also discarded the linear
and quadratic problems from the comparison of the number of function evaluations, since
these evaluations can be regarded as internal linear algebraic work.

We first examined the default versions of the packages again and compared the number
of function evaluations required for the solution of the coherently solved problems. More
precisely, for LANCELOT we counted the number of evaluations of the objective and con-
straints together (and their first and second derivatives) as a single evaluation. For MINOS
we took the maximum between the number of objective and nonlinear constraint evaluations
(and their gradients). (If both objective and constraints are nonlinear, they are evaluated
essentially the same number of times.) The cumulative results are shown in Table 5, where
the difference between LANCELOT and MINOS is very apparent.

| LANCELOT | MINOS

253 BC problems 72582 | 846865
50 LC problems 5277 44393

153 NC problems 284660 97170

(152 NC problems excluding LAUNCH) (75246) | (95909)

Table 5: Total number of function evaluations for the default versions of LANCELOT and
MINOS

These numbers are misleading because more difficult problems tend to completely dom-
inate the comparison,® which gives little indication of the relative efficiencies on a problem-

5For instance, LANCELOT finally solved problem LAUNCH after 209414 function evaluations while MI-
NOS only required 1261. This (admittedly striking) difference in performance between the two packages

12

by-problem basis. Thus we also present a more disaggregate comparison.

LANCELOT tie MINOS MINOS- LANCELOT
wins wins min gl med q3 max
253 BC problems 219 2 32 -1532 7 52 506 146265
50 LC problems 40 1 10 31 4 44 439 7916
153 NC problems 118 2 33 | -208153 3 41 1129 22991

Table 6: Detailed comparison of the default versions of LANCELOT and MINOS for function
evaluations

In columns two to four of Table 6, we report the number of times each package wins
(that is, requires fewer function values) and the number of ties. Columns five to nine
give information on the distribution of the difference between the number of MINOS and
LANCELOT evaluations when they are different. The minimum (min), first quartile (ql),
median (med), third quartile (q3) and maximum of this distribution are reported. For
instance, a positive value of the median indicates that MINOS requires more function
evaluations for more than half the test problems. Conversely, the more negative these
indicators are, the more favourable for MINOS.

According to standard statistical practice, we base our comments mostly on the inter-
vals between the first and third quartile as estimates of the distribution ranges. We see
immediately the advantage of LANCELOT, based on this criterion. It may be concluded
that if function or constraints evaluations are costly, the default version of LANCELOT is
likely to be preferable to the default version of MINOS.

An important question to examine is how these results depend on the number of de-
grees of freedom of the problems tested (the number of variables minus the number of
constraints active at the solution, see Section 2.2). To provide an answer we obtained ng,
the number of superbasic variables reported by MINOS. We then divided the three classes
of bound/unconstrained, linearly and nonlinearly constrained problems each into two sub-
sets: the problems having less than 50 degrees of freedom and those having 50 or more.
Tables 7 and 8 give the same information as Tables 5 and 6 for each of the two subsets.

on a single problem completely swamps the aggregate results for nonlinearly constrained problems. See the
bracketed numbers in Table 5 when LAUNCH is excluded.

13

LANCELOT | MINOS

| < 50 superbasics |
157 BC problems 66159 115871
39 LC problems 1516 14097
138 NC problems 67620 39654

| > 50 superbasics |
92 BC problems 6325 | 728083
11 LC problems 323 29064
7 NC problems 457 55772

Table 7: Total number of function evaluations for the default versions of LANCELOT and
MINOS according to the number of superbasic variables

LANCELOT tie MINOS MINOS - LANCELOT

wins wins min gl med q3 max

[< 50 superbasics]
157 BC problems 132 1 24 | -1532 3 20 63 43473
39 LC problems 28 1 10 -31 -1 21 88 3731
138 NC problems 106 2 30 | -23627 4 41 110 3016

| > 50 superbasics |
92 BC problems 83 1 8 -145 214 831 3460 146265
11 LLC problems 11 0 0 332 345 2056 2989 7916
7 NC problems 7 0 0 597 597 6350 8874 22991

Table 8: Detailed comparison of the default versions of LANCELOT and MINOS for function
evaluations, according to the number of superbasic variables

14

The conclusion, unsurprisingly, is that the performance of LANCELOT relative to MI-
NOS improves when the number of degrees of freedom (superbasic variables) increases.

4.3 Efficiency: CPU time

We now turn to the comparison of CPU times, again restricted to the set of problems that
were coherently solved by both packages. The cumulative times are reported in Table 9,
while the disaggregate results are presented in Table 10. All reported times are in seconds,
and two times are reported equal when they differ by less than 5% or less than half a second.

LANCELOT | MINOS

73 LP problems 45812 466
197 QP problems 2222 4703
253 BC problems 2758 14388
50 LC problems 1526 219
153 NC problems 15754 1093

Table 9: Total CPU time for the default versions of LANCELOT and MINOS

LANCELOT tie MINOS MINOS- LANCELOT
wins wins min ql med g3 max
73 LP problems 0 11 62 | -10695 -348 -55 -8 0
197 QP problems 43 116 38 -858 -6 1 12 2893
253 BC problems 53 170 30 -257 -2 2 24 3685
50 LC problems 6 30 14 | -1087 -33 3 5 15
153 NC problems 10 113 30 | -10608 -24 -2 -1 360

Table 10: Detailed comparison of the default versions of LANCELOT and MINOS for CPU

time

Recall that the comparison involves problems whose objective and constraints are very
cheap to evaluate. The CPU times therefore mostly reflect the amount of computation that
is internal to the packages themselves. If the functions were more expensive to compute,
the CPU time performances would more closely match those reported above for function
evaluations.

Except for linear problems, where the superiority of MINOS is clear, the interquartile
distances show that both packages have a rather comparable performance in CPU time,
with a slight advantage for LANCELOT in the quadratic and unconstrained cases, and for
MINOS in the nonlinearly constrained case.

Tables 11 and 12 give the CPU performances according to the number of degrees of
freedom of each problem. The picture is very clear and quite striking here: MINOS takes
less time on problems with relatively few degrees of freedom while the opposite is true for
problems where this number is higher. When there are many degrees of freedom, MINOS
remains significantly better only for the class of problems involving linear constraints.

15

LANCELOT | MINOS

| < 50 superbasics |
73 LP problems 45812 466
143 QP problems 1553 84
157 BC problems 331 31
39 LC problems 152 12
138 NC problems 12088 169

| > 50 superbasics |
54 QP problems 668 4619
92 BC problems 2423 14338
11 LC problems 1343 205
7 NC problems 95 922

Table 11: Total CPU time for the default versions of LANCELOT and MINOS according
to the number of superbasic variables

In the detailed comparison of Table 12, one notices that LANCELOT may be very slow
on the few problems where it is slower than MINOS. A first, somewhat extreme, example
is the solution of the BIGBANK linearly constrained problem, which features a nonlinear
objective function and linear constraints of the network type. LANCELOT takes 1188 sec-
onds, while MINOS, which exploits both the sparsity and the linearity of the constraints,
requires only 100 seconds. A second such example is the CORKSCRW (4506) nonlinearly
constrained problem, with a nonlinear objective function, 3000 linear equality, 500 nonlin-
ear inequality and 4000 bound constraints. LANCELOT converges in 10694 seconds while
MINOS apparently exploits the fact that there are n active constraints at the solution (no
degrees of freedom), and only takes 86 seconds to solve the problem! On the other hand,
MINOS is also sometimes much slower than LANCELOT. This happens, for instance, on the
GRIDNETB(7564) quadratic problem, where MINOS takes 2998 seconds while LANCELOT
takes 104. Note that this problem has 3721 degrees of freedom at the solution, which is the
largest number amongst all the tested quadratic programs. Another cause of relative slow-
ness for MINOS is strong nonlinearity, which appears, for example, in the unconstrained
least-squares problems MSQRTALS(529) and MSQRTBLS(529), where it requires 3374 and
3751 seconds, respectively, compared to the 87 and 65 seconds needed for LANCELOT to
converge.

5 Conclusions

The numerical tests described here confirm our belief that to a large extent, LANCELOT
and MINOS complement each other. Our experiments with the “default” versions of the
packages have shown MINOS to be a clear winner for linear programs. For the other
classes, MINOS has proved to be slightly more reliable on linearly constrained problems,
while LANCELOT has a small advantage for unconstrained and nonlinearly constrained
cases. However the difference in reliability is not very large. From the efficiency point of
view, LANCELOT is a clear winner if the evaluations of the problem functions are expensive

16

LANCELOT tie MINOS MINOS - LANCELOT

wins wins min ql med ¢3 max

[< 50 superbasics |
73 LP problems 0 11 62 -10695 -348 -55 -8 0
143 QP problems b) 110 28 -828 -28 -1 -1 2
157 BC problems 1 142 14 -257 -5 -2 -1 1
39 LC problems 0 28 11 -8 -34 -3 -1 0
138 NC problems 4 107 27 -10608 -24 -6 -1 9

| > 50 superbasics |
54 QP problems 38 6 10 -253 1 9 17 2893
92 BC problems 50 26 16 -221 0 4 41 3685
11 LC problems 6 2 3 -1087 -107 6 11 15
7 NC problems 6 1 0 4 5 80 210 360

Table 12: Detailed comparison of the default versions of LANCELOT and MINOS for CPU
time

or, to a lesser extent, if the number of degrees of freedom in the problem is large. MINOS,
on the other hand, appears to be faster when function evaluations are inexpensive or when
there are few degrees of freedom. Again, these conclusions are only valid for default versions
of the packages.

None of the conclusions is very surprising, considering the differences in the algorithms
themselves. However, the results are potentially very useful to users of mathematical pro-
gramming software in that they give a quantitative indication of the type of differences in
reliability and efficiency that can be expected.

Ideally, one would pursue these experiments by selecting, for each package, other algo-
rithmic variants than the defaults, as this of course substantially affects both reliability and
efficiency. For LANCELOT, such a study has been presented by Conn et al. (1996). A key
comparison there is the effect of running LANCELOT with and without second derivatives,
where it is observed that the use of exact second derivatives is only slightly superior to the
use of the best (partitioned, symmetric-rank-one) secant update formula. However, com-
paring several variants of MINOS with several variants of LANCELOT would be a major
exercise, unlikely to reveal options that perform consistently better than those used here.
Since our results clearly show that there is a role to play for both packages, the authors feel
that, although continued experience will undoubtedly result in deeper understanding, the
best advice they can offer to practitioners is to try both packages themselves, and determine
which, and with what options, is best for their particular applications.

17

Acknowledgments

The research of A. R. Conn was supported in part by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the Air Force Office of Sci-
entific Research under Contract No. F49620-91-C-0079. The United States Government is
authorized to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright notation hereon. The research of M. A. Saunders was partially supported
by National Science Foundation grant DMI-9500668 and Office of Naval Research grant
N00014-96-1-0274.

References

B. M. Averick and J. J. Moré. User guide for the MINPACK-2 test problem collection.
Technical Report ANL/MCS-TM-157, Argonne National Laboratory, Illinois, USA,
1991.

B. M. Averick, R. G. Carter and J. J. Moré. The MINPACK-2 test problem collection
(preliminary version). Technical Report ANL/MCS-TM-150, Argonne National Labo-
ratory, Illinois, USA, 1991.

I. Bongartz, A. R. Conn, N. I. M. Gould and Ph. L. Toint. CUTE: Constrained and
unconstrained testing environment. ACM Transactions on Mathematical Software,

21(1), 123-160, 1995.

I. Bongartz, A. R. Conn, N. I. M. Gould, M. A. Saunders and Ph. L. Toint. A numerical
comparison between the LANCELOT and MINOS packages for large-scale nonlinear op-
timization: the complete results. Technical Report 97/14, Department of Mathematics,
FUNDP, Namur, Belgium, 1997.

A. G. Buckley. Test functions for unconstrained minimization. Technical Report CS-3,
Computing Science Division, Dalhousie University, Dalhousie, Canada, 1989.

A. R. Conn, N. I. M. Gould and Ph. L. Toint. Global convergence of a class of trust region
algorithms for optimization with simple bounds. SIAM Journal on Numerical Analysis,
25(2), 433-460, 1988. See also same journal 26, 764-767, 1989.

A. R. Conn, N. I. M. Gould and Ph. L. Toint. An introduction to the structure of large
scale nonlinear optimization problems and the LANCELOT project. In R. Glowinski
and A. Lichnewsky, eds, ‘Computing Methods in Applied Sciences and Engineering’,
pp- 42-54, SIAM, Philadelphia, 1990.

A. R. Conn, N. I. M. Gould and Ph. L. Toint. A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds. SIAM Journal
on Numerical Analysis, 28(2), 545-572, 1991.

A.R. Conn, N. I. M. Gould and Ph. L. Toint. LANCELOT: a Fortran package for large-scale
nonlinear optimization (Release A). Number 17 in ‘Springer Series in Computational
Mathematics’. Springer Verlag, Heidelberg, Berlin, New York, 19924.

18

A. R. Conn, N. I. M. Gould and Ph. L. Toint. On the number of inner iterations per outer
iteration of a globally convergent algorithm for optimization with general nonlinear
equality constraints and simple bounds. In D. F. Griffiths and G. A. Watson, eds,
‘Numerical Analysis 1991’, number 260 in ‘Pitman Research Notes in Mathematics
Series’, pp. 49-68, Longman Scientific and Technical, Harlow, England, 19925.

A. R. Conn, N. I. M. Gould and Ph. L. Toint. Numerical experiments with the LANCELOT
package (Release A) for large-scale nonlinear optimization. Mathematical Program-
ming, 73(1), 73-110, 1996.

A. R. Conn, N. I. M. Gould, M. Lescrenier, and Ph. L. Toint. Performance of a multi-
frontal scheme for partially separable optimization. In ‘Advances in optimization and
numerical analysis, Proceedings of the Sixth workshop on Optimization and Numer-
ical Analysis, Oaxaca, Mexico’, number 275 in ‘Mathematics and its Applications’,
pp- 79-96, Kluwer Academic Publishers, Dordrecht, 1994.

R. S. Dembo. A primal truncated-Newton algorithm with application to large-scale non-
linear network optimization. Technical Report 72, Yale School of Management, Yale
University, New Haven, USA, 1984.

I. S. Duff, A. M. Erisman and J. K. Reid. Direct methods for sparse matrices. Oxford
University Press, Oxford, 1986.

D. M. Gay. Electronic mail distribution of linear programming test problems. Mathematical
Programming Society COAL Newsletter, December 1985.

P. E. Gill, W. Murray and M. A. Saunders. SNOPT: an SQP algorithm for large-scale
constrained optimization. Technical Report SOL97-3, Department of EESOR, Stanford
University, Stanford, California 94305, USA, 1997.

A. Griewank and Ph. L. Toint. Partitioned variable metric updates for large structured
optimization problems. Numerische Mathematik, 39, 429-448, 1982.

M. Gulliksson. Algorithms for Nonlinear Least Squares with Applications to Orthogonal
Regression. PhD thesis, Institute of Information Processing, University of Umea, S-
901 87 Umea, Sweden, 1990.

W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Num-
ber 187 in ‘Lecture Notes in Economics and Mathematical Systems’. Springer Verlag,
Heidelberg, Berlin, New York, 1981.

J. J. Moré. Recent developments in algorithms and software for trust region methods. In
A. Bachem, M. Grotschel and B. Korte, eds, ‘Mathematical Programming: The State
of the Art’, pp. 258-287, Springer Verlag, Heidelberg, Berlin, New York, 1983.

J. J. Moré and G. Toraldo. On the solution of large quadratic programming problems with
bound constraints. SIAM Journal on Optimization, 1(1), 93-113, 1991.

J. J. Moré, B. S. Garbow and K. E. Hillstrom. Testing unconstrained optimization software.
ACM Transactions on Mathematical Software, 7(1), 17-41, 1981.

19

B. A. Murtagh and M. A. Saunders. Large-scale linearly constrained optimization. Mathe-
matical Programming, 14(1), 41-72, 1978.

B. A. Murtagh and M. A. Saunders. A projected Lagrangian algorithm and its implementa-
tion for sparse non-linear constraints. Mathematical Programming Studies, 16, 84117,
1982.

B. A. Murtagh and M. A. Saunders. MINOS 5.4 USER’S GUIDE (revised). Technical Re-
port SOL83-20R, Department of Operations Research, Stanford University, Stanford,
California 94305, USA, 1993. Revised 1995.

K. Schittkowski. More Test Examples for Nonlinear Programming Codes. Number 282 in
‘Lecture Notes in economics and mathematical systems’. Springer Verlag, Heidelberg,
Berlin, New York, 1987.

Ph. L. Toint. Test problems for partially separable optimization and results for the rou-
tine PSPMIN. Technical Report 83/4, Department of Mathematics, FUNDP, Namur,
Belgium, 1983.

Ph. L. Toint and D. Tuyttens. On large-scale nonlinear network optimization. Mathematical
Programming, Series B, 48(1), 125-159, 1990.

20

