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Finding a point in the relative interior

of a polyhedron

Coralia Cartis1,3 and Nicholas I. M. Gould1,2,3

ABSTRACT

A new initialization or ‘Phase I’ strategy for feasible interior point methods for linear programming is proposed

that computes a point on the primal-dual central path associated with the linear program. Provided there exist

primal-dual strictly feasible points — an all-pervasive assumption in interior point method theory that implies

the existence of the central path — our initial method (Algorithm 1) is globally Q-linearly and asymptotically Q-

quadratically convergent, with a provable worst-case iteration complexity bound. When this assumption is not met,

the numerical behaviour of Algorithm 1 is highly disappointing, even when the problem is primal-dual feasible. This

is due to the presence of implicit equalities, inequality constraints that hold as equalities at all the feasible points.

Controlled perturbations of the inequality constraints of the primal-dual problems are introduced — geometrically

equivalent to enlarging the primal-dual feasible region and then systematically contracting it back to its initial

shape — in order for the perturbed problems to satisfy the assumption. Thus Algorithm 1 can successfully be

employed to solve each of the perturbed problems. We show that, when there exist primal-dual strictly feasible

points of the original problems, the resulting method, Algorithm 2, finds such a point in a finite number of changes

to the perturbation parameters. When implicit equalities are present, but the original problem and its dual are

feasible, Algorithm 2 asymptotically detects all the primal-dual implicit equalities and generates a point in the

relative interior of the primal-dual feasible set. Algorithm 2 can also asymptotically detect primal-dual infeasibility.

Successful numerical experience with Algorithm 2 on linear programs from NETLIB and CUTEr, both with and

without any significant preprocessing of the problems, indicates that Algorithm 2 may be used as an algorithmic

preprocessor for removing implicit equalities, with theoretical guarantees of convergence.
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1 Introduction

1.1 Background and motivation

Finding a feasible point of a given polyhedron or detecting that the polyhedron is empty is

a fundamental and ubiquitous problem in optimization. It is often referred to as the linear

feasibility problem since algebraically it is equivalent to finding a solution to a given system of

finitely many linear equalities and inequalities. A significant amount of research has been devoted

to this topic (see [31, 40] and the references therein), in particular to constructing polynomial

time algorithms, with landmark methods such as that due to Khachiyan’s [19] being developed in

this context. The need to solve such problems occurs not only in numerous real-life applications,

but also in the context of Linear (lp) and Nonlinear (nlp) programming. Reformulating an lp

problem as a linear feasibility one has traditionally been regarded as a way for solving the former

[31], though this view is now mostly considered computationally inefficient. Nevertheless, the

relevance of linear feasibility problems as a useful initialization or ‘Phase I’ approach for lp —

and also for nlp problems with (some) linear constraints — has prevailed, particularly when

employing interior point-type methods to solve these problems. For the so-called feasible variants

[15, 30, 36] of the latter algorithms, a starting point needs not only be feasible with respect to

the constraints, but strictly feasible, satisfying each inequality constraint strictly. In the nlp

context, where many problems involve a mixture of linear and nonlinear constraints, the desired

outcome of such an initialization strategy is a reduction in problem dimension, by the satisfaction

of the linear constraints of the problem (or a certificate that they are inconsistent) prior to the

much harder computational task of satisfying the nonlinear constraints and solving the problem.

Once a (strictly) feasible point for the linear constraints has been computed, algorithms for

solving lp and nlp problems can subsequently keep these constraints (strictly) satisfied without

much difficulty. The infeasibility detection component of an initialization strategy may also be

employed during the course of an nlp algorithm for local infeasibility detection of the quadratic

or linearized model of the problem (for example, in sqp or interior point methods).

In this paper, we develop and analyse a Phase I strategy suitable for initializing feasible

primal-dual Interior Point Methods (ipms) for lp, which can also be straightforwardly applied to

finding a strictly feasible point of the polyhedron determined by the linear constraints of an nlp.

Over the past fifteen years, primal-dual ipms [36], with both feasible and infeasible variants (see,

for example, [21] and [20], respectively), have emerged as the most successful ipms for solving

(especially large-scale) lp problems, while enjoying good theoretical convergence and complexity

properties. See [13, 15, 36] for comprehensive reviews of the field of ipms. In this context, one

considers a linear program of the form

minimize
x∈IRn

cT x subject to Ax = b and x ≥ 0, (P)

and its dual

maximize
y∈IRm,s∈IRn

bT y subject to AT y + s = c and s ≥ 0, (D)

often denoted by (PD), as well as the central path associated with (P) and (D), which is the
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solution v(µ) := (x(µ), y(µ), s(µ)) to

Ax − b = 0 (1.1a)

AT y + s − c = 0 (1.1b)

XSe = µe (1.1c)

and x > 0, s > 0, (1.1d)

as a function of the scalar parameter µ > 0 [23, 36]; here e is the vector of ones and X and S

are diagonal matrices whose diagonal entries are the components of x and s. The central path

is well-defined provided that problems (P) and (D) have a primal-dual strictly feasible point and

the matrix A has full row rank [36] (see the ipm conditions in Section 3). The system (1.1)

represents the kkt optimality conditions of the following strictly convex problem

minimize
(x,y,s)

c>x − b>y − µ

n
∑

i=1

log xi − µ

n
∑

i=1

log si subject to Ax = b and A>y + s = c. (1.2)

The presence of the log terms on all the primal-dual inequality constraints encourages the solution

v(µ) of (1.2) to be away from the boundaries of the feasible set of (P) and (D), allowing it to

approach it only in the limit, as µ → 0, when, indeed, v(µ) converges to a solution of (P) and

(D) [23, 40]. Feasible primal-dual ipms attempt to follow this or some other parametrization [15]

of the central path, to a solution of the problems. Thus a natural approach for our ‘Phase I’

strategy is to aim to find a point on the central path, preferably with µ not too ‘small’ in order

to discourage the ill-conditioning caused by the barrier terms of (1.2) at points close to the

boundaries. Specifically, we fix µ and wish to find v(µ) satisfying (1.1), which is a primal-dual

strictly feasible point.

1.2 Algorithm 1

Algorithm 1, described in Section 2, attempts to achieve the above-mentioned goal by applying

damped a Newton method to the system (1.1), with a linesearch that ensures sufficient decrease

in a measure Φ of the error in (1.1) (see (2.7)), while guaranteeing the iterates do not get too

“close” to the boundaries of (P) and (D). Under the ipm conditions, we show that Algorithm 1 is

globally Q-linearly convergent and that the iterates vk = (xk, yk, sk) generated by the algorithm

converge to v(µ), as k → ∞ (see Theorem 3.5). Furthermore, Algorithm 1 is asymptotically

Q-quadratically convergent and vk → v(µ) at least Q-superlinearly. If in Algorithm 1 we employ

a particular choice of stepsize (given by (2.17) and (3.44)) then the stepsize becomes equal to

one, and thus the iterates become strictly feasible for (P) and (D), after finitely many iterations;

subsequently, our measure of the error Φ(vk) converges Q-quadratically to zero, as do the iterates

vk to v(µ). In Section 3.2, we give an upper bound on the number of iterations required by

Algorithm 1 to terminate with Φ(vk) less than a given tolerance ε > 0, by giving a precise bound

on the number of iterations required for the quadratic convergence of the error Φ to zero to occur.

Our complexity results are dependent upon the norm that is used to define Φ; for example, if

we use the l2 norm, then, besides log ε, our bounds depend explicitly only on Φ(v0), µ and a

pre-defined parameter θ of the stepsize (see Corollary 3.11). For other norms, such as l1 and l∞,

a polynomial explicit dependence on n also occurs (see Corollary 3.11). We develop the entire

theory for Algorithm 1, and not just its complexity, in terms of general norms on IRn, so as to

provide user-flexibility. The best complexity results for Algorithm 1 are obtained for the l2 norm,
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while for convenience in our implementations, we employ the l∞ norm.

1.3 Some disadvantages of the assumptions

In Section 5.1, our numerical experience with a Fortran 95 implementation of Algorithm 1 on

netlib problems [27], without any preprocessing of the problems except to ensure that A has full

row rank, confirms our theoretical results, with Example 1 illustrating the satisfactory behaviour

of Algorithm 1 that we generally observe when the ipm conditions hold.

Example 2 and 3 in the same section portray, however, the highly disappointing performance

of Algorithm 1 that we have also encountered on a significant number of problems in the netlib

collection. There, Algorithm 1 reaches the maximum number of iterations allowed (k = 1000),

without generating the required approximate solution of (1.1) for the given µ and tolerance ε.

An approximately primal-dual feasible point is obtained in most cases, though possibly not to

high accuracy, but not a strictly feasible one as some of the variables are very close to their

bounds, while the corresponding dual ones are very large and increasing in magnitude, causing

severe ill-conditioning. We rigorously show on the simple Example 3 that this behaviour is not

due to a poor implementation of the algorithm, or to the choice of µ, but rather to the problem

in question having primal-dual feasible, but not strictly feasible, points and thus, not satisfying

the ipm conditions. Then, our general convergence and complexity results do not apply, and the

central path (1.1) may not be well-defined.

When (P) and (D) are feasible, the absence of strictly feasible points for the feasible set

of problems (P) and (D) indicates the presence of implicit equalities — inequality constraints

that hold as equalities at all the feasible points. Geometrically, the implicit equalities of the

primal-dual feasible set, together with its equality constraints, form its affine hull (see (6.69)),

the “smallest” affine subspace containing this set. By assuming the existence of strictly feasible

points, and also since the (nonredundant) implicit equalities are not known a priori, we may be

overestimating the dimension of our feasible set; for example, we might think the feasible set is

a cube in IR3, when it is, in fact, a square in IR3.

To assess the unfavorable implications of implicit equalities on the behaviour of Algorithm 1

and ipms, recall that in the barrier terms of problem (1.2) — whose solution is the target point

that Algorithm 1 attempts to compute — we included all the inequality constraints of problems

(P) and (D). Since one does not know in advance the implicit equalities of (PD), by attempting

to solve (1.1), one mistakingly includes all its inequalities constraints into the log barrier terms

of (1.2), some of which thus blow up and are ultimately ill-defined.

Furthermore, the ipm conditions are the assumptions under which, the convergence and com-

plexity analysis of, not only Algorithm 1, but of every (primal-dual) ipm we are aware of, with

the notable exception of the approach in [41], is performed. Thus we are left with no known

theoretical guarantees of convergence for these algorithms when applied to problems that are

feasible, and thus have solutions, but that do not satisfy the ipm conditions.

There is no real need to emphasize that problems that do not satisfy these assumptions are

frequently encountered in practice. For example, overspecifying an optimization model problem

is a common occurrence as a practitioner setting up a model may simply wish to ensure that

the constraints are satisfied, and is not concerned with detecting dependencies in the data and

the constraints. The use of preprocessors for such purposes (see for example, [14]), before ap-

plying the algorithm in question to the problem, has been a standard approach among software
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developers, though its effectiveness is code-dependent and not guaranteed to be optimal. Several

approaches for detecting implicit equalities in a polyhedral set of constraints have been proposed

[6, 22, 28, 34], etc., the most relevant to our work being [32]. In the latter article, an auxiliary

problem is constructed whose solution fully identifies the implicit equalities in (P) and is com-

puted using (any) ipm. When applying this method in the context of the primal-dual problem,

the dimension of the auxiliary reformulation doubles. Furthermore, we run into a vicious circle

where we want to devise a Phase I for ipms but need to apply an ipm to it. Thus we consider

the approach in [32] to be unsuitable for our purposes.

1.4 Algorithm 2: overcoming the assumptions by controlled perturbations

In order to improve the numerical behaviour of Algorithm 1 when the ipm conditions are not

satisfied, as well as its capacity to detect implicit equalities and infeasibility, we consider con-

structing in Section 5.2, a sequence of relaxations of our original problem, each of which satisfies

the ipm conditions, and is thus amenable to Algorithm 1. The resulting method, Algorithm 2,

has the following geometric interpretation. In its first iteration k = 0, we enlarge the primal-

dual feasible set by perturbing the nonnegativity bounds of (P) and (D) by some quantities

−λ0 ∈ IRn and −γ0 ∈ IRn, respectively, where (λ0, γ0) ≥ 0, which are chosen so as to ensure

that the perturbed problem admits strictly feasible points (this condition can always be achieved

without much difficulty if A has full row rank as we show in Section 5.2.1). We then apply Algo-

rithm 1 to the perturbed problem and find (exactly) a point on its central path that we denote by

v1 = (x1, y1, s1). Subsequently, as described in Section 5.2.2, we successively shrink this enlarged

polyhedron by reducing the perturbation parameters (λk, γk) such that the current iterate of Al-

gorithm 2, vk = (xk, yk, sk), k ≥ 1, remains strictly feasible for the next (i. e., (k +1)st) shrunken

polyhedron. Initializing Algorithm 1 at vk, we again compute, exactly, a point on the central

path of the (k+1)st perturbed feasible set. Algorithm 2 terminates when a strictly feasible point

of (P) and (D) is found. In Section 6, the convergence of Algorithm 2 is analysed under the

general assumption that the matrix A has full row rank, which is easy to satisfy.

1.5 Finite termination of Algorithm 2 when the IPM conditions hold

In Section 6.1, we show that if problems (P) and (D) admit strictly feasible points, then Al-

gorithm 2 will find such a point in a finite number of changes to the perturbation parameters

(λk, γk), or equivalently, of major iterations k (see Corollary 6.5, which also gives a bound on

k). The perturbation parameters are equal to zero at termination. Furthermore, if the iterate at

termination is “far” from the central path of (PD), one more run of Algorithm 1 starting from

that point (i. e., one more iteration of Algorithm 2) will bring it onto the central path of (PD).

1.6 Asymptotic detection of all primal-dual implicit equalities and transformation

of the problems

In Section 6.2.1, assuming that problems (P) and (D) are feasible, but not strictly feasible, we

are able to fully characterize the set of implicit equalities of (P) and (D) in terms of the asymp-

totic behaviour of the (major) sequence of iterates vk = (xk, yk, sk) generated by Algorithm 2.

Corollary 6.12 summarizes these results. In particular, an index i ∈ {1, . . . , n} corresponds to

a primal implicit equality (i. e., xi = 0 for all primal feasible points) if and only if xi
k → 0,

or equivalently, si
k → ∞, as k → ∞. Similarly, j ∈ {1, . . . , n} is the index of a dual implicit

equality if and only if xj
k → ∞, or equivalently, sj

k → 0, as k → ∞. Characterizations of the
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set of primal-dual inequality constraints that can be strictly satisfied are also given in Corol-

lary 6.12. Furthermore, the perturbation parameters (λk, γk) are shown to converge to zero as

k → ∞. These characterizations asymptotically allow us to fully identify the set of primal-dual

implicit equalities. We further employ this information in Section 6.2.1.1 to transform problems

(P) and (D) into (6.100) and (6.101) as follows. The primal implicit equalities (i. e., xi = 0)

and the corresponding dual constraints may be removed from (P) and (D), thus reducing their

dimensions. Furthermore, the dual implicit equalities (i. e., sj = 0) determine the corresponding

dual constraint A>
j y + sj = cj to become A>

j y = cj , and the corresponding primal variables to

be freed from their bounds. Moreover, the finite components of any limit point of the iterates of

Algorithm 2 provide a strictly feasible point of the transformed problems (6.100) and (6.101),

which is on their central path. It is these transformed problems that a feasible ipm will now solve

to optimality, starting from this strictly feasible point that we have computed using Algorithm 2.

1.7 Detecting infeasibility

Algorithm 2 is also able to detect asymptotically when (PD) is infeasible. Corollary 6.13 shows

that if the limit point of the (convergent) sequence of perturbation parameters is not the zero

vector, then (PD) is infeasible.

1.8 An inexact variant of Algorithm 2

In the construction of Algorithm 2 and its analysis, we have assumed that each perturbed sub-

problem is solved exactly by Algorithm 1. To bridge the gap with practical computations, in

Section 7, we allow each subproblem k to be solved by Algorithm 1 to accuracy εk > 0. The

resulting method, Algorithm 2ε, inherits the convergence properties of Algorithm 2, under very

mild assumptions on the tolerances εk. For example, if the l1, l2 or l∞ norm is employed in Φ,

then sufficient conditions on (εk) are that they are bounded above by µ and away from it (see

(7.10)); thus, they need not converge to zero. Then, if in addition, the ipm conditions are satisfied

by (PD), Theorem 7.3 shows finite termination of Algorithm 2ε in terms of major iterations k,

which together with Corollary 3.11 that estimates the convergence of Algorithm 1, yields Corol-

lary 7.4, proving finite termination of Algorithm 2ε in terms of the total number of iterations.

The remarks following Corollary 7.4 further detail some upper bounds on the number of total

iterations. Furthermore, the characterizations of the set of implicit equalities of (PD) in terms of

the asymptotic behaviour of the iterates, as well as the asymptotic detection of infeasibility, also

hold for Algorithm 2ε, as stated in Corollary 7.5 and the remarks that follow.

1.9 Numerical experience

We have implemented Algorithm 2ε, which naturally contains Algorithm 1, as a Fortran 95

module WCP (Well-Centred Point) as part of Release 2.0 of the nonlinear optimization library

GALAHAD [17]. The main details of the implementation are described in Section 8. We have

tested the complete set of NETLIB lp problems and other lp test problems as distributed with

CUTEr [16], without any preprocessing of the problems, except for ensuring that the matrix A

has full row rank. The purpose of our tests is to persuade the reader that our algorithm achieves

its objectives: when primal-dual strictly feasible points exist, it will find such a point efficiently;

else, if the primal-dual problems are feasible, it will detect the primal-dual implicit equalities and

compute a point in the relative interior of the feasible set, on the central path of some transformed

problems, or provide a certificate of infeasibility. The results are given in Table 8.1, where we
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present the surprisingly large number of implicit primal and dual equalities that our algorithm

finds, as well as other relevant information.

We also applied WCP to the NETLIB lp problems after they have been preprocessed using the

CPLEX preprocessor [8]. The CPLEX preprocessor fails to find all, and indeed sometimes many,

of the implicit equalities for 25 out of the 98 NETLIB problems, the results for the former being

reported in Table 8.2. These experiments suggest that WCP may be employed as an algorithmic

preprocessor for test problems, possibly after they have already been preprocessed by a common

presolver, in order to ensure that all implicit equalities have been removed. The strong theoretical

guarantees of convergence of Algorithm 2/2ε that is implemented in WCP make this software a

rare occurence on the preprocessor “market”.

1.10 Further relating of our work to existing literature

Numerous initialization strategies for lp have been proposed in the context of ipms (see the

introduction in [41] or Appendix A in [7] for a discussion on the advantages or otherwise of

various approaches, as well as extensive bibliography). The most notable of these techniques —

the current state-of-the-art in public and commercial software — are the so-called Homogeneous

Self-Dual (hsd) reformulation [41] of an lp that is then solved using a feasible primal-dual ipm,

and the infeasible ipms that do not require a strictly feasible point for initialization (see for

example, [20]). In the former approach, a primal-dual strictly feasible point on the central path

is readily available for the reformulated problem, and the dimension of the problem does not

increase significantly when reformulating because of self-duality. Furthermore, it provides an

asymptotic criteria for infeasibility detection. It applies however, exclusively to the solution of

lp problems, and not to computing a strictly feasible point of the feasible set of problems (P)

and (D). Thus it cannot be used as a Phase I in the context of nlp problems, for example. The

latter statement also applies to infeasible ipms.

Despite highly insightful work [35] on infeasibility detection of (P) or (D) when employing

infeasible ipms, we believe that in computational practice, this issue is not fully resolved. Also,

existing criteria that may be used for checking that infeasibility of (P) or (D) occurs when running

an infeasible ipm (see for example, Theorem 9.7 and 9.8 in [36]) are unsatisfying. Furthermore,

the entire convergence theory for infeasible ipms relies on the ipm conditions being satisfied by (P)

and (D), which implies that (P) and (D) are feasible and have solutions. No Phase I is usually

employed to ensure these conditions are achieved by (some transformation of) the problems,

though the problems are in general preprocessed. However, as we show in Section 8, due to its

heuristical nature and lack of theoretical guarantees of convergence, preprocessing may fail to

ensure the ipm conditions (see Table 8.2). The infeasible starting point strategy of Mehrotra [24]

has been very successful when used in conjunction with infeasible primal-dual ipms (see [24, 36]).

It is however highly heuristical, with no theoretical guarantees of convergence, and its success is

poorly understood.

1.11 The structure of the paper and notations

The structure of the paper is as follows. Section 2 details the construction of Algorithm 1,

while Section 3 presents its convergence (Subsection 3.1) and complexity properties (Section 3.2).

Section 4 succintly describes some possible, higher-order, extensions of Algorithm 1. Subsection

5.1 presents some satisfactory numerical experience with an implementation of Algorithm 1 (see

Example 1), as well as some disappointing results (Example 2 and 3), when the problems do
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not have strictly feasible points. The latter dissatisfying behaviour of Algorithm 1 leads us to

consider in Subsection 5.2 a modification of Algorithm 1 – Algorithm 2 – that employs successive

relaxations of the inequality constraints of problems (P) and (D) in such a way so as to ensure

that each of the perturbed problems satisfies the ipm conditions, and can thus be solved efficiently

by Algorithm 1. Section 6 presents the convergence properties of Algorithm 2. In Subsection 6.1,

we show that it takes a finite number of changes to the perturbation parameters for Algorithm

2 to generate a strictly feasible point of (PD), provided such points exist. Furthermore, if the

point we obtain is “far” from the central path, one more iteration of Algorithm 2, starting from

that point, will bring it onto the central path of (PD). In Subsection 6.2.1, we prove that when

(PD) is feasible, but not strictly feasible, Algorithm 2 can find all primal-dual implicit equalities

of (PD) asymptotically and generates a point in the relative interior of its feasible set. We

employ this information to transform problems (P) and (D) into problems (6.100) and (6.101),

for which the finite components of any limit point of the iterates provide a strictly feasible point,

on the central path of the transformed problems. It is these problems, (6.100) and (6.101), that

a feasible ipm will now solve to optimality, starting from their strictly feasible point that we have

computed. Also, our algorithm can detect when (PD) is infeasible, asymptotically. In Algorithm

2, each perturbed subproblem is solved exactly using Algorithm 1. In Section 7, we relax this

assumption and allow each subproblem to be solved only approximately. We then show that the

resulting method, Algorithm 2ε, inherits all the convergence properties of Algorithm 2, under a

very mild assumption on the optimality tolerance that each subproblem is solved to. Section 8

details our numerical experiments with Algorithm 2ε on the NETLIB lp problems and on other

problems from the CUTEr test set, without and with preprocessing of the problems. We end our

paper in Section 9, with conclusions.

Throughout, we employ the notation: vector components will be denoted by superscripts, and

iteration numbers, by subscripts. Also, I is the n × n identity matrix and e, the n dimensional

vector of all ones. The matrices Xk and Sk are diagonal, with the components of xk and sk as

entries, respectively.

2 A basic Newton method

An obvious way to solve (1.1), for a fixed µ > 0, is to apply a safeguarded Newton iteration.

Specifically, given an iterate vk := (xk, yk, sk) for which

xk > 0 and sk > 0, (2.1)

a Newton step v̇k := (ẋk, ẏk, ṡk) satisfying







A 0 0

0 AT I

Sk 0 Xk













ẋk

ẏk

ṡk






= −







Axk − b

AT yk + sk − c

XkSke − µe






(2.2)

is computed. Due to (2.1), the matrix in (2.2) is nonsingular provided A has full row rank, and,

for the purpose of our future theoretical analysis, we express the search direction v̇k = (ẋk, ẏk, ṡk)
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explicitly

ẏk = −M−1
k [rp

k + AD2
kr

d
k − AS−1

k (Xksk − µe)], (2.3a)

ṡk = A>M−1
k rp

k − [I − A>M−1
k AD2

k]r
d
k − A>M−1

k AS−1
k (Xksk − µe), (2.3b)

ẋk = −D2
kṡk − S−1

k (Xksk − µe), (2.3c)

where Mk := AD2
kA>, Dk := X

1/2
k S

−1/2
k , rp

k := Axk − b and rd
k := A>yk + sk − c.

The next iterate is then set to be

vk+1 := (xk+1, yk+1, sk+1) = vk(αk), (2.4)

where

vk(α) :=







xk(α)

yk(α)

sk(α)






=







xk

yk

sk






+ α







ẋk

ẏk

ṡk






(2.5)

and the stepsize αk ∈ (0, 1] is chosen both to ensure a significant reduction in a suitable merit

function and to guarantee that

xk+1 > 0 and sk+1 > 0. (2.6)

We now consider how to achieve these goals.

2.1 A merit function

Letting v := (x, y, s), an obvious merit function is

Φ(v) := ‖Xs − µe‖ + r(v), where r(v) := ‖Ax − b‖ + ‖AT y + s − c‖, (2.7)

where ‖ · ‖ denotes any norm on IRn (independent of k). The function Φ only vanishes at the

solution v(µ) to (1.1). For such a merit function, it follows immediately from (2.2) that for any

α ∈ [0, 1],

r(vk(α)) = (1 − α)r(vk), (2.8)

and

Xk(α)sk(α) − µe = (1 − α)(Xksk − µe) + α2Ẋkṡk. (2.9)

Thus we have

Φ(vk(α)) ≤ (1 − α)Φ(vk) + α2‖Ẋkṡk‖, α ∈ [0, 1], (2.10)

and

Φ(vk(α)) ≥ (1 − α)Φ(vk) − α2‖Ẋkṡk‖, α ∈ [0, 1]. (2.11)

Notice that (2.10) implies that Φ(vk(α)) < Φ(vk) for all sufficiently small α provided that vk is

not the solution to (1.1).
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2.2 Ensuring positivity of the iterates

Given (2.1), one way to ensure (2.6) is to require that

Xksk ≥ θµe, (2.12)

for some θ ∈ (0, 1), and only allow αk ∈ (0, 1] for which

Xk(α)sk(α) ≥ θµe, (2.13)

for all 0 ≤ α ≤ αk. Fortunately, (2.9) gives that

Xk(α)sk(α) − θµe = (1 − α)(Xksk − θµe) + α(1 − θ)µe + α2Ẋkṡk. (2.14)

Thus, for each i ∈ {1, . . . , n}, (2.12) requires either xi
ks

i
k > θµ, in which case the dominant term

in (2.14) is positive and independent of α, or xi
ks

i
k = θµ, in which case the dominant term is

α(1 − θ)µ > 0. Hence, in either case, (2.13) holds for all sufficiently small α ≥ 0.

2.3 The choice of stepsize

At each vk, having computed v̇k from (2.2), we find the largest αU

k ∈ (0, 1] for which (2.13) holds

for all α ∈ [0, αU

k ], and let

αQ

k := arg min
α∈[0,αU

k
]
{(1 − α)Φ(vk) + α2‖Ẋk ṡk‖}. (2.15)

Then we pick any αk for which

Φ(v(αk)) ≤ (1 − αQ

k )Φ(vk) + (αQ

k )2‖Ẋkṡk‖. (2.16)

Recalling (2.10), αk may be chosen, for example, as the global minimizer of Φ(vk(α)) in the

interval [0, αU

k ], or simply as αQ

k .

The function on the right-hand side of (2.15) is a strictly convex quadratic in α. Thus αQ

k is

either the global minimizer of this quadratic function or the nonzero end point of the interval of

minimization. In particular, we have

αQ

k =

{

Φ(vk)

2‖Ẋk ṡk‖
:= αG

k , if αG

k ≤ αU

k ,

αU

k , otherwise.
(2.17)

While vk 6= v(µ), i. e., Φ(vk) 6= 0 and ‖Ẋk ṡk‖ 6= 0, the relations (2.17), αG

k > 0 and αU

k > 0,

provide the inequalities

0 < αQ

k ≤ Φ(vk)

2‖Ẋk ṡk‖
. (2.18)

The first inequality in (2.18) and the last sentence of Section 2.2 imply that (2.16) allows positive

steps αk. Moreover, both inequalities in (2.18) provide that (2.16) is not satisfied by αk = 0. The

proof that αk does not become arbitrarily small as k increases, is deferred until Theorem 3.5.
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2.4 Algorithm 1

As we have seen, it is easy to guarantee that condition (2.12) holds for each k ≥ 0 provided it

holds for k = 0. The latter will be ensured by a judicious choice of θ at k = 0.

Our algorithm can be summarized as follows.

Algorithm 1.

Assume a starting point v0 = (x0, y0, s0) ∈ IRn × IRm × IRn with x0 > 0 and s0 > 0 is available.

Choose θ ∈ (0, 1) such that

θ ≤ 1

µ0
min{xi

0s
i
0 : i = 1, n}, (2.19)

and let ε > 0 be a tolerance parameter.

On each iteration k ≥ 0, do:

Step 1. If Φ(vk) ≤ ε, stop.

Step 2. Compute v̇k from (2.2), and a stepsize αk to satisfy (2.16).

Step 3. Set the new iterate vk+1 as in (2.4).

Step 4. Let k := k + 1, and go to Step 1. 3

In the next section we investigate the global and asymptotic convergence properties of Algo-

rithm 1, as well as its iteration complexity.

3 Convergence analysis for Algorithm 1

We assume that the following conditions are satisfied.

The ipm conditions.

A1). The matrix A has full row rank.

A2). There exists a primal-dual strictly feasible point v̂ = (x̂, ŷ, ŝ) for (P) and (D), i. e.,

Ax̂ = b, A>ŷ + ŝ = c, and (x̂, ŝ) > 0. (3.20)

The ipm conditions are equivalent to requiring the primal-dual feasible set of (P) and (D),

and the primal-dual solution set, to be nonempty and bounded, respectively [7, 36].

The norm ‖ · ‖ on IRn that we employ throughout, is arbitrary provided there exist positive

constants p and p, independent of the iteration number k, such that

p‖x‖2 ≤ ‖x‖ ≤ p‖x‖2, for all x ∈ IRn. (3.21)

We remark that the pair (p, p) := (1,
√

n) is optimal for the l1 norm, and (p, p) := (1/
√

n, 1), for

the l∞ case.
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3.1 Global and asymptotic convergence

Firstly, we show that the sequence (xk, sk) is bounded, and thus it has limit points. We then

prove that (Φ(vk)) converges globally to zero with Q-linear rate, as k → ∞, which implies that

vk → v(µ), our target point on the central path. Moreover, the asymptotic rates at which (Φ(vk))

and (vk) converge are Q-quadratic and at least Q-superlinear, respectively.

The next lemma is useful.

Lemma 3.1 (see Lemma 4.1 in [42], and [5, 38]) Let problems (P) and (D) satisfy the ipm

conditions and let v̂ = (x̂, ŷ, ŝ) be any primal-dual strictly feasible point. Suppose Algorithm 1

generates iterates vk = (xk, yk, sk), k ≥ 0. Consider the auxiliary sequences

uk+1 =uk + αk(xk + ẋk − uk), (3.22a)

tk+1 = tk + αk(yk + ẏk − tk), (3.22b)

wk+1=wk + αk(sk + ṡk − wk), k ≥ 0, (3.22c)

where αk is the stepsize computed by our algorithm and (u0, t0, w0) := (x̂, ŷ, ŝ). Then

xk − uk = νk(x0 − x̂),

sk − wk = νk(s0 − ŝ), k ≥ 0,
(3.23)

where

νk :=

k−1
∏

i=1

(1 − αi) ∈ [0, 1), k ≥ 1, and ν0 := 1. (3.24)

Also,

Axk = b and A>tk + sk = c, k ≥ 0. (3.25)

Proof. The arguments can be found in the proof of Lemma 4.1 in [42]. 2

Lemma 3.2 Under the conditions of Lemma 3.1, the sequence (xk, sk), k ≥ 0, is, componentwise,

bounded both from above and away from zero.

In particular, we have the bounds

C1 :=
µθm

L
≤ xi

k, si
k ≤ L

m
:= C2, for all k ≥ 0 and i ∈ {1, . . . , n}, (3.26)

where m := min{xi
0, x̂

i, si
0, ŝ

i : i = 1, n} and L := x̂>ŝ +
√

np−1Φ(v0) + nµ + |x̂>(s0 − ŝ)| +

|ŝ>(x0 − x̂)| + |(x0 − x̂)>(s0 − ŝ)|.

Proof. From (3.25) and (3.20), we deduce that x̂−uk is in the null space of the matrix A, while

ŝ − wk belongs to the range space of A>, for k ≥ 0. Thus we have the orthogonality property

(x̂ − uk)
>(ŝ − wk) = 0, k ≥ 0, (3.27)

which, recalling (3.23), is equivalent to

[x̂ − xk + νk(x0 − x̂)]>[ŝ − sk + νk(s0 − ŝ)] = 0, k ≥ 0. (3.28)
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By expanding (3.28), we further obtain

x>
k [ŝ + νk(s0 − ŝ)] + s>k [x̂ + νk(x0 − x̂)] =

x̂>ŝ + x>
k sk + νkx̂

>(s0 − ŝ) + νkŝ
>(x0 − x̂) + ν2

k(x0 − x̂)>(s0 − ŝ), k ≥ 0.
(3.29)

Since ŝ > 0, s0 > 0 and νk ∈ [0, 1], we have

0 < si := min{ŝi, si
0} ≤ ŝi + νk(s

i
0 − ŝi) ≤ max{ŝi, si

0}, k ≥ 0, i ∈ {1, . . . , n}, (3.30)

and similarly,

0 < xi := min{x̂i, xi
0} ≤ x̂i + νk(x

i
0 − x̂i) ≤ max{x̂i, xi

0}, k ≥ 0, i ∈ {1, . . . , n}. (3.31)

Now, letting x := (xi : i = 1, n) > 0 and s := (si : i = 1, n) > 0 and recalling that xk > 0 and

sk > 0, we obtain

x>
k s + s>k x ≤ x>

k [ŝ + νk(s0 − ŝ)] + s>k [x̂ + νk(x0 − x̂)], k ≥ 0. (3.32)

The iterates vk generated by Algorithm 1 have the property Φ(vk+1) < Φ(vk), k ≥ 0 (see Sub-

sections 2.1 and 2.3). Thus we have Φ(vk) ≤ Φ(v0), k ≥ 0, and

‖Xksk − µe‖ ≤ Φ(v0), k ≥ 0,

which further gives from (3.21),

‖Xksk − µe‖2 ≤ 1

p
Φ(v0), k ≥ 0.

Since x>
k sk ≤ √

n‖Xksk‖2, we deduce

x>
k sk ≤

√
n

p
Φ(v0) + nµ, k ≥ 0. (3.33)

Substituting (3.33) on the right-hand side of (3.29), together with νk ∈ [0, 1), and employing

(3.32) on its left-hand side, we obtain

x>
k s + s>k x ≤ L, k ≥ 0, (3.34)

where L is the constant defined in the statement of the lemma and is independent of k. Since the

components of xk, sk, x and s are positive, we conclude from (3.34) that xk and sk are bounded

above (independently of k), and the componentwise upper bound in (3.26) holds. This and (2.12)

provide the lower bound in (3.26), and thus, xk and sk are also, componentwise, bounded away

from zero. 2

We remark that, if the starting point v0 = (x0, y0, s0) of Algorithm 1 is strictly feasible for

(PD), we may let v0 = v̂ in the above lemma and its proof.

The next lemma is technical.

Lemma 3.3 Under the conditions of Lemma 3.1, we have the bounds

‖ẋk‖ ≤ κ1Φ(vk) and ‖ṡk‖ ≤ κ2Φ(vk), k ≥ 0, (3.35)

where κ1 and κ2 are positive constants, independent of k.
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Proof. Consider the explicit expressions (2.3) of the directions (ẋk, ṡk). The bounds (3.26)

in Lemma 3.2 imply that the diagonal matrices Dk and S−1
k are bounded above and below,

independently of k. Thus all the matrices that occur in the expression (2.3b) are bounded above

in norm, independently of k. In particular, to see that M−1
k is bounded above in norm, we remark

that ‖M−1
k ‖2 = 1/λmin

k , where λmin
k > 0 is the smallest eigenvalue of Mk and is characterized by

λmin
k = min

‖y‖2=1
y>Mky, k ≥ 0. (3.36)

Let y∗k be the solution of (3.36), k ≥ 0. Assuming that
(

λmin
k

)

=
(

‖M1/2
k y∗k‖2

)

converges to

zero (on a subsequence), as k → ∞, we deduce from the expression of Mk that DkA
>y∗k → 0.

Employing the fact that Dk is bounded below away from zero and A has full row rank, this further

gives y∗k → 0 (on a subsequence), which contradicts ‖y∗
k‖ = 1, k ≥ 0. Thus M−1

k is bounded

above in the l2 norm, and thus, also in the generic norm ‖ · ‖, because of (3.21).

The definition of Φ(vk) provides

max{ ‖rp
k‖, ‖rd

k‖, ‖Xksk − µe‖} ≤ Φ(vk), k ≥ 0,

and the second set of inequalities in (3.35) hold, for some positive constant κ2 independent of k.

The bound on ẋk now follows from that on ṡk, (2.3c), and the second sentence of the first

paragraph of this proof. 2

In what follows, we assume that there is a constant κ independent of k, such that

‖Ẋk ṡk‖ ≤ κΦ(vk)
2, k ≥ 0. (3.37)

Lemma 3.3 shows that κ := κ1κ2 suffices, although we will improve this bound later.

The next lemma shows that the step αU

k determined by the inequalities (2.13) is bounded

away from zero, which will then be employed in the subsequent theorem to show convergence of

Algorithm 1.

Lemma 3.4 Under the conditions of Lemma 3.1, let αU

k be the largest value in (0, 1] such that

the inequalities (2.13) are satisfied for all α ∈ [0, αU

k ], where θ ∈ (0, 1) is chosen such that the

conditions (2.13) are achieved at the starting point v0. Then αU

k is bounded away from zero. In

particular, we have the bound

αU

k ≥ min

{

1,
κ3

[Φ(vk)]2

}

, k ≥ 0, (3.38)

where the constant κ3 := (1 − θ)µp/κ is independent of k.

Proof. From (2.5) and the last n equations of the system (2.2), we deduce

Xk(α)sk(α) = Xksk + α(−Xksk + µe) + α2Ẋkṡk, k ≥ 0. (3.39)

Employing (2.12) and the inequality Ẋkṡk ≥ −‖Ẋkṡk‖e/p into (3.39), we obtain the bound

Xk(α)sk(α) ≥ (1 − α)θµe + αµe − α2‖Ẋkṡk‖e/p, α ∈ [0, 1], k ≥ 0. (3.40)

Substituting (3.37) into (3.40), we deduce

Xk(α)sk(α) ≥ (1 − α)θµe + αµe − α2κ[Φ(vk)]
2e/p, α ∈ [0, 1], k ≥ 0. (3.41)
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Thus the inequalities (2.13) are satisfied provided that α ∈ [0, 1] and the left-hand side of (3.41)

is greater or equal to θµe, or equivalently,

α ≤ min

{

1,
(1 − θ)µp

κ[Φ(vk)]2

}

, (3.42)

which further implies (3.38). The bound (3.38) provides that αU

k is bounded away from zero since

Φ(vk) ≤ Φ(v0), k ≥ 0. 2

The promised global convergence result for Algorithm 1 is given next. The second part of the

theorem investigates the rate at which Φ(vk) converges to zero asymptotically.

Theorem 3.5 Let problems (P) and (D) satisfy the ipm conditions. Let vk = (xk, yk, sk), k ≥ 0,

be the iterates generated by Algorithm 1 when applied to these problems. Then

Φ(vk) → 0, as k → ∞, at a global Q-linear rate, (3.43)

which implies that the sequence of iterates vk converges to v(µ), our target point on the primal-

dual central path.

Moreover,

αQ

k = 1 and
Φ(vk+1)

Φ(vk)2
≤ κ, for all k ≥ k0, (3.44)

where κ is the constant occurring in (3.37) and some k0 ≥ 0, and hence, the values Φ(vk), k ≥ 0,

converge to zero Q-quadratically. Furthermore,

αk → 1, as k → ∞, (3.45)

and thus, the asymptotic rate of convergence of (vk) to v(µ) is at least Q-superlinear; if αk = αQ

k

for all k sufficiently large, the rate is Q-quadratic.

Proof. Relations (2.16) and (2.17) imply

Φ(vk+1) ≤







(1 − αG

k )Φ(vk) + (αG

k )2‖Ẋk ṡk‖, if αG

k := 1
2
Φ(vk)/‖Ẋk ṡk‖ ≤ αU

k ,

(1 − αU

k )Φ(vk) + (αU

k )2‖Ẋkṡk‖, otherwise.
(3.46)

In the first case, when αG

k ≤ αU

k , we substitute the expression of αG

k into the corresponding

inequality in (3.46) and obtain

Φ(vk+1) ≤ (1 − 1
2
αG

k )Φ(vk). (3.47)

From (3.37) and the expression of αG

k in (3.46), we derive the following lower bound on αG

k

αG

k ≥ 1

2κΦ(vk)
≥ 1

2κΦ(v0)
:= κ4, k ≥ 0. (3.48)

The assumption that αG

k ≤ αU

k implies αG

k ≥ min{1, κ4} := κ5. It follows from (3.47) that

Φ(vk+1) ≤ (1 − 1
2
κ5)Φ(vk), where κ5 ∈ (0, 1]. (3.49)

Conversely, for the second case, i. e., αG

k > αU

k , this and the expression of αG

k in (3.46) imply

Φ(vk)

2αU

k

≥ ‖Ẋkṡk‖,
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which we employ in the second inequality that involves Φ(vk+1) in (3.46), and obtain

Φ(vk+1) ≤ (1 − αU

k )Φ(vk) + (αU

k )2
Φ(vk)

2αU

k

= (1 − 1
2
αU

k )Φ(vk). (3.50)

Now, (3.38) and Φ(vk) ≤ Φ(v0) provide a positive lower bound on αU

k , i. e., αU

k ≥ κ6 :=

min{1, κ3/[Φ(v0)]
2}, k ≥ 0, where κ3 is a constant, independent of k. It follows from (3.50)

Φ(vk+1) ≤ (1 − 1
2
κ6)Φ(vk), where κ6 ∈ (0, 1]. (3.51)

We conclude from (3.46), (3.49) and (3.51) that Φ(vk) is decreased by a fixed fraction in (0, 1) on

each iteration, which implies the global Q-linear rate of convergence of Φ(vk) to zero, and (3.43).

The sequence (xk, sk) has limit points since it is bounded. Since ‖A>yk + sk − c‖ → 0, for

any limit point s∗ of sk, we have that c − s∗ belongs to the range space of A>. It follows from

A having full row rank that there exists a unique y∗ ∈ IRm such that c − s∗ = A>y∗. Moreover,

employing again the full rank of A, we have that the corresponding subsequence of yk converges

to y∗. Thus yk also has limit points. The limit (3.43) and the definition of Φ provide that all the

limit points of vk are solutions of the system (1.1), for the same value µ. Since there is only one

such point on the central path, the iterates thus converge to a unique limit point.

To show (3.44), we employ the limit (3.43) in (3.38) and in the first inequality in (3.48), and

deduce αG

k ≥ αU

k = 1, for all k sufficiently large. Thus, according to (2.17), αQ

k = 1, for all k

sufficiently large. From (3.46), we have

Φ(vk+1) ≤ ‖Ẋk ṡk‖, for all k sufficiently large, (3.52)

which together with (3.37) completes the proof of (3.44).

Before proving the limit (3.45), note that (3.45) implies that the stepsize computed by Algo-

rithm 1 does not become arbitrarily small. Furthermore, (3.45) and classical results for Newton’s

method provide that the rate of convergence of (vk) to v(µ) is Q-superlinear. If αk is chosen

to be αQ, at least for all k sufficiently large, then, (3.44) implies that (vk) converges to v(µ)

Q-quadratically [Theorem 5. 2. 1, [10]].

To establish (3.45), we deduce from (2.11)

(1 − αk)Φ(vk) − α2
k‖Ẋkṡk‖ ≤ Φ(vk+1), k ≥ 0. (3.53)

It follows from (3.37) and the second set of inequalities in (3.44)

(1 − αk)Φ(vk) − α2
kκ[Φ(vk)]2 ≤ κ[Φ(vk)

2], k ≥ k0, (3.54)

or equivalently, as Φ(vk) > 0,

1 − αk ≤ (1 + α2
k)κ[Φ(vk)]2, k ≥ k0. (3.55)

Further, since αk ∈ (0, 1], we obtain

0 ≤ 1 − αk ≤ 2κ[Φ(vk)]2, k ≥ k0. (3.56)

This, together with (3.43), implies (3.45) and completes the proof of the theorem. 2
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3.2 An iteration complexity bound for Algorithm 1

We now turn our attention to estimating how many iterations are required by Algorithm 1.

3.2.1 A general bound

Firstly, we give an upper bound on the number of iterations Algorithm 1 takes before (Φ(vk))

starts converging quadratically to zero. The following notation will be employed

q1 :=
1

2κ
and q2 :=

√

(1 − θ)µp

κ
, (3.57)

where κ is defined by (3.37), θ by (2.19), and p by (3.21).

Theorem 3.6 In addition to the conditions of Theorem 3.5, let ε be a given tolerance such that

ε ≥ min{q1, q2} > 0, (3.58)

where q1 and q2 are given in (3.57). Then we have

Φ(vk) ≤ ε, (3.59)

for all k such that

k ≥ kε
0 := max

{

0,

⌈

2 (Φ(v0) − ε) · max

{

1

q1
,

Φ(v0)

q2
2

}⌉}

. (3.60)

(If kε
0 = 0, then Algorithm 1 terminates, and the second part of the theorem concerning quadratic

convergence is irrelevant.) In particular, we have

Φ(vk) ≤ min{q1, q2}, (3.61)

for all k such that

k ≥ k0 := max

{

0,

⌈

2 (Φ(v0) − min{q1, q2}) · max

{

1

q1
,

Φ(v0)

q2
2

}⌉}

. (3.62)

Furthermore,

αG

k ≥ αU

k = 1, k ≥ k0, (3.63)

and (3.44) holds, and thus (Φ(vk)) converges Q-quadratically to zero for k ≥ k0.

Proof. Assume that Φ(v0) > ε, and thus kε
0 > 0. To prove (3.59) holds if (3.60) is satisfied, we

argue exactly as in the proof of Theorem 3.5. Supposing that αG

k ≤ αU

k , we substitute the first

inequality in (3.48) into (3.47), and deduce

Φ(vk+1) ≤ Φ(vk) −
1

2
q1, (3.64)

for each k such that Φ(vk) > q1.

Similarly, if αG

k > αU

k , (3.50) and (3.38) provide

Φ(vk+1) ≤ Φ(vk) −
q2
2

2Φ(v0)
, (3.65)
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for each k such that Φ(vk) > q2.

Thus, if Φ(v0) > ε, and since ε ≥ min{q1, q2}, we have

Φ(vk+1) ≤ Φ(vk) −
1

2
min

{

q1,
q2
2

Φ(v0)

}

, (3.66)

for all consecutive k ≥ 0 such that Φ(vk) > ε, which implies

Φ(vk) ≤ Φ(v0) −
k

2
min

{

q1,
q2
2

Φ(v0)

}

, (3.67)

for all k ≥ 0 while Φ(vk) > ε. It follows that (3.59) holds for all k satisfying (3.60). Letting

ε := min{q1, q2}, we obtain (3.61) for all k achieving (3.62).

To see that (3.61) implies (3.63), recall the bound on αU

k in (3.38), as well as the definition of

αG

k in (3.46) and the bound (3.37). The quadratic convergence of (Φ(vk)) follows from (3.63), as

shown in the proof of (3.44) in Theorem 3.5. 2

The next theorem evaluates the iteration complexity of Algorithm 1 for generating vk with

Φ(vk) arbitrarily small.

Theorem 3.7 If, in addition to the conditions of Theorem 3.5, the positive tolerance ε satisfies

ε < min{q1, q2}, then Algorithm 1 will generate a point vk such that Φ(vk) ≤ ε for all k satisfying

k ≥ k1 := k0 +

⌈

1

log 2
log

(

log (ε(2q1)
−1)

log r

)⌉

, (3.68)

where k0 is defined by (3.62) and r := min{1/2,
√

(1 − θ)µpκ}.

Proof. It follows from (3.44) and Theorem 3.6 that

Φ(vk+1) ≤ κΦ(vk)2, for all k ≥ k0, (3.69)

where k0 is defined in (3.62). Thus we obtain recurrsively

Φ(vk) ≤
1

κ
(κΦ(vk0

))2
k−k0

, k ≥ k0. (3.70)

Since relations (3.61) and (3.62) imply Φ(vk0
) ≤ min{q1, q2}, (3.57) and (3.70) further give

Φ(vk) ≤
1

κ

(

min

{

1

2
,
√

(1 − θ)µpκ

})2k−k0

, k ≥ k0. (3.71)

Thus Φ(vk) ≤ ε provided

r2k−k0 ≤ εκ, (3.72)

where r is defined in the statement of the theorem. We remark that εκ < 1 since ε < min{q1, q2}.
Passing to the logarithm in (3.72), we deduce

−2k−k0 log r ≥ − log(εκ), (3.73)

or equivalently,

k − k0 ≥ 1

log 2
log

(

log (εκ)

log r

)

, (3.74)

which implies (3.68). 2
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3.2.2 A precise value for κ

Next, we deduce new values for the bound κ in (3.37) that are not only independent of k, as

provided by Lemma 3.3, but depend explicitly on the problem data and on the parameters of the

algorithm.

Lemma 3.8 Let problems (PD) satisfy the ipm conditions and let Algorithm 1 be applied to these

problems, where the l2 norm is employed in the definition (2.7) of Φ. Let Φ2 denote the resulting

merit function of Algorithm 1. Then

‖Ẋkṡk‖2 ≤ [Φ2(vk)]
2

θµ

(

1 + 2C0 max
{

res
p, resd

})2
, k ≥ 0, (3.75)

where C0 is any finite componentwise upper bound on the sequences (xk) and (sk), i. e.,

max
k≥0

max
i=1,n

{xi
k, si

k} ≤ C0, (3.76)

where

res
p :=

{

‖x0 − x̂‖2/‖rp
0‖2, if rp

0 = Ax0 − b 6= 0,

0, otherwise,
(3.77)

and

res
d :=

{

‖s0 − ŝ‖2/‖rd
0‖2, if rd

0 = A>y0 + s0 − c 6= 0,

0, otherwise,
(3.78)

where (x̂, ŝ) corresponds to an arbitrary primal-dual strictly feasible point v̂ = (x̂, ŷ, ŝ) of (PD).

Proof. Let k ≥ 0. Multiplying the explicit expressions (2.3b) and (2.3c) of the search directions

ṡk and ẋk by Dk := X
1/2
k S

−1/2
k and D−1

k , respectively, we deduce

Dkṡk = DkA
>M−1

k rp
k − [I − DkA

>M−1
k ADk]Dkr

d
k − DkA

>M−1
k ADkX

−1/2
k S

−1/2
k (Xksk − µe),

(3.79a)

D−1
k ẋk = −Dkṡk − X

−1/2
k S

−1/2
k (Xksk − µe), (3.79b)

where Mk = AD2
kA

>, Dk = X
1/2
k S

−1/2
k , rp

k = Axk − b and rd
k = A>yk + sk − c. Next, we express

Dkṡk and D−1
k ẋk in terms of the orthogonal projection matrices Pk and I − Pk onto the range

space of DkA
> and the null space of ADk, respectively, where Pk := DkA

>M−1
k ADk. It follows

from Lemma 3.1, in particular, from (3.25), that rp
k = A(xk − uk), k ≥ 0, where (uk) is defined

recursively by (3.22a). It follows from (3.79)

Dkṡk = PkD
−1
k (xk − uk) − (I − Pk)Dkrd

k − PkX
−1/2
k S

−1/2
k (Xksk − µe), (3.80a)

D−1
k ẋk = −PkD

−1
k (xk − uk) + (I − Pk)Dkr

d
k − (I − Pk)X

−1/2
k S

−1/2
k (Xksk − µe). (3.80b)

Again from Lemma 3.1, rd
k = A>(yk−tk)+(sk−wk), where (wk) and (tk) are given in (3.22c) and

(3.22b). Using orthogonal projection properties, we deduce that (I −Pk)Dkr
d
k = (I −Pk)Dk(sk −

wk). Furthermore, employing the fact that ‖Pk‖2 ≤ 1 and ‖I − Pk‖2 ≤ 1, we obtain

max
{

‖Dkṡk‖2, ‖D−1
k ẋk‖2

}

≤ ‖D−1
k (xk − uk)‖2 + ‖Dk(sk − wk)‖2 + ‖X−1/2

k S
−1/2
k (Xksk − µe)‖2.

(3.81)
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It follows from the expression of Dk and Xksk ≥ θµe,

max
{

‖Dkṡk‖2, ‖D−1
k ẋk‖2

}

≤ 1√
θµ

[‖Sk(xk − uk)‖2 + ‖Xk(sk − wk)‖2 + ‖Xksk − µe‖2] . (3.82)

Recalling (3.23) from Lemma 3.1, we deduce

max
{

‖Dk ṡk‖2, ‖D−1
k ẋk‖2

}

≤ 1√
θµ

[νk‖Sk‖2 · ‖x0 − x̂‖2 + νk‖Xk‖2 · ‖s0 − ŝ‖2 + ‖Xksk − µe‖2] ,

(3.83)

where νk is defined by (3.24). From (2.8), we obtain rp
k = νkr

p
0 and rd

k = νkr
d
0 . Thus, if rp

0 6= 0

and rd
0 6= 0, then, employing max{‖rp

k‖2, ‖rd
k‖2, ‖Xksk − µe‖2} ≤ Φ2(vk) and properties of the

matrix norm provide, (3.83) further becomes

max
{

‖Dk ṡk‖2, ‖D−1
k ẋk‖2

}

≤ Φ2(vk)√
θµ

[

1 + max
i=1,n

{xi
k, si

k}
(‖x0 − x̂‖

‖rp
0‖

+
‖s0 − ŝ‖
‖rd

0‖

)]

. (3.84)

If rp
0 = 0, then x0 is strictly feasible for (P) and we may let x0 = x̂ since x̂ is an arbitrary strictly

feasible primal point. Therefore the corresponding term on the right-hand side of (3.83) vanishes,

and hence the definition (3.77) of res
p. We proceed similarly in the case when rd

0 = 0.

The bound (3.75) now follows from ‖Ẋk ṡk‖2 ≤ ‖D−1
k ẋk‖2 · ‖Dkṡk‖2 and the componentwise

boundedness of the sequences (xk) and (sk) (see the first part of Lemma 3.2). 2

Next we develop the bound (3.75) to further clarify its dependence on problem data.

Corollary 3.9 Assume the conditions of Lemma 3.8 hold, and let v̂ = (x̂, ŷ, ŝ) be an arbitrary

strictly feasible point of (PD).

If the starting point v0 = (x0, y0, s0) of Algorithm 1 satisfies

x0 = x̂, y0 = ŷ, s0 = ŝ, (3.85)

(in other words, v0 is strictly feasible for (PD)), then

‖Ẋkṡk‖2 ≤ 1

θµ
[Φ2(vk)]

2, k ≥ 0. (3.86)

More generally, if v0 = (x0, y0, s0) satisfies

x0 ≥ x̂ and s0 ≥ ŝ, (3.87)

then

‖Ẋkṡk‖2 ≤ [Φ2(vk)]
2

θµ

(

1 + 4
n(Φ2(v0) + µ)

m
max

{

res
p, res

d
}

)2

, k ≥ 0, (3.88)

where m = min{x̂i, ŝi : i = 1, n}, and where res
p and res

d are defined by (3.77) and (3.78),

respectively.

Proof. The bound (3.86) follows straightforwardly from (3.75), (3.77) and (3.78).

To show (3.88), recall the specific upper bound C2 on the components of the sequences (xk)

and (sk) given in (3.26). It follows from (3.87) that m = min{x̂i, ŝi : i = 1, n}. Moreover, the

constant L that occurs in (3.26) now has the value L = x>
0 s0 +

√
nΦ2(v0) + nµ, where we also

employed p = 1 for the l2 norm. The inequality (3.33) for k = 0 further provides

L ≤ 2n[Φ2(v0) + µ].

The inequality (3.88) follows from (3.75), (3.26) and the above estimates of the value of L and m. 2

The next corollary allows for other norms besides l2, to be employed in the merit function Φ.
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Corollary 3.10 Let problems (PD) satisfy the ipm conditions. Apply Algorithm 1 to these prob-

lems where any norm satisfying (3.21) may be employed in the definition (2.7) of Φ.

If the starting point v0 = (x0, y0, s0) of Algorithm 1 is strictly feasible for (PD), then

‖Ẋkṡk‖ ≤ p

p2
· [Φ(vk)]

2

θµ
, k ≥ 0, (3.89)

where p and p occur in (3.21).

More generally, if v0 = (x0, y0, s0) satisfies (3.87), where (x̂, ŝ) corresponds to any primal-dual

strictly feasible point v̂ = (x̂, ŷ, ŝ) of (PD), then

‖Ẋkṡk‖ ≤ p

p2
· [Φ(vk)]

2

θµ

(

1 + 4
n(Φ2(v0) + µ)

m
max

{

res
p, res

d
}

)2

, k ≥ 0, (3.90)

where p and p are defined within (3.21), Φ2 denotes Φ defined in terms of the l2 norm, where

m = min{x̂i, ŝi : i = 1, n}, and where res
p and res

d are given in (3.77) and (3.78), respectively.

Proof. Relation (3.21) provides

‖Ẋkṡk‖ ≤ p‖Ẋkṡk‖2, and Φ2(vk) ≤
1

p
Φ(vk), k ≥ 0.

The bounds (3.89) and (3.90) now follow from Corollary 3.9. 2

In the above corollary, the quantities on the right-hand side of (3.90) that depend on the l2
norm are independent of k, and thus, they need not be expressed in terms of the general norm ‖·‖.

Similarly to Corollary 3.10, a variant of Lemma 3.8 can be given for the case when the general

norm ‖ · ‖ is employed in defining Φ.

We remark that if (3.85) holds, the iterates vk of Algorithm 1 remain primal-dual strictly

feasible for k ≥ 0, and Algorithm 1 attempts to find a well-centred point starting from a possibly

badly centred one. The complexity of this case is important for the overall iteration complexity

of Algorithm 2, to be studied in the next section.

When we start Algorithm 1 from an infeasible point with respect to the primal and/or dual

equality constraints, the quantities res
p and res

d in (3.77) and (3.78) represent a measure of “the

distance to strict feasibility” of the starting point v0, and they are thus, a natural occurence in the

iteration complexity bounds below. For theoretical purposes, we may set (x̂, ŝ) := (x(µ), s(µ)) in

the results above. In practice, however, since (x(µ), s(µ)) is unknown, a strictly feasible point,

possibly badly centred, may be known and used in the above results to estimate the iteration

complexity of Algorithm 1 (again, this case may be relevant for Algorithm 2 in the next section).

3.2.3 A specific iteration complexity bound for Algorithm 1

We now substitute the values of κ implied by the bounds (3.89) and (3.90) in Corollary 3.10

into the iteration complexity results at the beginning of this subsection, to deduce the following

corollary.

Corollary 3.11 Under the conditions and notations of Corollary 3.10, let

q0 :=

{

1, if v0 = (x0, y0, s0) is strictly feasible for (PD),

1 + 4n(Φ2(v0) + µ)m−1 max{resp, resd}, if v0 satisfies (3.87).

(3.91)

Let ε be a positive tolerance. Then the following results hold
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i) If ε ≥ pq−1
0 µmin{θ/(2p0q0),

√

θ(1 − θ)/p0} := εmin, where p0 := p/p, then Algorithm 1 gener-

ates an iterate vk with Φ(vk) ≤ ε, for all k such that

k ≥ kε
0 := max

{

0,

⌈

2(Φ(v0) − ε) · p0q
2
0

θµp
max

{

2,
Φ(v0)

(1 − θ)µp

}⌉}

. (3.92)

ii) Let kq
0 := kε

0 for ε = εmin. When ε < εmin, then Algorithm 1 generates vk such that Φ(vk) ≤ ε

for all k such that

k ≥ kq
0 +

⌈

1

log 2
log

(

log(ε · p0q0(θµp)−1

log r

)⌉

, (3.93)

where r := min{1/2, q0

√

(1 − θ)p0/θ}.

Let us consider in more detail the results in Corollary 3.11 when v0 is primal-dual strictly

feasible (and thus q0 = 1). Then, in the case when Φ is defined using the l2 norm, the above upper

bounds on the number of iterations required by Algorithm 1 can actually be computed, as they de-

pend only on (Φ(v0), θ, µ) and ε (note that q0 = p0 = p = 1 in (3.92) and (3.93)). The same is true

when employing the l1 or l∞ norms, but the bounds also depend explicitly on the problem dimen-

sion n; this dependence is polynomial. For example, in the case of the l1 norm, where the optimal

choices in (3.21) are p = 1 and p =
√

n, the value of the bound (3.92) for ε = εmin = O(µ/
√

n)

implies that at most 2[θ(1−θ)µ2]−1√nΦ(v0)max{2(1−θ)µ,Φ(v0)}) iterations of Algorithm 1 are

required for the quadratic rate of convergence of (Φ(vk)) to occur. Similarly, when the l∞ norm

is employed in Φ, we have p = 1/
√

n, p = 1 and εmin = O(µ/n). Then, the bound (3.92) implies

that after at most 2[θ(1 − θ)µ2]−1nΦ(v0)max{2(1 − θ)µ,
√

nΦ(v0)}) iterations of Algorithm 1,

(Φ(vk)) converges quadratically. In our numerical experiments (see Section 8), where Φ is defined

in terms of the l∞ norm, this bound is highly pessimistic, and the quadratic convergence property

almost always occurs within a very modest number of iterations. Independently of the choice of

norm, the “asymptotic” bound (3.93) is of the form O(log(log(1/ε))).

4 Higher-order Newton methods

It is common to use a predictor-corrector step to try to encourage faster convergence. Suppose

that we have computed v̇k to satisfy (2.2), and now we compute







A 0 0

0 AT I

Sk 0 Xk













ẍk

ÿk

s̈k






= −







0

0

ẊkṠke






. (4.1)

In this case, it is appropriate to replace the linesearch by a search along a quadratic arc of the

form

vC

k (α)
def
=







xC

k (α)

yC

k (α)

sC

k(α)






=







xk

yk

sk






+ α







ẋk

ẏk

ṡk






+ α2







ẍk

ÿk

s̈k






. (4.2)

This then ensures that, as before,

r(vC

k (α)) = (1 − α)r(vk), (4.3)
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and gives the appropriate variations

XC

k (α)sC

k (α) − µe = (1 − α)(Xksk − µe) + α3(Ẍkṡk + Ẋks̈k) + α4Ẍks̈k, (4.4)

and

Φ(vC

k (α)) ≤ (1 − α)Φ(vk) + α3‖Ẍkṡk + Ẋks̈k‖ + α4‖Ẍks̈k‖, α ∈ [0, 1], (4.5)

of (2.9)–(2.10). Furthermore, the corresponding lower bound to (3.53) is

Φ(vC

k (α)) ≥ (1 − α)Φ(vk) − α3‖Ẍkṡk + Ẋks̈k‖ − α4‖Ẍks̈k‖, α ∈ [0, 1]. (4.6)

It is then straightforward to derive convergence and complexity analyses similar to those of

Algorithm 1.

5 On satisfying the assumptions

5.1 Some disadvantages of the assumptions

Our convergence analysis in Section 3 indicates that Algorithm 1 is reliable and fast, provided the

ipm conditions are satisfied by (PD). Our numerical experience with a Fortran 95 implementation

of this algorithm on netlib problems [27] without preprocessing of the test problems except so

as to ensure that the matrix A has full row rank (i. e., it satisfies assumption A1 of the ipm

conditions) confirms our theoretical results. Example 1 illustrates the satisfactory behaviour of

Algorithm 1 that we observe when the ipm conditions hold. In our implementation (and the

tables of results below), we use the l∞ norm in the definition (2.7) of the merit function “merit”,

and of the residuals “p-feas”, “d-feas” and “com-slk” of the primal, dual and centrality equations

of the system (1.1), respectively. The “time” column is the total cpu time in seconds.

Example 1. When applying our implementation of Algorithm 1 to problem afiro from the

netlib test set, we obtain the following output.

Iter p-feas d-feas com-slk merit stepsize mu time

0 3.9E+01 6.1E+01 5.7E+03 5.8E+03 -- 1.0E+02 0.00

1 3.9E+01 6.0E+01 5.6E+03 5.8E+03 9.20E-03 1.0E+02 0.00

2 3.8E+01 5.9E+01 5.5E+03 5.7E+03 1.79E-02 1.0E+02 0.00

3 3.7E+01 5.8E+01 5.5E+03 5.6E+03 1.64E-02 1.0E+02 0.00

4 3.6E+01 5.6E+01 5.2E+03 5.4E+03 4.20E-02 1.0E+02 0.00

5 3.0E+01 4.8E+01 4.4E+03 4.5E+03 1.47E-01 1.0E+02 0.00

6 2.0E+01 3.2E+01 2.7E+03 2.7E+03 3.36E-01 1.0E+02 0.00

7 6.4E+00 1.0E+01 1.1E+03 1.2E+03 6.83E-01 1.0E+02 0.00

8 9.9E-01 1.5E+00 1.6E+02 1.6E+02 8.45E-01 1.0E+02 0.00

9 4.0E-03 6.2E-03 1.7E+00 1.7E+00 9.96E-01 1.0E+02 0.00

================ strictly feasible point found ==================

10 4.5E-14 0.0E+00 2.9E-04 2.9E-04 1.00E+00 1.0E+02 0.00

11 5.7E-14 0.0E+00 1.2E-11 1.2E-11 1.00E+00 1.0E+02 0.00

=============== well-centred interior point found ===============

A strictly feasible point is found after 9 iterations, and a point satisfying (1.1) with µ = 100,

within 11 iterations of the method. The numerical results show that assumption A2 of the ipm

conditions is verified by this problem. 3
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Frequently, however, we observed disappointing numerical performance of our implementation

of Algorithm 1, as we exemplify next.

Example 2. Our implementation applied to the primal-dual feasible netlib problem 25fv47

generates the output below.

Iter p-feas d-feas com-slk merit stepsize mu time

0 5.7E+02 2.2E+03 4.0E+04 5.7E+04 -- 2.2E-01 0.02

1 5.7E+02 2.2E+03 4.0E+04 5.7E+04 5.37E-03 2.2E-01 0.07

2 5.6E+02 2.2E+03 4.0E+04 5.7E+04 3.92E-03 2.2E-01 0.12

3 5.6E+02 2.2E+03 3.9E+04 5.6E+04 8.67E-03 2.2E-01 0.16

...................................

998 4.3E-07 1.3E-07 3.7E-03 3.7E-03 2.14E-03 2.2E-01 46.57

999 4.3E-07 1.3E-07 3.7E-03 3.7E-03 2.14E-03 2.2E-01 46.61

1000 4.3E-07 1.3E-07 3.7E-03 3.7E-03 2.14E-03 2.2E-01 46.66

Thus progress is extremely slow and the stepsize does not increase to 1. Moreover, the

algorithm terminates since it has reached the maximum number of iterations allowed (k = 1000),

without generating the required approximate solution of (1.1) for µ = 0.22 within the specified

accuracy ε = 10−6. An approximate primal-dual feasible point is obtained, but not a strictly

feasible one, as some of the dual slack variables are very close to their bounds. The primal

variables corresponding to these dual small components increase rapidly in magnitude as the

algorithm progresses, causing severe ill-conditioning. Such behaviour of our implementation

occurs irrespectively of the choice of the target value µ. 3

We believe the inefficient behaviour of Algorithm 1 on problem 25fv47 is due to this example

not satisfying assumption A2 of the ipm conditions. We will attempt to justify this claim in the

remainder of this subsection, and convince the reader that the increasing ill-conditioning is not

due to a poor implementation of Algorithm 1. Firstly, we explain from a theoretical point of view

what happens when (3.20) does not hold.

Let FP , FD, FPD denote the primal, dual and primal-dual feasible set of (PD), respectively;

equivalently,

FP := {x ∈ IRn : Ax = b, x ≥ 0},
FD := {(y, s) ∈ IRm × IRn : A>y + s = c, s ≥ 0}, FPD := FP ×FD. (5.1)

Assume that FPD is nonempty, and thus (PD) has solutions. Then (PD) does not admit strictly

feasible points if and only if there exists i ∈ {1, . . . , n} such that xi = 0, for all x ∈ FP , or si = 0

for all s such that (y, s) ∈ FD for some y. In other words, an inequality constraint of (P) or (D)

holds as an equality (is active) at all the feasible points of (P) or (D), respectively. We call such

constraints implicit equalities of (P) or (D) [31].

In view of [7, 36], the presence of implicit equalities in FP is equivalent to the set of optimal

dual slacks s being unbounded. Similarly, FD has implicit equalities if and only if the primal

solution set is unbounded. We recall that in Example 2, some of the dual slack variables become

very close to zero, while the corresponding primal components become very large, suggesting

the presence of implicit equalities in the dual problem. More generally, as the system (1.1) has

a solution provided the ipm conditions hold, it is perhaps not so suprising that Algorithm 1

seems unable to compute a well-centred point for Example 2. See also the explanation in the
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introduction for the unfavourable effect of implicit equalities that relates them to the problem

(1.2).

Let us look more closely to the following simple example that is more amenable to analysis.

Example 3. Consider the problem of finding a feasible point of

x = 0 and x ≥ 0, (5.2)

and the corresponding dual

y + s = 0 and s ≥ 0, (5.3)

where (x, y, s) ∈ IR3, and for which x ≥ 0 is an implicit equality.

Our implementation of Algorithm 1 applied to (5.2) and (5.3) performs equally badly as it

did for Example 2, despite the simplicity of the problem.

Iter p-feas d-feas com-slk merit stepsize mu time

0 1.0E+00 1.0E+00 0.0E+00 2.0E+00 -- 1.0E+00 0.00

1 5.0E-05 5.0E-05 1.0E-00 1.0E+00 1.00E-00 1.0E+00 0.00

2 2.5E-05 2.5E-05 7.5E-01 7.5E-01 5.00E-01 1.0E+00 0.00

3 1.6E-05 1.6E-05 6.1E-01 6.1E-01 3.75E-01 1.0E+00 0.00

..................................

998 5.5E-10 2.4E-07 4.0E-03 4.0E-03 1.99E-03 1.0E+00 0.18

999 5.5E-10 2.4E-07 4.0E-03 4.0E-03 1.99E-03 1.0E+00 0.18

1000 5.5E-10 2.4E-07 4.0E-03 4.0E-03 1.98E-03 1.0E+00 0.18

In exact arithmetic, using the notation of Section 2 and 3, the Newton direction defined in

(2.2) from any (xk, sk) > 0 satisfies

ẋk = −xk and ṡk =
µ

xk
, k ≥ 0. (5.4)

Thus

ẋkṡk = −µ, k ≥ 0, (5.5)

and κ := µ in (3.37) for this problem. Relation (5.5) also provides

xk(α)sk(α) − θµ = (1 − α)(xksk − θµ) + α(1 − θ)µ − α2µ,

which implies

1 − θ ≤ αU

k < 1, k ≥ 0. (5.6)

It follows that a stepsize αk of 1 cannot be taken by Algorithm 1 for any k ≥ 0, when applied to

this problem.

From (2.17) and (5.5), we have αG

k = Φ(vk)/(2µ). Thus if

Φ(vk) ≥ Φ > 0, k ≥ 0, (5.7)

then αG

k is bounded below and away from zero. The same is true for αU

k due to (5.6). Employing

(5.5) again, we can now show, using similar arguments to those in the first part of the proof of

Theorem 3.5, that

Φ(vk+1) ≤
1

2
(1 − θ)Φ(vk) or Φ(vk+1) ≤

(

1 − min

{

1,
Φ

4µ

})

Φ(vk), k ≥ 0,
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and therefore, Φ(vk) converges Q-linearly to zero, which is a contradiction with our assumption

(5.7). It follows that αG

k cannot be bounded away from zero, and thus, Φ(vk) and αG

k converge

to zero at least on a subsequence. The latter limit implies that the stepsize αk of Algorithm 1

may become arbitrarily small on a subsequence K of iteration indices k, while the former gives

that, on the same subsequence k ∈ K, we have xk → 0 and xksk → µ. It follows that sk → ∞,

k → ∞, k ∈ K, which explains the occurence of increasing ill-conditioning in the numerics for

problem (5.2). 3

The simplicity of Example 3 allowed us to analyze it in exact arithmetic. For a general lp

problem, however, we found it extremely difficult to ensure theoretically that whenever we have

a variable that goes to zero while its dual becomes very large, we have an implicit equality.

Moreover, from a numerical point of view, the shortening stepsizes and the ill-conditioning that

occurs renders Algorithm 1 almost hopeless.

These issues motivate us to consider, in what follows, a sequence of relaxations of our original

problem, each of which satisfies the ipm conditions, and is thus amenable to Algorithm 1. We

present theoretical results that ensure that our modified algorithm, Algorithm 2, is convergent,

and numerical experiments that show our approach is successful in practice, overcoming the

numerical deficiencies highlighted in Examples 2 and 3 and in our remarks above. Algorithm 2

will also be able to find the implicit equalities of the original problems (PD), which can then be

removed as detailed in Section 6.2.1.1.

When the ipm conditions do not hold, it may be due to (P) or/and (D) being infeasible

(and thus, having no solutions). Such instances are not uncommon in practice, and Algorithm 2

attempts to detect this unfortunate case.

5.2 Overcoming the assumptions by controlled perturbations

For the remainder of this section, we assume that the matrix A has full row rank, which is

assumption A1 of the ipm conditions. In practice, this is not a serious restriction, since simple

preprocessing can usually identify and rectify rank deficiency (see Section 8).

Recall that the system of linear equalities and inequalities for which we want to find a point

situated well within its relative interior is











Ax = b,

AT y + s = c,

x ≥ 0, s ≥ 0.

(5.8)

Consider the following relaxation of this system











Ax = b,

AT y + s = c,

x ≥ −λ, s ≥ −γ,

(5.9)

where λ ∈ IRn and γ ∈ IRn are fixed parameters such that λ ≥ 0 and γ ≥ 0. We let Λ := diag(λ)

and Γ := diag(γ). The following lemma holds.
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Lemma 5.1 For any λ ≥ 0, γ ≥ 0, and any scalar µ > 0, the system



















Ax = b,

AT y + s = c,

(X + Λ)(S + Γ)e = µe,

x > −λ, s > −γ,

(5.10)

has a unique solution (x(δ, µ), y(δ, µ), s(δ, µ)), where δ := (λ, γ), provided that (5.9) admits strictly

feasible points.

Proof. Letting

p := x + λ and q := s + γ, (5.11)

the system (5.10) is equivalent to



















Ap = b + Aλ,

AT y + q = c + γ,

PQe = µe,

p > 0, q > 0.

(5.12)

The result now follows from standard interior point theory (see for example, [36]; a unique solution

to (5.12) exists conforming to the same result for which a unique solution of (1.1) exists). 2

We remark that the condition that (5.9) admits strictly feasible points, together with our

assumption that A has full row rank, are equivalent to the ipm conditions being satisfied by the

pair of dual problems

minimize
x∈IRn

(c + γ)T (x + λ) subject to Ax = b and x ≥ −λ, (5.13)

and

maximize
y∈IRm,s∈IRn

(b + Aλ)T y subject to AT y + s = c and s ≥ −γ. (5.14)

Thus the solutions of the system (5.10), as µ > 0 varies, describe the central path of problems

(5.13) and (5.14).

In contrast to our original problems (PD), it is now significantly easier to ensure that (5.9)

(and equivalently, (5.13) and (5.14)) admits strictly feasible points, as we shall see next.

5.2.1 The choice of starting point and the initialization iteration of Algorithm 2

Suppose a point ṽ0 = (x̃0, ỹ0, s̃0) is available that satisfies

Ax̃0 = b and A>ỹ0 + s̃0 = c, (5.15)

where some components of x0 and s0 may be negative. Then various choices of λ0 ≥ 0 and

γ0 ≥ 0 are possible such that ṽ0 is strictly feasible for (5.9) with δ = (λ, γ) := (λ0, γ0) := δ0. For

example, we may let λ0 = (λi
0 : i = 1, n),

λi
0 :=











0, if x̃i
0 > 0,

1, if x̃i
0 = 0,

−2x̃i
0, if x̃i

0 < 0,

(5.16)
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and proceed similarly for γ0. Thus the ipm conditions hold for (5.13) and (5.14) with δ := δ0. The

matrix A having full row rank ensures that (5.15) can be satisfied. Indeed, in our implementation

of Algorithm 2, the only preprocessing that is done is to guarantee this condition. By factorization

or otherwise, it is often computationally inexpensive to find a solution of (5.15).

Algorithm 2 may be initialized with v0 := ṽ0 and with suitable perturbations δ0 = (λ0, γ0),

such as (5.16), that make ṽ0 strictly feasible for (5.9), an option which our code provides. It may

also be convenient to start from any v0 = (x0, y0, s0) having (x0 + λ0, s0 + γ0) > 0, that may not

satisfy (5.15), as long as the initial perturbations δ0 = (λ0, γ0) are chosen such that (5.9) admits

strictly feasible points.

We also choose µ > 0. Then, we apply Algorithm 1 to the system (5.10), or equivalently,

to problems (5.13) and (5.14), with δ := δ0, starting from v0. In order words, we compute

v1 := (x1, y1, s1) := (x(δ0, µ), y(δ0, µ), s(δ0, µ)). Assuming in what follows that this calculation is

performed exactly, v1 uniquely satisfies the nonlinear system



















Axk = b,

AT yk + sk = c,

(Xk + Λk)(Sk + Γk)e = µe,

xk + λk > 0, sk + γk > 0,

(5.17)

with k := 1, λ1 := λ0 and γ1 := γ0.

5.2.2 The kth iteration of Algorithm 2

For k ≥ 1, let the current iterate vk = (xk, yk, sk) be the exact solution of (5.17), where δk :=

(λk, γk) ≥ 0.

If xk > 0 and sk > 0, we have a strictly feasible point of (PD), and we either terminate or

apply Algorithm 1 to (PD), starting from vk, to make vk well-centred.

Otherwise, there exists i ∈ {1, . . . , n} such that xi
k ≤ 0 or/and si

k ≤ 0, and we define the new

parameters λk+1 = (λi
k+1 : i = 1, n) and γk+1 = (γi

k+1 : i = 1, n),

λi
k+1 :=

{

0, if xi
k > 0,

(1 − ζ)λi
k + ζ(−xi

k), if xi
k ≤ 0,

(5.18)

and

γi
k+1 :=

{

0, if si
k > 0,

(1 − ζ)γi
k + ζ(−si

k), if si
k ≤ 0,

(5.19)

where ζ ∈ (0, 1) is a parameter chosen at the start of Algorithm 2. It follows that

0 ≤ λk+1 ≤ λk and 0 ≤ γk+1 ≤ γk, k ≥ 1. (5.20)

Recalling the strict inequalities in (5.17), we deduce from (5.18) and (5.19) that

xk > −λk+1 and sk > −γk+1, k ≥ 1, (5.21)

and thus, vk is strictly feasible for (5.9) with δ := δk+1 := (λk+1, γk+1), and the ipm conditions

are satisfied for problems (5.13) and (5.14). We then apply Algorithm 1 to (5.10) with δ := δk+1,

starting from vk = (xk, yk, sk). Since the first m + n equations of the systems (5.10) are satisfied
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at vk, only the last n equations need to be achieved by Algorithm 1. In exact arithmetic, we

obtain a new point vk+1 = (xk+1, yk+1, sk+1) := (x(δk+1, µ), y(δk+1, µ), s(δk+1, µ)) that uniquely

satisfies (5.17) with k := k + 1. We increase k by one unit, and repeat.

The relation (5.20) provides geometric intuition for the construction of Algorithm 2: in the

initialization iteration, we enlarge our primal-dual feasible region and compute a well-centred

point for the enlarged set. Then, we successively shrink this enlarged region and compute a

well-centred point for each shrunken polyhedron using Algorithm 1. This computation is always

initialized at the well-centred point of the previously perturbed polyhedron. The following state-

ment now follows naturally: the resulting sequence vk, k ≥ 1, is strictly feasible for the first

perturbed system (5.9) (i. e., when δ := δ1 = δ0). Thus we have

xk > −λk ≥ −λ1 and sk > −γk ≥ −γ1, k ≥ 1. (5.22)

As a further insight into the choice of perturbations, note that the strict inequalities in (5.17)

and (5.21) provide

[xi
k ≤ 0 =⇒ (λi

k, λ
i
k+1) > 0] and [si

k ≤ 0 =⇒ (γi
k, γ

i
k+1) > 0]. (5.23)

We remark that since every vk, k ≥ 1, is strictly feasible for problems (5.13) and (5.14) with

δ := δk+1 and it is the starting point of Algorithm 1 when applied to these perturbed problems,

we only employ a feasible version of Algorithm 1 for k ≥ 1. For k = 0, we may want to have the

freedom to use the infeasible option available for Algorithm 1.

We have assumed that the system (5.10) is solved exactly by Algorithm 1 on each (major)

iteration of Algorithm 2. This assumption is replaced in our implementation and in the analysis

in Section 7 by solving (5.10) to high accuracy.

The algorithm we have described can be summarized as follows.

Algorithm 2.

Choose µ > 0 and ζ ∈ (0, 1). Find perturbations δ0 := (λ0, γ0) ≥ 0 such that (5.9) has strictly

feasible points. Choose a starting point v0 = (x0, y0, s0) with (x0 + λ0, s0 + γ0) > 0. Apply

Algorithm 1 to (5.10) with δ := δ0, starting from v0, and obtain (exactly) its unique solution

v1 = (x1, y1, s1). Let δ1 := δ0.

On each iteration k ≥ 1, do:

Step 1. If xk > 0 and sk > 0, stop.

Step 2. Update δk+1 = (λk+1, γk+1) according to (5.18) and (5.19).

Step 3. By applying Algorithm 1 to (5.10) with δ := δk+1, starting from vk, compute its solution

vk+1 (exactly).

Step 4. Let k := k + 1, and go to Step 1. 3

We end this subsection with an illustration of the performance of our implementation of

Algorithm 2 on Example 3 (page 24). As the table below shows, the problem (5.2) is solved

to high accuracy in 7 total iterations (which includes the inner iterations of Algorithm 1). The
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implementation outputs a message to the user pointing out that there is one primal implicit

equality.

Iter p-feas d-feas com-slk merit step mu time

0 1.0E+00 1.0E+00 1.4E-05 2.0E+00 -- 1.0E+00 0.00

1 4.3E-05 4.3E-05 1.0E-00 1.0E-00 1.00E-00 1.0E+00 0.00

2 1.8E-05 1.8E-05 7.1E-01 7.1E-01 5.79E-01 1.0E+00 0.00

3 8.5E-06 8.5E-06 5.2E-01 5.2E-01 5.31E-01 1.0E+00 0.00

================ point satisfying equations found ===============

4 3.4E-06 3.4E-06 3.7E-01 3.7E-01 5.97E-01 1.0E+00 0.00

5 1.9E-07 1.9E-07 1.9E-01 1.9E-01 9.45E-01 1.0E+00 0.00

6 0.0E+00 2.9E-11 5.8E-03 5.8E-03 1.00E+00 1.0E+00 0.00

7 0.0E+00 2.9E-11 2.0E-17 2.9E-11 1.00E-00 1.0E+00 0.00

=============== well-centred interior point found ==============

More numerical results will be presented in Section 8 of the paper. Next, we investigate the

convergence properties of Algorithm 2 and its capacity to detect the implicit equalities of (PD).

6 On the convergence properties of Algorithm 2

Firstly, we prove a property of the sequence of iterates generated by Algorithm 2 that does

not require the existence of strictly feasible or even feasible points of (PD). As in the previous

subsection, an underlying assumption of the current section is that the matrix A has full row

rank.

Lemma 6.1 Let the matrix A have full row rank. The sequence of duality gaps (x>
k sk) of the

iterates (xk, yk, sk), k ≥ 1, generated by Algorithm 2 when applied to the problems (P) and (D),

is bounded from above, independently of k, and the following inequalities hold

x>
k sk ≤ nµ + λ>

1 γ1 := Udg, k ≥ 1. (6.1)

Proof. The nonlinear equations in (5.17) imply

(xk + λk)
>(sk + γk) = nµ, k ≥ 1, (6.2)

or equivalently,

x>
k sk = nµ − x>

k γk − s>k λk − λ>
k γk, k ≥ 1. (6.3)

Since sk + γk > 0 and λk ≥ 0, for k ≥ 1, we have

s>k λk + γ>
k λk ≥ 0, k ≥ 1. (6.4)

Similarly, the inequalities xk + λk > 0 and γk ≥ 0 provide

x>
k γk + λ>

k γk ≥ 0, k ≥ 1. (6.5)

Summing up (6.4) and (6.5), we deduce

x>
k γk + s>k λk ≥ −2λ>

k γk, k ≥ 1. (6.6)
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It follows from (6.3) that

x>
k sk ≤ nµ + λ>

k γk, k ≥ 1. (6.7)

Since from (5.20) we have λ>
k γk ≤ λ>

1 γ1, k ≥ 1, we conclude that (6.1) holds. 2

We remark that it is appropriate to refer to the scalar product x>
k sk, k ≥ 1, as the duality

gap of vk = (xk, yk, sk) since vk is feasible with respect to the primal-dual equality constraints,

conforming to (5.17), and thus x>
k sk = c>xk − b>yk.

Next, we introduce some useful notation based on a property of the sequence of iterates of

Algorithm 2 and on the structure of the primal-dual feasible set.

The construction of the relaxation parameters (5.18) and (5.19), and the inequalities in (5.17),

imply that either si
k ≤ 0, for all k ≥ 1, or si

k > 0, at least for all k sufficiently large. In other

words, we cannot have sign-alternating subsequences for si
k: there do not exist two (or more)

subsequences K1 and K2 such that si
k ≤ 0, k ∈ K1 and si

k > 0, k ∈ K2; once there exists an

iteration k0 such that si
k0

> 0, then si
k > 0, for all k ≥ k0. Similarly, for the xk components.

Thus the following definitions are valid:

Ix := {i ∈ {1, . . . , n} : xi
k > 0 for sufficiently large k}, (6.8)

and

Is := {j ∈ {1, . . . , n} : sj
k > 0 for sufficiently large k}, (6.9)

and their complements

Nx := {i ∈ {1, . . . , n} : xi
k ≤ 0 for all k ≥ 1} = {1, . . . , n} \ Ix, (6.10)

and

Ns := {j ∈ {1, . . . , n} : sj
k ≤ 0 for all k ≥ 1} = {1, . . . , n} \ Is, (6.11)

where Nx or Ns may be empty (if both of them are, then Algorithm 2 terminates with k = 1).

It follows from the above considerations that

λi
k = 0, i ∈ Ix and γj

k = 0, j ∈ Is, for all k sufficiently large. (6.12)

The sets Ix and Is may also be empty.

Let us also index the sets of implicit primal and dual equality constraints as

Ep := {i ∈ {1, . . . , n} : xi = 0 for all x ∈ FP }, (6.13)

and

Ed := {j ∈ {1, . . . , n} : sj = 0 for all (y, s) ∈ FD}, (6.14)

where FP,D were defined by (5.1), and where Ep or Ed are empty whenever there are no primal or

dual implicit equalities and no primal or dual feasible points, respectively. Let their complements

be

Ip := {1, . . . , n} \ Ep and Id := {1, . . . , n} \ Ed. (6.15)

The sets Ip and Id are empty if and only if either FP = {x : x = 0} and FD = {(y, s) : s =

0, A>y = c}, respectively, or FPD = ∅. The relation

Ep ∩ Ed = ∅, (6.16)
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trivially holds when FPD is empty, but it is also satisfied when FPD is nonempty since then there

always exists a primal-dual strictly complementary solution [31]. It follows from (6.15) and (6.16)

Ep ⊆ Id and Ed ⊆ Ip. (6.17)

Since FPD is a convex set, its relative interior relFPD is nonempty provided FPD is nonempty

[29], and we have

relFPD = {(x, y, s) ∈ FPD : xl > 0, l ∈ Ip, sr > 0, r ∈ Id}. (6.18)

Lemma 6.2 Let the matrix A have full row rank, the problems (P) and (D) be feasible, and

Algorithm 2 be applied to these problems. Then the sequences of components (xr
k), r ∈ Id, and

(sl
k), l ∈ Ip, of the iterates, are bounded above and below, independently of k.

In particular, we have the bounds

xr
k ≤ 1

m̂
[nµ + (x̂ + λ1)

>(ŝ + γ1)], r ∈ Id, k ≥ 1, (6.19a)

sl
k ≤ 1

m̂
[nµ + (x̂ + λ1)

>(ŝ + γ1)], l ∈ Ip, k ≥ 1, (6.19b)

where v̂ = (x̂, ŷ, ŝ) is any point in the relative interior (6.18) of FPD and m̂ := min{x̂l, ŝr : l ∈
Ip and r ∈ Id}.

Proof. The sequences (xk) and (sk) are bounded below due to (5.22).

Since FPD is nonempty, (6.18) and the remark preceding it imply that there exists v̂ = (x̂, ŷ, ŝ)

satisfying

Ax̂ = b, A>ŷ + ŝ = c, x̂l > 0, l ∈ Ip, ŝr > 0, r ∈ Id, x̂i = 0, i ∈ Ep, ŝj = 0, j ∈ Ed. (6.20)

From the first m + n equations in (5.17) and in (6.20), we deduce that (xk − x̂) belongs to the

null space of A and (sk − ŝ) belongs to the range space of A>. Thus we have

(xk − x̂)>(sk − ŝ) = 0, k ≥ 1, (6.21)

or equivalently,

x>
k ŝ + s>k x̂ = x>

k sk + x̂>ŝ, k ≥ 1. (6.22)

Recalling (6.20) and (6.15), relation (6.22) becomes

∑

r∈Id

xr
kŝ

r +
∑

l∈Ip

sl
kx̂

l = x>
k sk + x̂>ŝ, k ≥ 1. (6.23)

Let i ∈ Id. Relation (6.23) is equivalent to

xi
kŝ

i = −
∑

r∈Id
r 6=i

xr
kŝ

r −
∑

l∈Ip

sl
kx̂

l + x>
k sk + x̂>ŝ, k ≥ 1. (6.24)

It follows from (5.22), (λ1, γ1) ≥ 0 and (x̂l, ŝr) > 0, l ∈ Ip, r ∈ Id, that

−
∑

r∈Id
r 6=i

xr
kŝ

r −
∑

l∈Ip

sl
kx̂

l ≤
∑

r∈Id
r 6=i

λr
1ŝ

r +
∑

l∈Ip

γl
1x̂

l ≤ λ>
1 ŝ + γ>

1 x̂, k ≥ 1, (6.25)
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where in the second inequality we have employed (6.20). The inequality (6.25) and the value of

the bound Udg on (x>
k sk) given in (6.1) imply that the right-hand side of (6.24) is bounded above

by nµ + (x̂ + λ1)
>(ŝ + γ1), for k ≥ 1. The bound (6.19a) for i ∈ Id now follows from ŝi > 0,

(6.24) and (6.25). The bound (6.19b) follows similarly.

Note that the bounds (6.19) are immediate when xr
k ≤ 0 and sl

k ≤ 0, since the right-hand

side of these bounds is positive. 2

Employing the above lemma, we deduce the following theorem.

Theorem 6.3 Let the matrix A have full row rank, the problems (P) and (D) be feasible, and

Algorithm 2 be applied to these problems. Then xl
k > 0, l ∈ Ip, and sr

k > 0, r ∈ Id, for all

sufficiently large k. In other words,

Ip ⊆ Ix and Id ⊆ Is. (6.26)

Proof. Since Ix and Nx form a partition of the index set {1, . . . , n}, as do the sets Is and Ns,

we deduce

Ip = (Ip ∩ Ix) ∪ (Ip ∩Nx) and Id = (Id ∩ Is) ∪ (Id ∩Ns). (6.27)

We will prove that

Ip ∩Nx = ∅ and Id ∩Ns = ∅, (6.28)

which together with (6.27), implies (6.26).

Let us assume there exists i ∈ Ip ∩Nx. The nonlinear equations of system (5.17) provide

xi
k + λi

k =
µ

si
k + γi

k

, k ≥ 1. (6.29)

Employing Lemma 6.2 for i ∈ Ip, as well as the dual strict inequalities in (5.17) and the second

inequalities in (5.20), we deduce the bound

0 < si
k + γi

k < U i + γi
1 := 1/Di, k ≥ 1, (6.30)

where U i is any finite upper bound on the sequence (si
k). Thus it follows from (6.29) that

xi
k + λi

k ≥ Diµ, k ≥ 1. (6.31)

Since i ∈ Nx, we now employ the definition of λi
k+1 from (5.18) in the case xi

k ≤ 0, which can

be written as

λi
k+1 = λi

k − ζ(xi
k + λi

k), (6.32)

and conclude

λi
k+1 ≤ λi

k − Diζµ, for all k ≥ 1. (6.33)

Summing up over k ≥ 1, we deduce

λi
k+1 ≤ λi

1 − kDiζµ, k ≥ 1. (6.34)

Furthermore, we obtain

λi
k+1 ≤ 0, for all k ≥ λi

1

Diζµ
:= k1, (6.35)
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where λi
1 > 0 due to (5.23). Then it follows from the primal strict inequalities in (5.17) with

k := k + 1 that xi
k+1 > 0 for k ≥ k1. Recalling (6.10), we have now reached a contradiction with

our assumption that i ∈ Nx, and therefore, Ip ∩Nx = ∅.
Let now j ∈ Id ∩ Ns. By a similar argument, it can be shown that γj

k+1 ≤ 0 for all k ≥
γj
1/(P

jζµ) := k2, where P j is a positive constant such that 1/P j > xj
k + λj

k > 0 for all k ≥ 1.

Then, the dual strict inequalities in (5.17) with k := k + 1 imply that sj
k+1 > 0 for k ≥ k2, and

so j ∈ Is which is a contradiction with the assumption that j ∈ Ns since Is ∩Ns = ∅. 2

Let xIp := (xi : i ∈ Ip) and sId := (sj : j ∈ Is), for any x, s ∈ IRn. Theorem 6.3 and

its proof can be restated as showing that it takes a finite number of major iterations k for any

nonpositive component of x
Ip

1 and sId

1 to become positive. This has an immediate implication

for the case when (PD) has no implicit equalities, as we shall see next.

6.1 Finite termination of Algorithm 2 for strictly feasible (PD)

We will show that if our original problems (P) and (D) have strictly feasible points, then Algo-

rithm 2 will find such a point in a finite number of major iterations k.

Note that the assumption A2 in the ipm conditions implies that FPD has no implicit equalities,

i. e., Ep = Ed = ∅. Thus,

Ip = Id = {1, . . . , n}, (6.36)

where the index sets Ip and Id are defined in (6.15). The next two corollaries follow immediately

from Lemma 6.2 and Theorem 6.3, respectively.

Corollary 6.4 Let problems (P) and (D) satisfy the ipm conditions, and apply Algorithm 2 to

these problems. Then the iterates (xk) and (sk) are bounded above and below, independently of k.

In particular, we have the bound

max
k≥1

max
i=1,n

{xi
k, s

i
k} ≤ 1

m̂
[nµ + (x̂ + λ1)

>(ŝ + γ1)], (6.37)

where v̂ = (x̂, ŷ, ŝ) is any strictly feasible point of (PD) and m̂ := min{x̂i, ŝi : i = 1, n}.

Proof. Lemma 6.2 and (6.36) give the result. 2

Corollary 6.5 Let problems (P) and (D) satisfy the ipm conditions. When applied to these

problems, Algorithm 2 will generate a strictly feasible point of (P) and (D) in a finite number of

major iterations k.

In particular, letting Q denote any finite componentwise upper bound on the sequences (xk)

and (sk),

max
k≥1

max
i=1,n

{xi
k, s

i
k} ≤ Q, (6.38)

we have

xk > 0 and sk > 0, for all k ≥ 1 +

⌈

1

ζµ
· maximize
{i,j: (xi

1,sj
1)≤0}

{

λi
1(Q + γi

1), γ
j
1(Q + λj

1)
}

⌉

. (6.39)

The bound Q in (6.38) may take the value given by the right-hand side of (6.37).
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Proof. Since the iterates (vk) generated by Algorithm 2 satisfy the primal-dual equality con-

straints, it remains to show that after a finite number of iterations k, we have xk > 0 and sk > 0.

This follows from Theorem 6.3, as (6.26) and (6.36) now give Ip = Id = Ix = Is = {1, . . . , n}.
To deduce (6.39), note that relations (6.29)—(6.35) in the proof of Theorem 6.3 hold in fact,

for any i such that xi
1 ≤ 0 (which, due to (5.23), implies λi

1 > 0). In particular, (6.29)—(6.31)

hold for any i ∈ Ip = {1, . . . , n}. Furthermore, given xi
1 ≤ 0, the updating rule (6.32) will be

applied as long as xi
k ≤ 0. Thus relations (6.30) and (6.35) provide

i : xi
1 ≤ 0 =⇒ xi

k > 0 for all k ≥ 1 +

⌈

λi
1(U

i + γi
1)

ζµ

⌉

, (6.40)

where U i is any finite upper bound on the sequence (si
k).

Similarly, we derive

j : sj
1 ≤ 0 =⇒ sj

k > 0 for all k ≥ 1 +

⌈

γj
1(T

j + λj
1)

ζµ

⌉

, (6.41)

where T j is any finite upper bound on the sequence (xj
k).

Relation (6.39) now follows from (6.38), (6.40) and (6.41). 2

In the conditions of the above corollary, relation (6.12) further implies that there is finite

convergence to zero of the relaxation parameters λk and γk in terms of major iterations k (alter-

natively, recall (6.34) in the proof of Theorem 6.3). This latter bound, (6.34), also gives that the

larger the user-chosen value of µ, the less the number of outer iterations k.

In an attempt to ensure that the nonpositive components of x1 and s1 become “sufficiently”

positive (i. e., “far” from constraint boundaries), one might be inclined to require that Algorithm 2

decreases the corresponding components of λ1 and γ1 below −ρ, where ρ is a “small” given

tolerance. It is straightforward to see that Corollary 6.5 still holds in that case, provided the

perturbed problems do not become infeasible. Determining an appropriate value for ρ in order to

prevent infeasibility from occurring, is nontrivial and might prove to be a significant difficulty in

implementations of Algorithm 2. Thus, as we already remarked in Subsection 5.2, when we are

not satisfied with the proximity to the central path of the strictly feasible point of (PD) obtained

when Algorithm 2 terminates, one further run of Algorithm 1 starting from that iterate can be

performed, in order to bring it onto the central path of (PD).

6.2 Detecting the presence of implicit equalities in (PD) or infeasibility

Until now, we have shown that Algorithm 2 terminates in a finite number of major iterations,

provided (P) and (D) admit strictly feasible points. However, if the latter condition is not

satisfied, the termination criteria in Algorithm 2 cannot be met, and an (infinite) sequence of

iterates vk, k ≥ 1, will be generated. For the remainder of this section, we analyse the cases when

(PD), though feasible, has implicit equalities present among its inequality constraints, and when

(PD) is infeasible.

Firstly, we remark that relations (5.20) imply that the sequences of perturbations (λk) and

(γk) are convergent, as k → ∞. Let

λ∗ := lim
k→∞

λk and γ∗ := lim
k→∞

γk. (6.42)
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In the case when (PD) is infeasible or it has implicit equalities, we have

Nx ∪Ns 6= ∅,

where Nx and Ns were defined in (6.10) and (6.11), since otherwise we reach the contradiction that

Algorithm 2 finds a strictly feasible point for (PD) in a finite number of iterations k. Therefore

we have an infinite sequence of updates for the parameters λi
k, i ∈ Nx, and γj

k, j ∈ Ns, as the

convex combinations defined in (5.18) and (5.19). The latter relations can be written equivalently

xi
k :=

1

ζ
[−λi

k+1 + (1 − ζ)λi
k], i ∈ Nx, and sj

k :=
1

ζ
[−γj

k+1 + (1 − ζ)γj
k], j ∈ Ns, k ≥ 1.

(6.43)

Thus the sequences of nonpositive components (xi
k), i ∈ Nx, and (sj

k), j ∈ Ns, are also convergent,

and

lim
k→∞

xi
k = − lim

k→∞
λi

k := −λi
∗ ≤ 0, i ∈ Nx, and lim

k→∞
sj
k = − lim

k→∞
γj

k := −γj
∗ ≤ 0, j ∈ Ns.

(6.44)

Relation (6.44) is equivalent to

i ∈ Nx =⇒ (xi
k + λi

k) → 0, as k → ∞, (6.45)

and

j ∈ Ns =⇒ (sj
k + γj

k) → 0, as k → ∞. (6.46)

The nonlinear equations in (5.17), i. e., (xi
k + λi

k)(s
i
k + γi

k) = µ, i = 1, n, provide the property

i ∈ {1, . . . , n}, k → ∞ : (xi
k + λi

k) → 0 ⇐⇒ si
k → ∞, (6.47)

and

j ∈ {1, . . . , n}, k → ∞ : (sj
k + γj

k) → 0 ⇐⇒ xj
k → ∞, (6.48)

where for the forward implication in (6.47), we also used, from (5.20), that γk ≤ γ1, so that

si
k + γi

k → ∞ implies si
k → ∞; for the reverse implication in (6.47), we also employed that, if

(si
k) is unbounded above then i ∈ Is and (6.12) holds. The proof of (6.48) is similar. Thus we

conclude

i ∈ Nx =⇒ si
k → ∞, as k → ∞, (6.49)

and

j ∈ Ns =⇒ xj
k → ∞, as k → ∞. (6.50)

6.2.1 Detecting all the implicit equalities in (PD)

Let (PD) be feasible, but not strictly feasible. Thus

Ep ∪ Ed 6= ∅, (6.51)

where Ep and Ed were defined in (6.13) and (6.14), respectively. The next corollary follows from

properties proved at the beginning of the section.
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Corollary 6.6 Let the matrix A have full row rank, the problems (P) and (D) be feasible, and

Algorithm 2 be applied to these problems. Then

Nx ⊆ Ep and Ns ⊆ Ed. (6.52)

Furthermore,

i ∈ {1, . . . , n}, k → ∞ : xi
k → 0 or si

k → ∞ =⇒ i ∈ Ep, (6.53)

and

j ∈ {1, . . . , n}, k → ∞ : sj
k → 0 or xj

k → ∞ =⇒ j ∈ Ed. (6.54)

Proof. The conditions of Theorem 6.3 are satisfied, and the set inclusions (6.52) are an equiv-

alent formulation of (6.26).

Recalling that the sequences (xk) and (sk) are bounded below because of (5.22), an immediate

consequence of Lemma 6.2 is that if si
k → ∞, then i ∈ Ep, and if xj

k → ∞, then j ∈ Ed.

Let xi
k → 0, as k → ∞. If i ∈ Nx, then (6.52) provides i ∈ Ep. Else, i ∈ Ix and (6.12) implies

λi
k = 0, for all k sufficiently large. It follows from (6.47) that si

k → ∞, which implies i ∈ Ep.

Similarly, sj
k → 0 implies j ∈ Ed. 2

We now show that in the limit, Algorithm 2 finds a feasible point of (PD). In particular,

recalling that vk, k ≥ 1, satisfy the primal-dual equality constraints, we would like to prove that

(xi
k), i ∈ Nx, and (sj

k), j ∈ Ns, converge to zero as k → ∞, and not to a negative number as

the relations (6.45) and (6.46) may allow. Moreover, furthering Corollary 6.6, we want to give a

characterization of the primal and dual implicit equalities in terms of the behaviour of the iterates

vk, in order that we identify all the primal-dual implicit equalities. Towards this goal, we would

like to answer the following questions: is each (si
k), i ∈ Ep, and (xj

k), j ∈ Ed, unbounded above

and moreover, divergent to +∞ (i. e., each subsequence of each sequence tends to infinity)? and

does each (xi
k), i ∈ Ep, and (sj

k), j ∈ Ed, converge to zero? The next theorem and corollary are

further steps towards answering these questions.

The following property is useful:

xi
ks

i
k = µ, for all k sufficiently large and each i ∈ (Ep ∩ Ix) ∪ (Ed ∩ Is). (6.55)

To see this, let i ∈ Ep ∩ Ix. Then (6.12) provides xi
k + λi

k = xi
k for all k sufficiently large.

Furthermore, (6.17) and (6.26) imply i ∈ Is. Employing (6.12) again, we have si
k + γi

k = si
k for

all k sufficiently large. The relation (6.55) now follows from the ith nonlinear equation in (5.17),

i. e., (xi
k + λi

k)(s
i
k + γi

k) = µ. The argument for i ∈ Ed ∩ Is is similar.

Theorem 6.7 Let the matrix A have full row rank, the problems (P) and (D) be feasible, and

Algorithm 2 be applied to these problems. Then we have the properties

i ∈ Nx =⇒ xi
k → 0, k → ∞; (6.56)

j ∈ Ns =⇒ sj
k → 0, k → ∞. (6.57)

Proof. Relation (6.23) in the proof of Lemma 6.2 can be rearranged as

x>
k sk =

∑

r∈Id

xr
kŝ

r +
∑

l∈Ip

sl
kx̂

l − x̂>ŝ, k ≥ 1, (6.58)
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where (x̂, ŷ, ŝ) belongs to the relative interior of the feasible set of (PD), and thus satisfies (6.20).

Lemma 6.2 and (x̂Ip , ŝId) > 0 imply that the right-hand side of (6.58) is bounded above and

below independently of k. Thus not only is the duality gap sequence (x>
k sk) bounded above as

shown in Lemma 6.1, but, when (PD) is feasible, it is also bounded below by a constant, say Ldg,

x>
k sk ≥ Ldg, k ≥ 1. (6.59)

Relations (6.15) and (6.17) provide

x>
k sk =

∑

i∈Ep

xi
ks

i
k +

∑

j∈Ip

xj
ks

j
k,

=
∑

i∈Ep

xi
ks

i
k +

∑

j∈Ed

xj
ks

j
k +

∑

l∈Ip∩Id

xl
ks

l
k, k ≥ 1. (6.60)

Lemma 6.2 implies that each term of the finite sum over l ∈ Ip ∩ Id in (6.60) is bounded above

and below. It follows from (6.59) that there exists a constant L1, independent of k, such that

∑

i∈Ep

xi
ks

i
k +

∑

j∈Ed

xj
ks

j
k ≥ L1, k ≥ 1. (6.61)

Employing the second equalities in (6.10) and in (6.11), and (6.52), (6.61) can be expressed

equivalently

∑

i∈Nx

xi
ks

i
k +

∑

i∈Ep∩Ix

xi
ks

i
k +

∑

j∈Ns

xj
ks

j
k +

∑

j∈Ed∩Is

xj
ks

j
k ≥ L1, k ≥ 1. (6.62)

Relation (6.55) implies that the second and fourth sums on the left-hand side of expression

(6.62) are bounded above and below, and we deduce that there exists a constant L2, independent

of k, such that
∑

i∈Nx

xi
ks

i
k +

∑

j∈Ns

xj
ks

j
k ≥ L2, k ≥ 1. (6.63)

It follows from (6.52), (6.17) and (6.26) that Nx ⊆ Is and Ns ⊆ Ix. Therefore si
k > 0, i ∈ Nx,

and xj
k > 0, j ∈ Ns, for all k sufficiently large. Furthermore, the definitions (6.10) and (6.11)

imply xi
k ≤ 0, i ∈ Nx, and sj

k ≤ 0, j ∈ Ns, for all k ≥ 1. Thus each term of the sums in (6.63) is

nonpositive for all sufficiently large k, and we have

i ∈ Nx : 0 ≥ xi
ks

i
k ≥ L2, for all k sufficiently large, (6.64)

j ∈ Ns : 0 ≥ xj
ks

j
k ≥ L2, for all k sufficiently large. (6.65)

Relations (6.49) and (6.64) now imply that xi
k → 0, which is relation (6.56). Similarly, (6.50)

and (6.65) provide (6.57). 2

Corollary 6.8 Let the matrix A have full row rank, the problems (P) and (D) be feasible, and

Algorithm 2 be applied to these problems. Then we have the properties

i ∈ Ep, k → ∞ : si
k → ∞ =⇒ xi

k → 0; (6.66)

j ∈ Ed, k → ∞ : xj
k → ∞ =⇒ sj

k → 0. (6.67)
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Proof. If i ∈ Ep ∩ Ix and j ∈ Ed ∩ Is, then (6.66) and (6.67) follow from (6.55). Else, when

i ∈ Ep ∩Nx = Nx and j ∈ Ed ∩Ns = Ns, where we have employed (6.52), then (6.66) and (6.67)

follow from (6.56) and (6.57), respectively. The limits (6.49) and (6.50) give further insight. 2

The next theorem addresses the question whether the component sequences (si
k) and (xj

k)

tend to infinity for each i ∈ Ep and j ∈ Ed, respectively. Firstly, we need two auxiliary lemmas.

We begin by citing a property of the affine hull of a polyhedron [31].

Let P be a nonempty polyhedron expressed in general matrix notation

P := {h : A′h = b′, Ãh ≤ b̃}, (6.68)

where b̃ ∈ IRr, and let E ⊆ {1, . . . , r} be the indices of the implicit equalities of P. The polyhedron

P is included in the affine subspace

aff(P) := {h : A′h = b′, ã>i h = b̃i, i ∈ E}, (6.69)

where ãi denotes the ith row of Ã, which is called the affine hull of P [31]. Every affine subspace

that contains P contains also the affine hull of P [31]. Furthermore, the implicit equalities of P
play a crucial role in determining the dimension of the affine hull of P, provided they are not

redundant.

Lemma 6.9 ([31], page 100) Let the polyhedron P given in (6.68) be nonempty. Then the affine

hull of P satisfies

aff(P) = {h : A′h = b′, ã>i h ≤ b̃i, i ∈ E}. (6.70)

The next lemma investigates whether the set of implicit equalities of a polyhedron changes

when some of its strict inequality constraints are removed.

Lemma 6.10 Under the conditions of Lemma 6.9, consider the polyhedron

P ′ := {h : A′h = b′, ã>i h ≤ b̃i, i ∈ I0 ∪ E},

where I0 ⊂ {1, . . . , r}\E. Then E ′ = E, where E ′ denotes the indices of the implicit equalities of P ′.

Proof. Since P ⊆ P ′, we have E ′ ⊆ E , and thus, aff(P) ⊆ aff(P ′). It follows from (6.70) that

P ′ ⊆ aff(P), which further implies aff(P ′) ⊆ aff(P), and so,

aff(P ′) = aff(P). (6.71)

Let us assume there exists i0 ∈ E \E ′. Then, (6.71) implies that the inequality constraint indexed

by i0 must be redundant and strict in P ′. In other words,

h ∈ P ′ =⇒ ã>i0h < b̃i0 .

It follows that the constraint i0 is also strict and redundant in P since P ⊆ P ′. This is a

contradiction with i0 ∈ E . 2

We are now ready to state and prove the promised theorem.

Theorem 6.11 Let the matrix A have full row rank, the problems (P) and (D) be feasible, and

Algorithm 2 be applied to these problems. Then

i ∈ Ep =⇒ si
k → ∞, k → ∞; (6.72)

j ∈ Ed =⇒ xj
k → ∞, k → ∞. (6.73)
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Proof. Clearly, (6.72) and (6.73) hold for i ∈ Nx and j ∈ Ns because of (6.49) and (6.50),

respectively. Let us assume that there exist indices i ∈ Ep ∩Ix and j ∈ Ed ∩Is such that si
k 9 ∞

and xj
k 9 ∞. Then, the sequence (si

k) has at least one subsequence that is bounded above;

similarly, for (xj
k). In what follows, we assume for simplicity that the entire sequence (si

k) is

bounded above, and the same for (xj
k). The reader can convince herself that this can be done

without loss of generality, by studying the proof below.

Thus let

Bx := {i ∈ Ep : (si
k) bounded above} and Bs := {j ∈ Ed : (xj

k) bounded above}, (6.74)

and assume that Bx 6= ∅ and Bs 6= ∅. If Bx or Bs is empty, the argument that follows simplifies

significantly as there is nothing left to prove in the primal or the dual space, respectively. Then,

only one of the two transformations of problems (P) and (D) detailed below is required, depending

upon which of the two index sets is empty.

It follows from (6.49) and (6.50) that

Bx ⊆ Ix and Bs ⊆ Is. (6.75)

Thus property (6.55) holds for each i ∈ Bx ∪ Bs, which implies together with (6.17) and Lemma

6.2 that (xi
k) and (si

k) are bounded above and below away from zero, and thus have limit points

and any such limit points, say xi
∗ and si

∗, satisfy

xi
∗ > 0 and si

∗ > 0, i ∈ Bx ∪ Bs. (6.76)

We will now consider two equivalent reformulations of problems (P) and (D), that we will

then use to show that Bx and Bs are empty. Firstly, let us remove all the implicit equalities of

(P) that correspond to unbounded dual slacks by removing the respective primal variables, i. e.,

xi, i ∈ Ep \ Bx, and their columns of A, as well as the corresponding dual equality constraints

and dual slacks. We obtain the equivalent form of (P) and (D), respectively,

minimize
(xBx ,xIp)∈IRp

∑

i∈Bx∪Ip

cixi subject to
∑

i∈Bx∪Ip

Aix
i = b, (xBx , xIp) ≥ 0, (6.77)

and

maximize
y∈IRm

b>y subject to A>
i y ≤ ci, i ∈ Bx ∪ Ip, (6.78)

where p := |Bx|+ |Ip|, | · | denotes the cardinality of the respective index set, Ai is the ith column

of A, and where we keep in mind that the primal variables we removed are fixed at zero. Note

that the problems remain dual to each other, and that any implicit equality in FP and FD that

has not been removed remains implicit for (6.77) and (6.78), respectively. Let us argue this latter

claim briefly. For any i ∈ Bx, xi = 0 remains implicit in (6.77) since otherwise, there exists a

feasible point x̃ = (x̃Bx , x̃Ip) ∈ IRp for (6.77) such that x̃i > 0. Then, however, we can complete

this point x̃ with zeros to obtain a point x ∈ IRn that will clearly satisfy Ax = b and x ≥ 0, and

that has xi = x̃i > 0, which is a contradiction with Bx ⊆ Ep. Let u belong to the relative interior

of FP , which implies that uIp > 0. Furthermore, uBx∪Ip is feasible for (6.77). Thus no primal

nonnegative bounds indexed in Ip can become implicit equalities in (6.77). For the dual, we have

not removed any implicit equalities since Ed ⊆ Ip. To show that the dual constraints indexed in
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Ed are the implicit equalities of the feasible set of (6.78), we employ Lemma 6.10 with A ′ := 0,

b′ := 0, Ã := A>, b̃ = c, r := n, E := Ed and I0 ∪ E := Bx ∪ Ip.

Next, we address the dual implicit equalities that correspond to unbounded primal variables.

Since Ed is the index set of the implicit equalities of (6.78), we have that any y ∈ IRm satisfying

A>
i y ≤ ci, i ∈ Bx ∪ Ip, also achieves

A>
i y = ci, i ∈ Ed \ Bs. (6.79)

Since (Bx, Ed, Ip ∩ Id) form a partition of the index set Bx ∪ Ip, it follows from (6.79) that (6.78)

is equivalent to

maximize
y∈IRm

bT y subject to AT
i y = ci, i ∈ Ed \ Bs, and AT

j y ≤ cj , j ∈ Bx ∪ Bs ∪ (Id ∩ Ip).

(6.80)

The equivalent form (6.80) of the dual (6.78) implies that the primal variables corresponding to

the dual implicit equalities indexed in Ed \Bs can be freed from their (nonnegative) lower bounds,

and we deduce the dual to (6.80) to be

minimize
(xBx ,xIp)∈IRp

∑

i∈Bx∪Ip
cixi subject to

∑

i∈Bx∪Ip
Aix

i = b, (xBx , xBs , xIp∩Id) ≥ 0,

xj free, j ∈ Ed \ Bs,

(6.81)

which is equivalent to (6.77). It is immediate that Bs is the index set of the implicit equalities of

the feasible set of (6.80), since no constraints and variables have been removed from the feasible

set of (6.78). To prove that the primal inequality constraints indexed in Bx are the implicit

equalities of (6.81), employ Lemma 6.10 with A′ := (Ai : i ∈ Bx ∪ Ip), b′ := b, Ã := −I, b̃ := 0,

{1, . . . , r} := Bx ∪ Ip, E := Bx and I0 := Bs ∪ (Ip ∩ Id).

Now we return to the sequence of iterates generated by Algorithm 2 and to their relation to

problems (6.80) and (6.81). From Lemma 6.2, (6.74) and (6.76), we deduce that the sequence

(si
k) is bounded, for each i ∈ Bx ∪ Ip. Thus (si

k : i ∈ Bx ∪ Ip) has limit points. Moreover, (6.67)

in Corollary 6.8 provides si
k → 0, i ∈ Ed \ Bs. Therefore letting s

Bx∪Ip

∗ be any such limit point,

and B := Bx ∪ Bs ∪ (Ip ∩ Id), we have

s
Ed\Bs
∗ = 0 and sB∗ ≥ 0, (6.82)

where to deduce the inequality, we employed (6.9), (6.76) and the set inclusions

Ip ∩ Id ⊆ Id ⊆ Is,

that follow from (6.26). Since A has full row rank, (yk) is also bounded and thus, has limit points,

say y∗. As the iterates (yk, sk), k ≥ 1, satisfy A>yk + sk = c, it follows from (6.82) that y∗ is

feasible for (6.80), and we have

A>
Ed\Bs

y∗ = cEd\Bs , A>
By∗ ≤ cB. (6.83)

Similarly, the primal components (xi
k), i ∈ B, are bounded above and below. Let xB

∗ ∈ IR|B|

be any limit point of (xB
k ). Then xB

∗ ≥ 0, due to (6.76) and the set inclusions

Ip ∩ Id ⊆ Ip ⊆ Ix,
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that follow from (6.26). We also have, however, that xj
k → ∞, j ∈ Ed \ Bs, and we need to do

something less straightforward than in the dual case, in order to retrieve a feasible point of (6.81).

Since Bx ∪Ip = B∪ (Ed \Bs), the equality constraints of (6.81) can be written equivalently as
∑

j∈Ed\Bs

Ajx
j = b −

∑

i∈B

Aix
i. (6.84)

Letting xB := xB
∗ in the right-hand side of (6.84), we obtain the system

∑

j∈Ed\Bs

Ajx
j = b −

∑

i∈B

Aix
i
∗. (6.85)

If the matrix AEd\Bs
had full column rank, then the system (6.85) would have a (unique) finite so-

lution x̃Ed\Bs , as the matrix and right-hand side of the system (6.85) are real and finite. However,

Axk = b, k ≥ 1, and xB
k → xB

∗ < ∞ on a subsequence, imply
∑

j∈Ed\Bs

Aj( lim
k→∞

xj
k) = b −

∑

i∈B

Aix
i
∗, (6.86)

where we have proved that xj
k → ∞, k → ∞, for all j ∈ Ed \Bs. Thus we have found a solution of

(6.85) that is not finite, and reached a contradiction with our assumption that the matrix AEd\Bs

can have full column rank. It follows that (6.85) has multiple (and finite) solutions in IR|Ed\Bs|.

Compute any such finite solution, say x
Ed\Bs
∗ , of (6.85). Then (x

Ed\Bs
∗ , xB

∗ ) is feasible for (6.81),

and we have

ABx∪Ipx
Bx∪Ip

∗ = b, xB
∗ ≥ 0. (6.87)

Since Bx and Bs are the indices of the implicit equalities of (6.81) and (6.80), respectively, it

follows from (6.83) and (6.87) that

xi
∗ = 0, i ∈ Bx, and sj

∗ = cj − A>
j y∗ = 0, j ∈ Bs. (6.88)

This, however, contradicts (6.76).

Thus the sets Bx and Bs are empty. Now recall our remark in the first paragraph of the proof

that the above analysis holds if we assume that (si
k) and (xj

k) each have at least a bounded above

subsequence, for some i ∈ Ep ∩ Ix and j ∈ Ed ∩ Is. Thus the index sets of such sequences would

also be empty, and we conclude that xi
k → 0 and si

k → ∞ when i ∈ Ep ∩Ix, and xj
k → ∞, sj

k → 0

when j ∈ Ed ∩ Is. 2

The next corollary summarizes our results so far.

Corollary 6.12 Let the matrix A have full row rank, the problems (P) and (D) be feasible, and

Algorithm 2 be applied to these problems. Then

Ep = {i ∈ {1, . . . , n} : si
k → ∞, k → ∞} = {i ∈ {1, . . . , n} : xi

k → 0, k → ∞}, (6.89)

and

Ed = {j ∈ {1, . . . , n} : xj
k → ∞, k → ∞} = {j ∈ {1, . . . , n} : sj

k → 0, k → ∞}. (6.90)

Also, the complement index sets can be characterized as follows

Ip = {i ∈ {1, . . . , n} : (si
k) bounded above} = {i ∈ {1, . . . , n} : (xi

k) bounded away from zero},
(6.91)
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and

Id = {j ∈ {1, . . . , n} : (xj
k) bounded above} = {j ∈ {1, . . . , n} : (sj

k) bounded away from zero}.
(6.92)

Furthemore, the perturbation parameters δk satisfy

δk = (λk, γk) → 0, as k → ∞. (6.93)

Proof. Relations (6.89) and (6.90) follow from (6.53) and (6.54) in Corollary 6.6, from Corollary

6.8 and Theorem 6.11.

To show the first equality in (6.91) and in (6.92), employ Lemma 6.2, the first equality in

(6.89) and in (6.90), and the definitions (6.15).

Let us now show the second equality in (6.91), the one in (6.92) following similarly. An

equivalent formulation of (6.89) is

i ∈ Ip ⇐⇒ xi
k 9 0, k → ∞ ⇐⇒ there exists (xi

k), k ∈ K, bounded away from zero. (6.94)

It remains to prove that for each i ∈ Ip, the whole sequence (xi
k) is bounded away from zero. Let

i ∈ Ip be fixed and let us assume there exists a subsequence (xi
k), k ∈ K0, such that

xi
k → 0, as k → ∞, k ∈ K0. (6.95)

Recalling the first equality in (6.90) and that (Ed, Ip ∩ Id) forms a partition of Ip, then, clearly,

i /∈ Ed, and so i ∈ Ip ∩ Id. From (6.26), we have Ip ∩ Id ⊆ Ix ∩ Is. Thus (6.12) holds, which

together with the ith nonlinear equation in (5.17), i. e., (xi
k + λi

k)(s
i
k + γi

k) = µ, imply

xi
ks

i
k = µ, for k sufficiently large.

This, and (6.95), provide si
k → ∞, for k ∈ K0, k → ∞, and thus, (si

k), k ≥ 1, is unbounded

above, which is a contradiction with i ∈ Ip and the first inequality in (6.91).

Finally, to prove (6.93), recall that we showed in (6.42) that (δk) is convergent. Moreover,

recalling (6.12), it remains to show that λi
k → 0, i ∈ Nx, and γj

k → 0, j ∈ Ns. This now follows

from (6.44), (6.56) and (6.57). 2

The above corollary gives the promised characterization of the implicit equalities of (PD) in

terms of the behaviour of the respective components of the sequence of iterates generated by

Algorithm 2. Thus we have a practical way of identifying all of them. The next section discusses

what to do with these constraints once we established they are implicit equalities, and how to

obtain a feasible point of (PD) and a starting point that a feasible interior point method could

then use to solve (PD) to optimality.

6.2.1.1 Removing the implicit equalities from (PD) and finding a point in the rel-

ative interior of the primal-dual feasible set

Assume now that we have identified the index sets Ep and Ed, by employing Corollary 6.12.

Provided Ep is nonempty, let us remove from (P) all its implicit equalities by deleting the re-

spective primal variables xi, i ∈ Ep, and their columns of A, as well as the corresponding dual

equality constraints and dual slacks. We obtain the equivalent form of (P) and (D)

minimize
xIp∈IRp

∑

i∈Ip

cixi subject to
∑

i∈Ip

Aix
i = b, xIp ≥ 0, (6.96)
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and

maximize
(y,sIp)∈IRm×IRp

b>y subject to A>
i y + si = ci, i ∈ Ip, sIp ≥ 0. (6.97)

where p := |Ip|, | · | denotes the cardinality of the respective index set, Ai is the ith column of

A, and where we keep in mind that the primal variables we removed are fixed at zero. Problems

(6.96) and (6.97) remain dual to each other.

If Ed = ∅, then Lemma 6.2 implies that the sequence (x
Ip

k , s
Ip

k ) is bounded and thus has limit

points. The same is true for (yk), since A has full row rank. Let (x
Ip

∗ , y∗, s
Ip

∗ ) be any such limit

point. Then (6.91) and (6.92) in Corollary 6.12 provide

(x
Ip
∗ , s

Ip
∗ ) > 0. (6.98)

Since (xk, yk, sk), k ≥ 1, are feasible with respect to the equality constraints of (PD), (x
Ip
∗ , y∗, s

Ip
∗ )

is also feasible for the equality constraints of (6.96) and (6.97). Asymptotically, we have thus

obtained a strictly feasible point of (6.96) and (6.97). Moreover, it is also well-centred for these

problems (in the sense that it belongs to their central path) since (6.26), (5.18) and (5.19) imply

xi
ks

i
k = µ, i ∈ Ip, for all k sufficiently large, and therefore, in the limit, we have xi

∗s
i
∗ = µ,

i ∈ Ip. It is now problems (6.96) and (6.97) that a (feasible) interior point method will solve to

optimality, possibly starting from the well-centred strictly feasible point we have found.

When Ed 6= ∅, due to (6.90), the primal components xi
k, i ∈ Ed, are unbounded above, and

thus obtaining a primal-dual feasible point is less immediate in this case. Firstly, let us remove

the dual implicit equalities si = 0, i ∈ Ed, from problem (6.97). Note that since Ed ⊆ Ip, the

indices of the implicit equalities of (D) are still present in (6.97). Furthermore, Lemma 6.10 can

be employed to show that in fact, Ed is also the index set of the implicit equalities of (6.97). Thus

for any y ∈ IRm such that A>
i y ≤ ci, i ∈ Ip, we have

A>
i y = ci, i ∈ Ed. (6.99)

The dual problem (6.97) can be rewritten as

maximize
y∈IRm

bT y subject to AT
i y = ci, i ∈ Ed, and AT

j y ≤ cj , j ∈ Id ∩ Ip. (6.100)

The primal problem corresponding to (6.100) is

minimize
xIp∈IRp

∑

i∈Ip

cixi subject to
∑

i∈Ip

Aix
i = b, xj ≥ 0, j ∈ Ip ∩ Id, xi free, i ∈ Ed. (6.101)

Thus knowing the dual implicit equalities removes the nonnegativity constraints on the corre-

sponding primal variables, which is always useful in computations. It is this problem, (6.101),

and its dual (6.100), that a (feasible) interior point method will now solve to optimality, and for

which, we will further deduce a strictly feasible point using the iterates generated by Algorithm 2.

Corollary 6.12 implies that (s
Id∩Ip

k ) is bounded above and below away from zero, and sEd

k → 0.

Thus every limit point of (s
Ip

k ), say s
Ip

∗ , satisfies

sEd
∗ = 0 and s

Id∩Ip

∗ > 0. (6.102)

Since A has full row rank, (yk) is also bounded and has limit points. As the iterates (yk, sk)

satisfy A>yk + sk = c, it follows from (6.102) that every limit point of (yk) is strictly feasible

for (6.100).
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Similarly, (6.91) and (6.92) in Corollary 6.12 provide that the primal components (x
Id∩Ip

k )

are bounded above and below away from zero. Thus any of its limit points, say x
Id∩Ip

∗ , satisfies

x
Id∩Ip
∗ > 0. (6.103)

Due to (6.90), however, the components xEd

k → ∞. Since Ip = (Ip ∩ Id) ∪ Ed, the equality

constraints of (6.81) can be written equivalently as
∑

i∈Ed

Aix
i = b −

∑

j∈Ip∩Id

Ajx
j . (6.104)

Letting xIp∩Id := x
Ip∩Id
∗ in the right-hand side of (6.104), we obtain the system

∑

i∈Ed

Aix
i = b −

∑

j∈Ip∩Id

Ajx
j
∗. (6.105)

If the matrix AEd
had full column rank, then the system (6.105) would have a (unique) finite

solution x̃Ed , as the matrix and right-hand side of the system (6.105) are real and finite. However,

Axk = b, k ≥ 1, and x
Ip∩Id

k → x
Ip∩Id
∗ < ∞ on a subsequence, imply
∑

i∈Ed

Ai( lim
k→∞

xi
k) = b −

∑

j∈Ip∩Id

Ajx
j
∗, (6.106)

where we have proved that xi
k → ∞, k → ∞, for all i ∈ Ed. Thus we have found a solution of

(6.105) that is not finite, and reached a contradiction with our assumption that the matrix AEd

can have full column rank. It follows that (6.105) has multiple (and finite) solutions in IR|Ed|.

Compute any such finite solution, say xEd
∗ , of (6.105), for instance, the minimal norm solution.

Then x
Ip

∗ := (xEd
∗ , x

Ip∩Id
∗ ) satisfies AIpx

Ip

∗ = b, and (6.103) further implies that x
Ip

∗ is strictly

feasible for (6.101).

Also, relations (6.26), (5.18) and (5.19) imply that xi
ks

i
k = µ, i ∈ Ip ∩ Id, for all k sufficiently

large. Thus, in the limit, we have

xi
∗s

i
∗ = µ, i ∈ Ip ∩ Id.

If Ep = ∅ and Ed 6= ∅, there is no need to perform the first transformation of problems (PD)

into (6.96) and (6.97), we can do straightaway the change to (6.101) and (6.100).

6.2.2 Detecting when (PD) is infeasible

The remarks in the second paragraph at the beginning of the current subsection hold even when

(PD) is infeasible, and the next corollary follows immediately from (6.93) in Corollary 6.12.

Corollary 6.13 Let the matrix A have full row rank, and apply Algorithm 2 to problems (P)

and (D). Recalling (6.42), if (λ∗, γ∗) 6= 0, then (PD) is infeasible.

In the conditions of Corollary 6.13, it follows from (6.44) that if λ∗ = 0, then xNx

k → 0,

k → ∞. We also have xi
k > 0, i ∈ Ix, for all k sufficiently large. Since Axk = b, k ≥ 1,

Algorithm 2 will then tend towards a primal feasible point, though some of the components of

this point may be unbounded above. We can thus conclude that then, (P) is feasible and (D) is

infeasible. Similarly if λ∗ 6= 0 and γ∗ = 0, then (P) is infeasible and (D), feasible.

We noticed in our numerical experiments that, when a problem is infeasible, it depends on the

choice of starting point for Algorithm 2, as to which constraint has its corresponding relaxation

parameter not converging to zero.
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7 An inexact variant of Algorithm 2

Until now, we have assumed that, on each major iteration k ≥ 0 of Algorithm 2, the system

(5.10) with δ = (λ, γ) := δk+1 is solved exactly using Algorithm 1. In other words, the optimality

tolerance ε in the termination criteria of Algorithm 1 is set to its asymptotic value of zero.

To bridge the gap with practical computations, let us now allow for a positive tolerance εk

in the termination criteria of Algorithm 1, for each k ≥ 0. Thus we terminate each major

iteration k ≥ 0 when Algorithm 1 applied to (5.10) with δ := δk+1, has generated an iterate

vk,l = (xk,l, yk,l, sk,l) := vk+1 such that

Φk+1(vk+1) := Φk+1(vk,l) ≤ εk, (7.1)

where we let vk,0 := vk, k ≥ 0, and Φk+1 denote the merit function Φ defined in (2.7) that corre-

sponds to problem (5.10) with δ := δk+1. We refer to this variant of Algorithm 2 as Algorithm 2ε.

It is useful to require that, in addition to the conditions described in Section 5.2.1, for the

initialization iteration k = 0 of Algorithm 2ε, ε0 is chosen such that Algorithm 1 iterates at least

until the stepsize α0,r equals one. Due to (3.44) in Theorem 3.5, we know this happens provided

α0,r := αQ

0,r, for all r ≥ 0. Furthermore, (3.62) in Theorem 3.6 and more precisely, (3.92)

in Corollary 3.11, give an upper bound on the number of inner iterations r that Algorithm 1

requires to generate an iterate v0,r with this property. Then, we also have

Axk,r = b and A>yk,r + sk,r = c, for all r ≥ 0 and k ≥ 1, (7.2)

and

Axk = b and A>yk + sk = c, for k ≥ 1. (7.3)

It follows from (7.2) and (2.7) that

Φk+1(vk,r) = ‖(Xk,r + Λk+1)(Sk,r + Γk+1)e − µe‖, r ≥ 0, k ≥ 1. (7.4)

The condition (7.1) implies

|(xi
k+1 + λi

k+1)(s
i
k+1 + γi

k+1) − µ| ≤ εk

p
, i = 1, n, k ≥ 0, (7.5)

where p := 1 when the l1, l2 or l∞ is employed in the definition of Φk+1, k ≥ 0, and p := p when

a general norm satisfying (3.21) is used in Φk+1, k ≥ 0 (p is defined in (3.21)).

The issues to be addressed concern the values that the tolerances εk, k ≥ 0, can take, if any,

such that Algorithm 2ε inherits the properties of Algorithm 2. There is plenty of freedom in the

choice of (εk), as the following results show.

Let us assume in what follows that (εk) is bounded above, i. e.,

εk ≤ ε, k ≥ 0, for some ε > 0. (7.6)

Firstly, please note that all the properties of Algorithm 2 in Subsection 5.2 carry through for

Algorithm 2ε. The next lemma is the equivalent of Lemma 6.1.

Lemma 7.1 Let the matrix A have full row rank. Then, provided (7.6) holds, the sequence of

duality gaps (x>
k sk) of the iterates (xk, yk, sk), k ≥ 1, generated by Algorithm 2ε when applied to

the problems (P) and (D), is bounded from above, independently of k. In particular,

x>
k sk ≤ nµ + n

ε

p
+ λ>

1 γ1 := U ε
dg, k ≥ 1, (7.7)

where p is defined in (7.5).
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Proof. The proof follows exactly like that of Lemma 6.1, the only change being that (6.2) is

now replaced by

(xk + λk)
>(sk + γk) ≤ n

(

µ +
εk

p

)

, k ≥ 1, (7.8)

which follows from (7.5). 2

Furthermore, the definitions (6.8), (6.9), (6.10) and (6.11) of the index sets (Nx, Ix) and

(Ns, Is) as partitions of {1, . . . , n} still hold for the iterates generated by Algorithm 2ε. We have

the following equivalent of Lemma 6.2.

Lemma 7.2 Let problems (P) and (D) satisfy the ipm conditions, and apply Algorithm 2ε to

these problems. Then, provided (7.6) holds, the iterates (xk) and (sk) are bounded above and

below, independently of k.

In particular, we have the bound

max
k≥1

max
i=1,n

{xi
k, s

i
k} ≤ 1

m̂

[

nµ + n
ε

p
+ (x̂ + λ1)

>(ŝ + γ1)

]

, (7.9)

where v̂ = (x̂, ŷ, ŝ) is any strictly feasible point of (PD) and m̂ := {x̂i, ŝi : i = 1, n}, and where p

is defined in (7.5).

Proof. As (7.3) holds, the proof follows similarly to that of Lemma 6.2, where Ip and Id are

now equal to {1, . . . , n} since (PD) satisfies the ipm conditions. The only change that occurs is

that the value of the bound on (x>
k sk) is now taken from (7.7). 2

When (PD) has strictly feasible points, Algorithm 2ε will find such a point in a finite number

of major iterations k.

Theorem 7.3 Let problems (P) and (D) satisfy the ipm conditions, and assume that (7.6) holds,

where

ε := p(µ − µ0), (7.10)

for any (fixed) µ0 ∈ (0, µ), where p is defined in (7.5). Then Algorithm 2ε will generate a strictly

feasible point of (P) and (D) in a finite number of major iterations k. In particular, letting Qε

denote any finite componentwise upper bound on the sequences (xk) and (sk),

max
k≥1

max
i=1,n

{xi
k, s

i
k} ≤ Qε, (7.11)

we have

xk > 0 and sk > 0, for all k ≥ 1 +

⌈

1

ζµ0
· maximize
{i,j: (xi

1,sj
1)≤0}

{

λi
1(Q

ε + γi
1), γ

j
1(Q

ε + λj
1)
}

⌉

. (7.12)

The bound Qε in (7.11) may take the value given by the right-hand side of (7.9).

Proof. The proof follows the same arguments as that of Theorem 6.3, where Ip = Id =

{1, . . . , n} since (PD) satisfies the ipm conditions. The only difference is that instead of em-

ploying the ith nonlinear equation in (5.17), we use (7.5), (7.6) and (7.10). 2

The next corollary addresses the overall iteration complexity of Algorithm 2ε.
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Corollary 7.4 In addition to the conditions of Theorem 7.3, let the starting point v0 and the

initial perturbations δ0 = (λ0, γ0) of Algorithm 2ε be chosen such that v0 is strictly feasible for

(5.9) with δ := δ0, or such that x0 and s0 are larger, componentwise, than a strictly feasible

point of (5.9) (a simple way to ensure these conditions is described in Section 5.2.1). Then

Algorithm 2ε will generate a strictly feasible point of (P) and (D) in a finite number of total

iterations, where an upper bound on the number of inner iterations l performed by Algorithm 1

on each outer iteration k ≥ 0, follows from Corollary 3.11.

Proof. The assumptions of the corollary and (7.2) imply that the conditions of Corollary 3.11

are satisfied by Algorithm 1 when applied to each subproblem (5.9) with δ := δk, k ≥ 0. Thus this

corollary provides the property that it takes a finite number of minor iterations l for Algorithm 1

to generate an iterate vk,l satisfying (7.1) (l naturally depends on k). Theorem 7.3 concludes the

proof. 2

Let us briefly illustrate applying the complexity results of Corollary 3.11 in the context of

Corollary 7.4. Let the starting point v0 of Algorithm 2ε be strictly feasible for (5.9) with δ := δ0,

and let the l2 norm be employed in the definition of Φk+1 for each k ≥ 0. Then Φk+1 has the

expression (7.4) not only for k ≥ 1, but also for k = 0. Let

εk := ρµ, k ≥ 0, for some ρ ∈ (0, 1).

Thus conditions (7.6) and (7.10) hold, where p = 1 and µ0 := (1 − ρ)µ, and the upper bound on

the number of outer iterations k is given by (7.12) and (7.9). For each k ≥ 0, in order to bound

the inner iterations l ≥ 0, Corollary 3.11 applies with q0 = p0 = p = 1 since we employ Algorithm

1 with l2 in Φk+1 to solve problem (1.1) with δ := δk+1, starting from vk,0 := vk, where vk is

strictly feasible for the (k + 1)th perturbed problem. For each k ≥ 0, let us choose θ := θk in the

neighbourhood condition (2.13) of Algorithm 1 to satisfy θk ≤ 4/5. Then Corollary 3.11 provides

that for each k ≥ 0,

i) If ρ ≥ θk/2, then Algorithm 1 generates an iterate vk,l with Φk+1(vk,l) ≤ εk, for all l such that

l ≥ lρ0 := max

{

0,

⌈

2

θkµ
(Φk+1(vk) − εk)max

{

2,
Φk+1(vk)

(1 − θk)µ

}⌉}

. (7.13)

ii) Let l0 := lρ0 for ρ = θk/2. When ρ < θ/2, then Algorithm 1 generates vk,l such that

Φk+1(vk,l) ≤ εk for all l such that

l ≥ l0 +

⌈

1

log 2
log

(

log(ρ/θk)

log r

)⌉

, (7.14)

where r := min{1/2,
√

(1 − θk)/θk}.

For overall complexity and practical computational purposes, it would be very useful to relate

the values of Φk+1(vk) and Φk(vk) (recall that Φk(vk) ≤ ρµ), and those of θk+1 and θk. In this

sense, we remark that (5.18) and (5.19) imply that

(xi
k + λi

k+1)(s
i
k + γi

k+1) − µ = (xi
k + λi

k)(s
i
k + γi

k) − µ, ∀k, i: (xi
k, s

i
k) > 0 and (xi

k−1, s
i
k−1) > 0,

and

(xi
k + λi

k+1)(s
i
k + γi

k+1) − µ = (1 − ζ)[(xi
k + λi

k)(s
i
k + γi

k) − µ] − ζµ, ∀k, i: xi
k ≤ 0 or si

k ≤ 0,
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and

(xi
k + λi

k+1)(s
i
k + γi

k+1) − µ = (1 − ζ)2[(xi
k + λi

k)(s
i
k + γi

k) − µ] − (2 − ζ)ζµ, ∀k, i: (xi
k, s

i
k) ≤ 0.

Due to the generality of the updating rules for the perturbation parameters, however, it is difficult

to estimate the above componentwise error in the centrality conditions in the cases when xi
k > 0

and xi
k−1 ≤ 0, i. e., when λi

k+1 = 0 and λi
k > 0, and similarly for si

k. Note that the last three

displayed relations imply that the closer to zero ζ is, the closer together are the errors in the

centrality equations, implying that once Φk(vk) ≤ ρµ holds, it will take only a small number of

inner iterations l to achieve Φk+1(vk+1) ≤ ρµ. Then, however, the number of outer iterations k

increases since k ∼ 1/ζ due to (7.12).

The asymptotic detection of the primal-dual implicit equalities is also possible when we apply

Algorithm 2ε to (PD).

Corollary 7.5 Let the matrix A have full row rank, and the problems (P) and (D) be feasible.

Assume that (7.6) and (7.10) hold. Then the characterizations (6.89)—(6.92) of the sets of

implicit and strict inequalities of (PD) also hold for the iterates (vk) = (xk, yk, sk) generated by

Algorithm 2ε.

Proof. A careful investigation of the proofs in Section 6.2.1 shows that they continue to hold

when the inexact condition (7.5), with the choices (7.6) and (7.10), is employed instead of the n

nonlinear equations of (5.17). This is essentially due to the iterates vk of Algorithm 2ε satisfying

the linear equations and strict inequalities in (5.17), to the updating schemes (5.18) and (5.19)

being the same, and to the system (5.10) being well-defined and having a unique solution for all

µ > 0 and even, for any vector w > 0, if µe on the right-hand side of its nonlinear equations is

replaced by w (see [30], page 224). 2

The results in Corollary 6.13 also hold for the iterates (vk) and the parameters (λk, γk) of

Algorithm 2ε, providing an asymptotic infeasibility detection criteria for (PD).

8 Numerical experience

We now briefly describe our initial numerical experience with the algorithms we developed and

analysed in Sections 2–7. We have implemented Algorithm 2, more precisely Algorithm 2ε, which

naturally contains Algorithm 1 as a sub-procedure, as a Fortran 95 module WCP (Well-Centred

Point) as part of the upcoming release 2.0 of the nonlinear optimization library GALAHAD [17].

WCP is actually designed to find a well-centred point for the general linear program

minimize
x∈IRn

cT x subject to cl ≤ Ax ≤ cu and xl ≤ x ≤ xu (8.1)

and its dual. Here any or all of the components of the bounds cl, cu, xl and xu may be identical

or infinite, thus allowing equality constraints and fixed or free variables. Although the details

and bookkeeping are more complicated than for (P) and (D), the underlying method is identical,

so here we simply describe the details in the context of (P) and (D).

The dominant cost per iteration of Algorithm 1 is, of course, the solution of the linear system

(2.2). As is traditional for interior point methods, the variables ṡk may be eliminated to give
(

X−1
k Sk AT

A 0

)(

ẋk

−ẏk

)

= −
(

c − AT yk − µX−1
k e

Axk − b

)

(8.2)
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and recovered via

ṡk = −X−1
k Skẋk − sk + µX−1

k e.

The system (8.2) may be solved either using a symmetric, indefinite factorization of

(

X−1
k Sk AT

A 0

)

(8.3)

or that of the positive-definite Schur complement

AS−1
k XkA

T . (8.4)

Factors of either are obtained using the GALAHAD module SILS, which is built on top of the HSL

[18] package MA27 [12]—SILS may be trivially replaced by the more powerful (but commercial)

package MA57 [11] if desired. In WCP, the default factorization is that of the Schur complement

(8.4), but with a switch to that of (8.3) if A has any relatively dense columns or if (8.4) proves

to be too ill-conditioned.

Although other strategies are available within WCP, the default is to fix the target µ to 1000

throughout the calculation. The relaxation weights λ0 and γ0 are set to 0.00001, and the initial

point set so that the primal and dual variables x0 and s0 are 0.1 from their (perturbed) bounds—

for the more general problem (8.1), the mid point between the lower and upper bounds is taken if

the distance between the bounds is smaller than 0.2. Each major iteration in Step 3 of Algorithm

2 is terminated when the l∞-norm of the residuals (5.17) is smaller than a prescribed stopping

tolerance (in other words, we employ the condition (7.1)), here 0.000001, and the overall algorithm

is terminated when the required centrality conditions (1.1) are violated (component-wise) by at

most 0.000001 or if the violation fails to decrease by a factor 0.1 over 100 consecutive iterations.

No preprocessing of the problems is performed by default, aside from identifying and removing

dependent linear equality constraints as required by Assumption A1). We do this by factorizing

(

αI AT

A 0

)

= LBLT

using SILS, and assessing rank deficiency from tiny eigenvalues of the one-by-one and two-by-

two diagonal blocks that make up B—a value α = 0.01 is used by default. We recognize that

this is not as robust as, for example, a singular-value decomposition or a rank-revealing QR

factorization, but fortunately, it has proved remarkably reliable in our tests.

All of our experiments were performed on a single processor of a 3.06 GHz Dell Precision 650

Workstation. The codes were compiled using full optimization with the Intel ifort compiler, and

the computations were performed in double precision.

We consider the complete set of linear programming Netlib and other linear programming test

problems as distributed with CUTEr [16]. Our intention here is simply to persuade the reader

that our algorithm achieves its objectives. In particular, for those problems having strictly feasible

points, we aim to find such a point efficiently, and for those whose feasible set is nonempty but not

full-dimensional, we wish to identify the (number of) implicit (fixed or free) constraints/variables

and compute a point in the relative interior of the primal-dual feasible set. We also want to

identify when a problem is infeasible or unbounded.
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We have made no attempt to tune the many algorithmic parameters to individual problems,

nor to find a range that is globally better than the current defaults. This is work in progress and

we anticipate improvements before the code is finally released.

In Table 8.1 we report the results of applying WCP, using default values, to our test set. For

each problem, we give the number of variables, n, and constraints, m, the numbers of implicit

constraints on the variables, xim (the variables that are actually fixed), and on their duals, sim

(the variables that are actually free) the numbers of inequality constraints that are implicitly

fixed, cim, and the number that are actually free from one of their bounds, yim. In addition, we

record the total number of inner iterations (factorizations) performed, the exit status and the

total CPU time taken in seconds.

Table 8.1: CUTEr LP test examples

name n m xim sim cim yim its status time

25FV47 1571 821 0 4 0 0 36 ok 0.58

80BAU3B 9799 2262 63 8 47 8 70 ok 2.57

ADLITTLE 97 56 1 0 0 0 19 ok 0.01

AFIRO 32 27 0 0 0 0 14 ok 0.00

50AGG2 302 516 1 0 1 0 85 ok 0.48

AGG3 302 516 1 0 1 0 85 ok 0.49

AGG 163 488 42 0 11 0 151 ok 0.42

BANDM 472 305 20 0 0 0 91 ok 0.25

BCDOUT 5940 5414 12 3335 6 1 223 infeas 65.10

BEACONFD 262 173 78 2 0 0 327 ok 0.68

BLEND 83 74 0 0 0 0 17 ok 0.01

BNL1 1175 643 43 0 11 0 99 ok 0.64

BNL2 3489 2324 41 375 22 104 184 ok 7.64

BOEING1 384 351 4 0 5 0 64 ok 0.25

BOEING2 143 166 0 0 14 0 33 ok 0.05

BORE3D 315 233 107 0 10 0 313 ok 0.64

BRANDY 249 220 23 10 9 0 205 ok 0.45

CAPRI 353 271 0 14 0 0 26 ok 0.07

CYCLE 2857 1903 325 12 16 2 79 ok 2.56

CZPROB 3523 929 336 0 11 0 246 ok 2.23

D2Q06C 5167 2171 9 1 1 1 44 ok 3.95

D6CUBE 6184 415 0 0 0 0 32 ok 1.47

DEGEN2 534 444 68 0 166 0 326 ok 2.15

DEGEN3 1818 1503 257 0 458 0 377 ok 27.55

DEGENLPA 20 15 4 0 0 0 144 ok 0.02

DEGENLPB 20 15 4 0 0 0 146 ok 0.02

DFL001 12230 6071 5600 12 13 0 183 inacc 494.24

E226 282 223 19 2 10 5 79 ok 0.19

ETAMACRO 688 400 47 0 1 0 41 ok 0.20

EXTRASIM 2 1 0 1 0 0 2 ok 0.00

FFFFF800 854 524 19 0 0 0 63 ok 0.52

FINNIS 614 497 25 17 11 11 96 ok 0.36

FIT1D 1026 24 0 0 0 0 19 ok 0.09

FIT1P 1677 627 0 0 0 0 26 ok 0.25

FIT2D 10500 25 0 0 0 0 24 ok 2.28

FIT2P 13525 3000 0 0 0 0 24 ok 8.45

FORPLAN 421 161 118 0 6 0 58 ok 0.14

GANGES 1681 1309 100 0 0 0 92 ok 1.20

GFRD-PNC 1092 616 26 0 0 0 32 ok 0.11

GOFFIN 51 50 0 51 0 0 17 ok 0.02

GREENBEA 5405 2392 1039 28 9 0 521 inacc 25.38

GREENBEB 5405 2392 1040 31 9 0 531 inacc 48.27

GROW15 645 300 0 0 0 0 31 ok 0.14

GROW22 946 440 0 0 0 0 32 ok 0.21

GROW7 301 140 0 0 0 0 31 ok 0.07

ISRAEL 142 174 0 0 0 0 29 ok 0.11
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Table 8.1: CUTEr LP test examples (continued)

name n m xim sim cim yim its status time

KB2 41 43 0 0 0 0 20 ok 0.01

LINSPANH 97 33 18 0 1 0 23 ok 0.01

LOTFI 308 153 0 2 0 0 30 ok 0.04

MAKELA4 21 40 0 21 0 0 19 ok 0.00

MAROS-R7 9408 3136 0 0 0 0 15 ok 14.42

MAROS 1443 846 322 14 41 0 283 ok 3.39

MODSZK1 1620 687 1 2 0 0 45 ok 0.18

MPSBCD03 5940 5414 42 408 0 1 201 infeas 47.26

NESM 2923 662 0 0 0 0 53 ok 0.68

OET1 3 1002 0 3 0 0 89 ok 0.20

OET3 4 1002 0 4 0 0 84 ok 0.21

PEROLD 1376 625 28 88 0 0 64 ok 0.76

PILOT4 1000 410 17 88 0 0 48 ok 0.34

PILOT87 4883 2030 22 9 2 9 66 ok 56.23

PILOT-JA 1988 940 80 88 18 0 57 ok 1.30

PILOTNOV 2172 975 73 0 26 0 45 ok 2.10

PILOT 3652 1441 47 0 12 0 66 ok 9.51

PILOT-WE 2789 722 60 80 5 0 82 ok 0.86

PT 2 501 0 2 0 0 69 ok 0.07

QAP12 8856 3192 0 0 397 0 41 ok 127.68

QAP15 22275 6330 0 0 630 0 50 ok 1355.51

QAP8 1632 912 0 0 170 0 26 ok 2.23

QPBD OUT 263 211 0 2 0 5 24 ok 0.06

READING2 6003 4000 0 2000 0 0 3 ok 0.14

RECIPELP 180 91 19 24 3 15 232 ok 0.14

S277-280 4 4 0 0 0 0 12 ok 0.00

SC105 103 105 0 0 0 0 14 ok 0.01

SC205 203 205 1 0 0 0 35 ok 0.04

SC50A 48 50 0 0 0 0 12 ok 0.01

SC50B 48 50 0 0 0 0 12 ok 0.00

SCAGR25 500 471 0 0 0 0 22 ok 0.06

SCAGR7 140 129 0 0 0 0 16 ok 0.01

SCFXM1 457 330 10 8 2 0 76 ok 0.23

SCFXM2 914 660 20 16 4 0 77 ok 0.48

SCFXM3 1371 990 30 24 6 0 72 ok 0.70

SCORPION 358 388 57 0 40 0 170 ok 0.35

SCRS8 1169 490 34 16 6 16 77 ok 0.30

SCSD1 760 77 0 0 0 0 6 ok 0.01

SCSD6 1350 147 0 0 0 0 6 ok 0.03

SCSD8 2750 397 0 0 0 0 8 ok 0.06

SCTAP1 480 300 0 0 0 0 14 ok 0.03

SCTAP2 1880 1090 0 0 0 0 13 ok 0.13

SCTAP3 2480 1480 0 0 0 0 14 ok 0.18

SEBA 1028 515 126 0 0 0 131 ok 0.42

SHARE1B 225 117 0 0 0 0 30 ok 0.03

SHARE2B 79 96 0 0 0 0 22 ok 0.02

SHELL 1775 536 0 0 1 0 80 ok 0.35

SHIP04L 2118 402 201 0 0 0 70 ok 0.38

SHIP04S 1458 402 89 0 0 0 58 ok 0.23

SHIP08L 4283 778 1126 0 0 0 206 ok 2.02

SHIP08S 2387 778 553 0 0 0 180 ok 1.19

SHIP12L 5427 1151 1066 0 0 0 202 ok 3.10

SHIP12S 2763 1151 360 0 0 0 142 ok 1.31

SIERRA 2036 1227 0 0 10 0 24 ok 0.25

SIPOW1M 2 2000 0 2 0 0 22 ok 0.10

SIPOW1 2 2000 0 2 0 0 23 ok 0.11

SIPOW2M 2 2000 0 2 0 0 26 ok 0.13

SIPOW2 2 2000 0 2 0 0 27 ok 0.12

SIPOW3 4 2000 0 4 0 0 87 ok 0.40

SIPOW4 4 2000 0 4 0 0 87 ok 0.43
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Table 8.1: CUTEr LP test examples (continued)

name n m xim sim cim yim its status time

SSEBLIN 194 72 0 0 0 0 32 ok 0.02

STAIR 467 356 0 8 0 0 36 ok 0.13

STANDATA 1075 359 13 0 19 0 87 ok 0.29

STANDGUB 1184 361 112 1 19 0 126 ok 0.43

STANDMPS 1075 467 13 0 19 0 67 ok 0.27

STOCFOR1 111 117 0 0 0 0 19 ok 0.02

STOCFOR2 2031 2157 0 0 0 0 21 ok 0.36

STOCFOR3 15695 16675 0 0 0 0 37 ok 6.13

TESTDECK 14 15 0 10 0 10 129 infeas 0.02

TFI2 3 101 0 3 0 0 27 ok 0.01

TRUSS 8806 1000 0 0 0 0 10 ok 0.36

TUFF 587 333 21 2 0 0 85 ok 0.38

VTP-BASE 203 198 67 1 71 0 267 ok 0.34

WOOD1P 2594 244 1094 0 0 0 315 ok 13.25

WOODW 8405 1098 3020 0 0 0 669 inacc 25.24

The exit status “inacc” simply means that the required accuracy was not achieved—this is

an inevitable consequence of the ill-conditioning which arises for problems for which there is

no interior. Of the problems that fail in this way, GREENBEA, GREENBEB and WOODW succeed if

the convergence tolerance is raised to 0.00005. Unfortunately, DFL001 appears to be highly ill-

conditioned, and thus far we have not been able to solve this problem (the simplex code MINOS

[26] reports that the problem is feasible). Infeasible problems result in an exit status “infeas”;

the infeasible BCDOUT and MPSBCD03 and dual infeasible TESTDECK end this way.

The most surprising aspect, for us, was the large number of problems which have no primal-

dual strictly feasible points (whose feasible sets are not full-dimensional). Since most (but not

all, see for example, [41]) convergence analyses for interior-point methods for linear programming

is predicated on the IPM conditions, one can only conclude that these algorithms work in spite

of the lack of these desirable conditions and not because of the convergence theory that is used

to justify them! Of course commercial codes apply careful pre-solving techniques (e. g., [14]) and

perhaps these remove implicit constraints either accidentally or by design (see for example, the

last paragraph of this section and Table 8.2).

Of those (few) problems that have an interior, the number of iterations required is generally

modest. For the others, often more iterations than we would like are required, but this is an

artifact of needing a number of (increasingly ill-conditioned) minor iterations for convergence.

We had hoped that a strategy of letting a convenient initial point x0 determine the relaxation

weights λ0 and γ0, such as that outlined in Section 6.2, would be a good one. Unfortunately, this

frequently led to large initial weights, and subsequently many major iterations were required.

We have also applied WCP to the NETLIB test problems [27] after they have been prepro-

cessed using the CPLEX preprocessor [8]. The CPLEX preprocessor fails to find all, and indeed

sometimes many, of the implicit equalities for 25 out of the 98 NETLIB problems, the results for

the former being reported in Table 8.2. The numerics suggests that WCP may be employed as an

algorithmic preprocessor for test problems, possibly after they have already been preprocessed

by a common presolver, in order to ensure that all implicit equalities have been removed. The

strong theoretical guarantees of convergence of Algorithm 2 that is implemented in WCP make this

software a rare occurence among existing preprocessors.
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Table 8.2: Preprocessed NETLIB LP test examples

name n m xim sim cim yim its status time

80BAU3B 8510 1789 12 0 6 0 64 ok 1.99

BOEING1 418 287 0 0 2 0 55 ok 0.17

BOEING2 160 122 0 0 14 0 31 ok 0.03

D2Q06C 4561 1855 5 0 1 0 41 ok 2.87

DEGEN2 473 382 68 0 162 0 334 ok 2.02

DEGEN3 1721 1406 257 0 457 0 425 ok 27.82

DFL001 9052 3861 15 0 3 0 160 ok 276.41

FINNIS 363 296 2 4 0 8 47 ok 0.11

FORPLAN 421 161 118 0 6 0 58 ok 0.16

GREENBEA 3048 1015 0 2 0 0 163 ok 3.60

MAROS 809 524 15 0 2 0 94 ok 0.59

PEROLD 1074 503 3 0 0 0 56 ok 0.47

PILOT4 770 348 4 0 0 0 38 ok 0.17

PILOT-JA 1369 708 27 0 2 0 53 ok 0.89

PILOTNOV 1686 748 27 0 2 0 44 ok 0.78

PILOT 3066 1204 1 0 0 0 61 ok 8.76

PILOT-WE 2346 602 42 0 5 0 74 ok 0.67

RECIPELP 71 48 0 1 0 3 97 ok 0.02

SCRS8 799 174 0 6 0 14 31 ok 0.07

SHELL 1157 236 0 0 1 0 72 ok 0.19

SHIP08L 3099 470 3 0 0 0 27 ok 0.18

SHIP08S 1526 234 3 0 0 0 27 ok 0.09

SIERRA 1723 877 0 0 10 0 20 ok 0.16

WOOD1P 1716 170 286 0 0 0 226 ok 9.17

WOODW 4006 551 8 0 0 0 112 ok 22.44

9 Conclusions

We presented a ‘Phase I’ strategy — Algorithm 2, and an inexact variant Algorithm 2ε, that

contain Algorithm 1 as a sub-procedure — for feasible primal-dual interior point methods for

linear programming. It computes a point in the relative interior of the primal-dual feasible set

of (PD) or asymptotically detects that this set is empty. In the former case, if additionally,

the ipm conditions are satisfied, Algorithm 2/2ε takes a finite number of outer iterations to

generate such a point on the central path of (PD), while Algorithm 2ε takes a finite number of

total iterations. Else, when (PD) is feasible, but not strictly feasible, Algorithm 2/2ε is able to

asymptotically detect all the primal-dual implicit equalities of the primal-dual feasible set from

the behaviour of the iterates. We further use this information to transform problems (P) and (D)

into equivalent ones which satisfy the ipm conditions, by eliminating the primal variables that we

have identified as always being at their bounds and freeing those that correspond to dual implicit

equalities. Moreover, the finite components of any limit point of the iterates provide a strictly

feasible point of these transformed problems that belongs to their central path. It is to these

reduced problems that a feasible interior point method may then be applied in order to solve

them to optimality. Successful numerical experiments on LP problems from the NETLIB and

CUTEr collections indicate that Algorithm 2/2ε can be employed as an algorithmic preprocessor

for removing implicit equalities, with theoretical guarantees of convergence. We plan to further

our numerical experience with Algorithm 2/2ε by comparing the efficiency of our initialization

strategy when embedded into a feasible interior point code with existing infeasible interior point

methods (whose convergence relies on the satisfaction of the ipm conditions).

An aspect of our results for Algorithm 1 that deserves further attention concerns casting the
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complexity bounds in Corollary 3.11 in a form that is common for such results in interior point

methods.

From a computational point of view, we would also like to derive proven nonasymptotic

criteria for detecting implicit equalities using Algorithm 2/2ε. Tightening the existing flexibility

in the choice of the perturbation parameters may be a way to tackle this issue. Such a result will

further strengthen the reliability of our algorithmic preprocessor.

Inspired by some recent computational work in [4], we believe that our approach may offer a

theoretically-reliable alternative for warmstarting interior point methods for linear programming

and those nonlinear programs that contain (some) linear constraints. We plan to address this

issue in the near future.
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