Notes for Part 2: Linesearch methods for unconstrained
optimization
Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk)

February 1, 2006

2 Sketches of proofs for Part 2

2.1 Proof of Theorem 2.1

From Taylor’s theorem (Theorem 1.1), and using the bound
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2.2 Proof of Corollary 2.2

Theorem 2.1 shows that the linesearch will terminate as soon as a(®) < Qmax. JThere are two
cases to consider. Firstly, it may be that ajp;; satisfies the Armijo condition, in which case
ap = Qjpit- If not, there must be a last linesearch iteration, say the [th, for which a® > Qtmax
(if the linesearch has not already terminated). Then ayj > altt) = 7o) > TQmax. Combining
these two cases gives the required result.

2.3 Proof of Theorem 2.3
We shall suppose that g # 0 for all £ and that
Jim fu > s
From the Armijo condition, we have that
fer1 = fe < aiBpf g,

for all k, and hence summing over the first j iterations
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Since the left-hand side of this inequality is, by assumption, bounded below, so is the sum on

right-hand-side As this sum is composed of negative terms, we deduce that
lim ay|pj gi,| = 0.
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where v is the assumed uniform Lipschitz constant. For k € Ky,
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Combining (2.1) and (2.2) gives the required result.

2.4 Proof of Theorem 2.4

Follows immediately from Theorem 2.3, since
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and thus
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implies that limy_.o g = 0.

2.5 Proof of Theorem 2.5

(2.2)

Let Amin(Bg) and Amax(Bg) be the smallest and largest eigenvalues of By. By assumption, there

are bounds Apin > 0 and Ap.x such that
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and thus that
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for any nonzero vector s. Thus
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In addition
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and hence
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which leads to
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and hence
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implies, as before, that limg_,,, gr = 0.

2.6 Proof of Theorem 2.6

Consider the sequence of iterates xj, k£ € I, whose limit is x,. By continuity, Hj is positive
definite for all such k sufficiently large. In particular, we have that there is a kg > 0 such that

pkapk >\m1n( *)HpkH%

for all k € £ > ko, where Amin(H,) is the smallest eigenvalue of H(z,). We may then deduce
that
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for all such k, and also that
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since Theorem 2.5 implies that at least one of the left-hand sides of (2.3) and
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converges to zero for such k.
From Taylor’s theorem, there is a z; between zp and xjp + pi such that
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Thus, the Lipschitz continuity of H gives that
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since Hypr + g = 0. Now pick k sufficiently large so that

’YHpkH? < )\min(H*)(l - 25)

In this case, (2.3) and (2.4) give that

F@p+ i) = fr < 39k 9 + PAmin(H) (1 = 28)[|pell3 < 21— (1 = 28))pi g1, = Bk, 91
and thus that a unit stepsize satisfies the Armijo condition for all sufficiently large k£ € K.
Now note that | H, ||y < 2/Amin(Hy) for all sufficiently large k € K. The iteration gives
Th41 — T = Tk — Tx — Hk_lgk =Tk — Tx — Hk_l (gk - g(x*)) = Hk_l (g(.fU*) — 9k — Hk('r* - ﬂj‘k)) .

But Theorem 1.3 gives that
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Hence
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which is (iii) when & = 2v/Amin(H,) for £ € K. Result (ii) follows since once an iterate becomes
sufficiently close to x, for sufficiently large k& € K, this implies k¥ + 1 € K, and hence I = IN.
Thus (i) and (iii) are true for all &k sufficiently large.

2.7 Conjugate Gradient methods

All of the results given here are easy to verify, and may be found in any of the books of suggested
background reading material. The fact that any p;, = p is a descent direction follows immediately
since the identity
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from which it follows that g7 p’ < g7 p'~!. The result then follows by induction, since
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