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1 Sketches of proofs for Part 1

Theorems 1.1—1.3 can be found in any good book on analysis. Theorems 1.1 and 1.2 follow

directly by considering the remainders of truncated Taylor expansions of the univariate function

f(x + αs) with α ∈ [0, 1], while Theorem 1.3 uses the Newton formula

F (x + s) = F (x) +

∫ 1

0
∇xF (x + αs)sdα.

Proof of Farkas’ lemma

The result is trivial if C = 0. So otherwise, suppose that g ∈ C and that sTai ≥ 0 for i ∈ A. Then

sT g =
∑

i∈A

yis
Tai ≥ 0.

Hence S is empty, since sT g is non-negative.

Conversely, suppose that g /∈ C, and consider

min
c∈C

‖g − c‖2 = min
c∈C̄

‖g − c‖2,

where

C̄ = C
⋂

{c | ‖g − c‖2 ≤ ‖g − c̄‖2}

and c̄ is any point in C. Since C is closed, and {c | ‖g − c‖2 ≤ ‖g − c̄‖2} is compact, C̄ is

non-empty and compact, and it follows from Weierstrass’ Theorem (namely, that the minimizer

of continuous function within a compact set is achieved) that

c∗ = arg min
c∈C

‖g − c‖2

exists. As C is convex with 0, c∗ ∈ C, αc∗ ∈ C for all α ≥ 0, and hence φ(α) = ‖g − αc∗‖
2
2 is

minimized at α = 1. Hence φ′(1) = 0 and thus

c∗
T (c∗ − g) = 0. (1.1)

By convexity, if c ∈ C, so is c∗ + θ(c − c∗) for all θ ∈ [0, 1], and hence by optimality of c∗

‖g − c∗‖
2
2 ≤ ‖g − c∗ + θ(c∗ − c)‖2

2.
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Expanding and taking the limit as θ approaches zero, we deduce that

0 ≤ (g − c∗)
T (c∗ − c) = (c∗ − g)T c

using (1.1). Thus, defining s = c∗ − g, sT c ≥ 0 for all c ∈ C, and in particular sTai ≥ 0 for all

i ∈ A. But as s 6= 0, as c∗ ∈ C and g /∈ C, and sT g = −sT s < 0, using (1.1), we have exhibited

the separating hyperplane sT v = 0 as required when g /∈ C.

1.1 Proof of Theorem 1.4

Suppose otherwise, that g(x∗) 6= 0. A Taylor expansion in the direction −g(x∗) gives

f(x∗ − αg(x∗)) = f(x∗) − α‖g(x∗)‖
2 + O(α2).

For sufficiently small α, 1

2
α‖g(x∗)‖

2 ≥ O(α2), and thus

f(x∗ − αg(x∗)) ≤ f(x∗) − 1

2
α‖g(x∗)‖

2 < f(x∗).

This contradicts the hypothesis that x∗ is a local minimizer.

1.2 Proof of Theorem 1.5

Again, suppose otherwise that sT H(x∗)s < 0. A Taylor expansion in the direction s gives

f(x∗ + αs) = f(x∗) + 1

2
α2sTH(x∗)s + O(α3),

since g(x∗) = 0. For sufficiently small α, − 1

4
α2sT H(x∗)s ≥ O(α3), and thus

f(x∗ + αs) ≤ f(x∗) + 1

4
α2sTH(x∗)s < f(x∗).

Once again, this contradicts the hypothesis that x∗ is a local minimizer.

1.3 Proof of Theorem 1.6

By continuity H(x) is positive definite for all x in a open ball N around x∗. The generalized

mean value theorem then says that if x∗ + s ∈ N , there is a value z between the points x∗ and

x∗ + s for which

f(x∗ + s) = f(x∗) + g(x∗)
T s + 1

2
sT H(z)s = f(x∗) + 1

2
sT H(z)s > f(x∗)

for all nonzero s, and thus x∗ is an isolated local minimizer.

1.4 Proof of Theorem 1.7

We consider feasible perturbations about x∗. Consider a vector valued C2 (C3 for Theorem 1.8)

function x(α) of the scalar α for which x(0) = x∗ and c(x(α)) = 0. (The constraint qualification

is that all such feasible perturbations are of this form). We may then write

x(α) = x∗ + αs + 1

2
α2p + O(α3) (1.2)
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and we require that

0 = ci(x(α)) = c(x∗ + αs + 1

2
α2p + O(α3))

= ci(x∗) + aT
i (x∗)

(

αs + 1

2
α2p

)

+ 1

2
α2sTHi(x∗)s + O(α3)

= αaT
i (x∗)s + 1

2
α2
(

aT
i (x∗)p + sT Hi(x∗)s

)

+ O(α3)

using Taylor’s theorem. Matching similar asymptotic terms, this implies that for such a feasible

perturbation

A(x∗)s = 0 (1.3)

and

aT
i (x∗)p + sTHi(x∗)s = 0 (1.4)

for all i = 1, . . . ,m. Now consider the objective function

f(x(α)) = f(x∗ + αs + 1

2
α2p + O(α3))

= f(x∗) + g(x∗)
T
(

αs + 1

2
α2p

)

+ 1

2
α2sTH(x∗)s + O(α3)

= f(x∗) + αg(x∗)
T s + 1

2
α2
(

g(x∗)
T p + sTH(x∗)s

)

+ O(α3)

(1.5)

This function is unconstrained along x(α), so we may deduce, as in Theorem 1.4, that

g(x∗)
T s = 0 for all s such that A(x∗)s = 0. (1.6)

If we let S be a basis for the null-space of A(x∗), we may write

g(x∗) = AT (x∗)y∗ + Sz∗ (1.7)

for some y∗ and z∗. Since, by definition, A(x∗)S = 0, and as it then follows from (1.6) that

gT (x∗)S = 0, we have that

0 = ST g(x∗) = ST AT (x∗)y∗ + ST Sz∗ = ST Sz∗.

Hence ST Sz∗ = 0 and thus z∗ = 0 since S is of full rank. Thus (1.7) gives

g(x∗) − AT (x∗)y∗ = 0. (1.8)

Proof of Theorem 1.8

We have shown that

f(x(α)) = f(x∗) + 1

2
α2
(

pT g(x∗) + sT H(x∗)s
)

+ O(α3) (1.9)

for all s satisfying A(x∗)s = 0, and that (1.8) holds. Hence, necessarily,

pT g(x∗) + sT H(x∗)s ≥ 0 (1.10)

for all s and p satisfying (1.3) and (1.4). But (1.8) and (1.4) combine to give

pT g(x∗) =
m
∑

i=1

(y∗)ip
T ai(x∗) = −

m
∑

i=1

(y∗)is
T Hi(x∗)s

and thus (1.10) is equivalent to

sT

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s ≡ sT H(x∗, y∗)s ≥ 0

for all s satisfying (1.3).
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Proof of Theorem 1.9

As in the proof of Theorem 1.6, we consider feasible perturbations about x∗. Since any constraint

that is inactive at x∗ (i.e., ci(x∗) > 0) will remain inactive for small perturbations, we need only

consider perturbations that are constrained by the constraints active at x∗, (i.e., ci(x∗) = 0).

Let A denote the indices of the active constraints. We then consider a vector valued C 2 (C3 for

Theorem 1.10) function x(α) of the scalar α for which x(0) = x∗ and ci(x(α)) ≥ 0 for i ∈ A. In

this case, assuming that x(α) may be expressed as (1.2), we require that

0 ≤ ci(x(α)) = c(x∗ + αs + 1

2
α2p + O(α3))

= ci(x∗) + ai(x∗)
T αs + 1

2
α2p + 1

2
α2sT Hi(x∗)s + O(α3)

= αai(x∗)
T s + 1

2
α2
(

ai(x∗)
T p + sT Hi(x∗)s

)

+ O(α3)

for all i ∈ A. Thus

sTai(x∗) ≥ 0 (1.11)

and

pT ai(x∗) + sT Hi(x∗)s ≥ 0 when sT ai(x∗) = 0 (1.12)

for all i ∈ A. The expansion of f(x(α)) (1.5) then implies that x∗ can only be a local minimizer

if

S = {s | sT g(x∗) < 0 and sTai(x∗) ≥ 0 for i ∈ A} = ∅.

But then the result follows directly from Farkas’ Lemma—a proof of this famous result is given,

for example, as Lemma 9.2.4 in

R. Fletcher “Practical Methods of Optimization”, Wiley (1987, 2nd edition).

Farkas’ Lemma. Given any vectors g and ai, i ∈ A, the set

S = {s | sT g < 0 and sT ai ≥ 0 for i ∈ A}

is empty if and only if

g =
∑

i∈A

yiai

for some yi ≥ 0, i ∈ A

Proof of Theorem 1.10

The expansion (1.5) for the change in the objective function will be dominated by the first-order

term αsT g(x∗) for feasible perturbations unless sT g(x∗) = 0, in which case the expansion (1.9)

is relevant. Thus we must have that (1.10) holds for all feasible s for which sT g(x∗) = 0. The

latter requirement gives that

0 = sT g(x∗) =
∑

i∈A

yis
T ai(x∗),
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and hence that either yi = 0 or sT ai(x∗) = 0 (or both).

We now focus on the subset of all feasible arcs that ensure ci(x(α)) = 0 if yi > 0 and

ci(x(α)) ≥ 0 if yi = 0 for i ∈ A. For those constraints for which ci(x(α)) = 0, we have that (1.3)

and (1.4) hold, and thus for such perturbations s ∈ N+. In this case

pT g(x∗) =
∑

i∈A

yip
T ai(x∗) =

∑

i∈A
yi>0

yip
T ai(x∗) = −

∑

i∈A
yi>0

yis
T Hi(x∗)s = −

∑

i∈A

yis
T Hi(x∗)s

This combines with (1.10) to give that

sTH(x∗, y∗)s ≡ sT

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s = pT g(x∗) + sT H(x∗)s ≥ 0.

for all s ∈ N+, which is the required result.

Proof of Theorem 1.11

Consider any feasible arc x(α). We have seen that (1.11) and (1.12) hold, and that first-order

feasible perturbations are characterized by N+. It then follows from (1.12) that

pT g(x∗) =
∑

i∈A

yip
T ai(x∗) =

∑

i∈A
sT ai(x∗)=0

yip
T ai(x∗) ≥ −

∑

i∈A
sT ai(x∗)=0

yis
T Hi(x∗)s = −

∑

i∈A

yis
THi(x∗)s,

and hence by assumption that

pT g(x∗) + sT H(x∗)s ≥ sT

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s ≡ sTH(x∗, y∗)s > 0

for all s ∈ N+. But this then combines with (1.5) and (1.11) to show that f(x(α)) > f(x∗) for

all sufficiently small α.
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