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3 Sketches of proofs for Part 3

3.1 Proof of Theorem 3.1
Firstly note that, for all a > 0,

my(—age) = fr — ollgrl* + 10’ g{ Bygy.- (3.1)
If g, is zero, the result is immediate. So suppose otherwise. In this case, there are three possibil-
ities:

(i) the curvature g{ B, g, is not strictly positive; in this case my(—agy) is unbounded from below
as « increases, and hence the Cauchy point occurs on the trust-region boundary.

(ii) the curvature g} B, g, > 0 and the minimizer of my(—ag) occurs at or beyond the trust-
region boundary; once again, the the Cauchy point occurs on the trust-region boundary.

(iii) the curvature gl B,g, > 0 and the minimizer of my(—agy), and hence the Cauchy point,
occurs before the trust-region is reached.

We consider each case in turn;
Case (i). In this case, since gf B,g, < 0, (3.1) gives

2 2 T 2
mi(—agy) = fir, — allgell” + 5079 Begr < fr — olgil| (3.2)
for all @ > 0. Since the Cauchy point lies on the boundary of the trust region

Ay

m. (3.3)

aj, =

Substituting this value into (3.2) gives

Ay
fe —mu(sg) > ||9k||2m = |lgpll Ak > $llgxll Ak (3.4)
k

Case (ii). In this case, let o} be the unique minimizer of (3.1); elementary calculus reveals that

lowl®
gl{Bka

o = (3.5)
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Since this minimizer lies on or beyond the trust-region boundary (3.3) and (3.5) together imply
that

a9 Brgy, < llgkll*.
Substituting this last inequality in (3.1), and using (3.3), it follows that

Ay
e = mu(st) = allgrll? = $lak)gk Brgr > o llgil® = %||9k||2—”g T 3119kl Ay
k
Case (iii). In this case, aj = aj, and (3.1) becomes
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where
9% Brgil < Nlgell*1Bll < llgrll*(X + 1By ]l)

because of the Cauchy-Schwarz inequality.

The result follows since it is true in each of the above three possible cases. Note that the
“14” is only needed to cover case where By = 0, and that in this case, the “min” in the theorem
might actually be replaced by Aj.

3.2 Proof of Corollary 3.2

Immediate from Theorem 3.1 and the requirement that m,(s;) < m(sy)

3.3 Proof of Lemma 3.3

The mean value theorem gives that
F e+ si) = flar) + sk Vaf (@r) + 35k Vaa () sk
for some ¢, in the segment [z, xy + si]. Thus

|f(zr + sk) — mi(sg)| = LlstH(E)sk — st Brsk| < L|st H(E)sk| + 1|st Brsk|
< Lmn + ) |lskll? < raAj,

using the triangle and Cauchy-Schwarz inequalities.

3.4 Proof of Lemma 3.4
By definition,
1+ || Bkl < kn + Kb,

and hence for any radius satisfying the given (first) bound,

A, < Mol gl
~ kp+ Ry 14| B

As a consequence, Corollary 3.2 gives that

[ llgwll
fi= (o) > gl min | 2 A = HlaclAx. (36
But then Lemma 3.3 and the assumed (second) bound on the radius gives that
f(:Ek + Sk) — mk(sk) /%dA% 2k AL
pr— 1] = <2 =2 <1—mn,. 3.7
e P T I e ATy P R >0

Therefore, pr, > 1, and the iteration is very successful.



3.5 Proof of Lemma 3.5

Suppose otherwise that Ay can become arbitrarily small. In particular, assume that iteration k
is the first such that
Ak+1 S Ke. (38)

Then since the radius for the previous iteration must have been larger, the iteration was unsuc-
cessful, and thus v4A; < Agy1. Hence

1 1-— 1-—
7 ( m)) < ”ngmin( 7 ( m))
Kh + Kp 2Kq Kp + Ky 2K

A < emin <
But this contradicts the assertion of Lemma 3.4 that the k-th iteration must be very successful.

3.6 Proof of Lemma 3.6

The mechanism of the algorithm ensures that z, = xp 11 = Tg,4; for all 7 > 0, where kg is the
index of the last successful iterate. Moreover, since all iterations are unsuccessful for sufficiently
large k, the sequence {A} converges to zero. If ||gx,+1]| > 0, Lemma 3.4 then implies that there
must be a successful iteration of index larger than kg, which is impossible. Hence ||gi,+1]| = 0.

3.7 Proof of Theorem 3.7

Lemma 3.6 shows that the result is true when there are only a finite number of successful it-
erations. So it remains to consider the case where there are an infinite number of successful
iterations. Let S be the index set of successful iterations. Now suppose that

gkl = € (3.9)

for some ¢ > 0 and all k, and consider a successful iteration of index k. The fact that k is
successful, Corollary 3.2, Lemma 3.5, and the assumption (3.9) give that

Q.
-

€

Tr = fre1 = sl fe — mi(se)] = 0 = %nsemin[

el - 3.10
1+/€b’/€:| ( )

Summing now over all successful iterations from 0 to k, it follows that

k

fo = frsr =Y _[fi — fin1] = owbe,

where o is the number of successful iterations up to iteration k. But since there are infinitely
many such iterations, it must be that

lim o = +00.
k—oo

Thus (3.9) can only be true if f;;1 is unbounded from below, and conversely, if fxy1 is bounded
from below, (3.9) must be false, and there is a subsequence of the ||gx|| converging to zero.



3.8 Proof of Theorem 3.8

Suppose otherwise that fi is bounded from below, and that there is a subsequence of successful
iterates, indexed by {t;} C S, such that

llge, || > 2¢ >0 (3.11)

for some € > 0 and for all . Theorem 3.7 ensures the existence, for each t;, of a first successful
iteration ¢; > t; such that ||gs,|| < e. That is to say that there is another subsequence of S
indexed by {¢;} such that

llgrl] > € for t; <k < ¥¢; and |ge]| <e. (3.12)

We now restrict our attention to the subsequence of successful iterations whose indices are in the
set

ICdéf{kES]tigk<£i},
where ¢; and ¢; belong to the two subsequences defined above.

The subsequences {¢;}, {¢;} and K are all illustrated in Figure 3.1, where, for simplicity, it is
assumed that all iterations are successful. In this figure, we have marked position j in each of the
subsequences represented in abscissa when j belongs to that subsequence. Note in this example
that ¢y = 1 = by = l3 = €4 = €5 = 8, which we indicated by arrows from ty =0, t1 = 1, to = 2,
ts=3,t4=4and t5 =7 to k=9, and so on.
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Figure 3.1: The subsequences of the proof of Theorem 3.8

As in the previous proof, it immediately follows that
) €
o= o 2 nlf — ()] = dneemin |- Ay (3.13)
+ Kp
holds for all k € K because of (3.12). Hence, since {fj} is, by assumption, bounded from below,
the left-hand side of (3.13) must tend to zero when k tends to infinity, and thus that

k—oo

ke




As a consequence, the second term dominates in the minimum of (3.13) and it follows that, for
k € K sufficiently large,

A < %[fk — fr1l-

We then deduce from this bound that, for i sufficiently large,
li—1 l;—1

iz 2
e, — el < Y Nl — 2yl < YAy < J[fti — fo,]- (3.14)
. . s
jek jek

But, because {f;} is monotonic and, by assumption, bounded from below, the right-hand side
of (3.14) must converge to zero. Thus ||z, — xy,|| tends to zero as i tends to infinity, and hence,
by continuity, ||g:, — ge,|| also tend to zero. However this is impossible because of the definitions
of {t;} and {/;}, which imply that ||g;, — ge,|| > €. Hence, no subsequence satisfying (3.11) can
exist.

3.9 Proof of Theorem 3.9
The constraint [|s]|2 < A is equivalent to

1A? — 1sTs > 0. (3.15)
Applying Theorem 1.9 to the problem of minimizing ¢(s) subject to (3.15) gives

g+ Bs. = — A5 (3.16)

for some Lagrange multiplier A\, > 0 for which either A\, = 0 or ||s«|[[2 = A (or both). It remains
to show that B + A, is positive semi-definite.

If s, lies in the interior of the trust-region, necessarily A, = 0, and Theorem 1.10 implies
that B + A\.] = B must be positive semi-definite. Likewise if ||s.|l2 = A and A\, = 0, it follows
from Theorem 1.10 that necessarily vZ' Bv > 0 for all v € Ny = {v|slv > 0}. If v ¢ N, then
—v € Ny, and thus v Bv > 0 for all v. Thus the only outstanding case is where |[s.[2 = A and
A« > 0. In this case, Theorem 1.10 shows that v” (B + A\, J)v > 0 for all v € Ny = {v|slv = 0},
so it remains to consider v7 Bv when sZv # 0.

Let s be any point on the boundary of the trust-region, and let w = s — s,. Then

T

—w' Sy = (S — s)T

55 = 1(5% — 8) (84 — 5) = LwTw (3.17)

since ||s||2 = A = ||s«]|2. Combining this with (3.16) gives
q(s) — q(s+) = w’ (g + Bs,) + tw? Bw = M\’ s, + tw? Bw = Lw” (B + \.1)w, (3.18)
and thus necessarily w! (B + A\.I)w > 0 since s, is a global minimizer. It is easy to show that

sty

S =8, — 2 v

vy
lies on the trust-region boundary, and thus for this s, w is parallel to v from which it follows that
vT(B + M\ I)v > 0.

When B + \,[ is positive definite, s, = —(B + A\, I)~!g. If this point is on the trust-region

Tw and

boundary, while s is any value in the trust-region, (3.17) and (3.18) become —w7's, > Lw
q(s) > q(s.) + twT (B + A\ I)w respectively. Hence, q(s) > q(s.) for any s # s,. If s, is interior,

A« = 0, B is positive definite, and thus s, is the unique unconstrained minimizer of ¢(s).



N

Figure 3.2: Construction of “missing” directions of positive curvature.

3.10 Newton’s method for the secular equation
Recall that the Newton correction at A is —¢(\)/¢'()). Since

1 1 1
i POV A (sT(\)s(\)F

=
| =

it follows, on differentiating, that

¢, A)=— 3
W (sT(N)s(A))2

sT(A)Vas(A) _ST()\)V)\S()\)
| .
In addition, on differentiating the defining equation

(B+ M)s(\) = —g,

it must be that
(B+ M)V s(A) + s(N\) =0.

Notice that, rather than the value of Vs()), merely the numerator
sT(NVas(A) = —sT (A (B + XD (N) 7 Ls(N)

is required in the expression for ¢’()\). Given the factorization B + AI = L(A\)LT (), the simple
relationship

sTNB +ANT's(A) = sTNLTTNLT N)s(A) = (L7 N)s(A) (L THN)s(V) = [lw(N)]3

where L(A)w(\) = s(\) then justifies the Newton step.



3.11 Proof of Theorem 3.10

We first show that

i = 192 (3.19)
lg713"

for all 0 < j <1 < k. For any 4, (3.19) is trivially true for j = i. Suppose it is also true for all
i <. Then, the update for d'*! gives

+1/12
[

l
ditl — _gl+1 + lg

d.
llg*113

Forming the inner product with d’, and using the fact that d/ T¢!*t =0 for all j = 0,...,1, and
(3.19) when j = [, reveals

) ) [+11|2 ) +1112 11,012 ) +112
dl—i—l Td] — _ 1 Td] + ||g l |2|2 LT 35 _ ||g l |2|2 ||g||3 Hd]H% _ Hg . !2||d]||§ > 0.
19113 1112 {197 112 19712

Thus (3.19) is true for i <1+ 1, and hence for all 0 < j <1 < k.
We now have from the algorithm that

i—1 i—1

st=s"+ Zajdj = Zajdj
§=0 §=0
as, by assumption, s = 0. Hence
$STd = Za]d] Tg = Za]d] Tagi >0 (3.20)
§=0 §=0

as each o/ > 0, which follows from the definition of o, since &/ "Hd? > 0, and from relationship
(3.19). Hence
|siH]2 = sitl Tgitl = (g _|_aidi)T (s' + aid)
= 5iTsi + 20 Td + i 2di Tdi > siTsi = 512

follows directly from (3.20) and o’ > 0 which is the required result.

3.12 Proof of Theorem 3.11

The proof is elementary but rather complicated. See

Y. Yuan, “On the truncated conjugate-gradient method”, Math. Programming, 87
(2000) 561:573

for full details.



