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3 Sketches of proofs for Part 3

3.1 Proof of Theorem 3.1

Firstly note that, for all α ≥ 0,

mk(−αgk) = fk − α‖gk‖
2 + 1

2
α2gT

k Bkgk. (3.1)

If gk is zero, the result is immediate. So suppose otherwise. In this case, there are three possibil-

ities:

(i) the curvature gT
k Bkgk is not strictly positive; in this case mk(−αgk) is unbounded from below

as α increases, and hence the Cauchy point occurs on the trust-region boundary.

(ii) the curvature gT
k Bkgk > 0 and the minimizer of mk(−αgk) occurs at or beyond the trust-

region boundary; once again, the the Cauchy point occurs on the trust-region boundary.

(iii) the curvature gT
k Bkgk > 0 and the minimizer of mk(−αgk), and hence the Cauchy point,

occurs before the trust-region is reached.

We consider each case in turn;

Case (i). In this case, since gT
k Bkgk ≤ 0, (3.1) gives

mk(−αgk) = fk − α‖gk‖
2 + 1

2
α2gT

k Bkgk ≤ fk − α‖gk‖
2 (3.2)

for all α ≥ 0. Since the Cauchy point lies on the boundary of the trust region

αC

k =
∆k

‖gk‖
. (3.3)

Substituting this value into (3.2) gives

fk − mk(s
C

k) ≥ ‖gk‖
2 ∆k

‖gk‖
= ‖gk‖∆k ≥ 1

2
‖gk‖∆k (3.4)

Case (ii). In this case, let α∗
k be the unique minimizer of (3.1); elementary calculus reveals that

α∗
k =

‖gk‖
2

gT
k Bkgk

. (3.5)
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Since this minimizer lies on or beyond the trust-region boundary (3.3) and (3.5) together imply

that

αC

kgT
k Bkgk ≤ ‖gk‖

2.

Substituting this last inequality in (3.1), and using (3.3), it follows that

fk − mk(s
C

k ) = αC

k‖gk‖
2 − 1

2
[αC

k ]2gT
k Bkgk ≥ 1

2
αC

k‖gk‖
2 = 1

2
‖gk‖

2 ∆k

‖gk‖
= 1

2
‖gk‖∆k.

Case (iii). In this case, αC

k = α∗
k, and (3.1) becomes

fk − mk(s
C

k ) =
‖gk‖

4

gT
k Bkgk

− 1

2

‖gk‖
4

gT
k Bkgk

= 1

2

‖gk‖
4

gT
k Bkgk

≥ 1

2

‖gk‖
2

1 + ‖Bk‖
,

where

|gT
k Bkgk| ≤ ‖gk‖

2‖Bk‖ ≤ ‖gk‖
2(1 + ‖Bk‖)

because of the Cauchy-Schwarz inequality.

The result follows since it is true in each of the above three possible cases. Note that the

“1+” is only needed to cover case where Bk = 0, and that in this case, the “min” in the theorem

might actually be replaced by ∆k.

3.2 Proof of Corollary 3.2

Immediate from Theorem 3.1 and the requirement that mk(sk) ≤ mk(s
C

k)

3.3 Proof of Lemma 3.3

The mean value theorem gives that

f(xk + sk) = f(xk) + sT
k ∇xf(xk) + 1

2
sT
k ∇xxf(ξk)sk

for some ξk in the segment [xk, xk + sk]. Thus

|f(xk + sk) − mk(sk)| = 1

2
|sT

k H(ξk)sk − sT
k Bksk| ≤ 1

2
|sT

k H(ξk)sk| + 1

2
|sT

k Bksk|

≤ 1

2
(κh + κb)‖sk‖

2 ≤ κd∆
2
k

using the triangle and Cauchy-Schwarz inequalities.

3.4 Proof of Lemma 3.4

By definition,

1 + ‖Bk‖ ≤ κh + κb,

and hence for any radius satisfying the given (first) bound,

∆k ≤
‖gk‖

κh + κb

≤
‖gk‖

1 + ‖Bk‖
.

As a consequence, Corollary 3.2 gives that

fk − mk(sk) ≥ 1

2
‖gk‖min

[

‖gk‖

1 + ‖Bk‖
,∆k

]

= 1

2
‖gk‖∆k. (3.6)

But then Lemma 3.3 and the assumed (second) bound on the radius gives that

|ρk − 1| =

∣

∣

∣

∣

f(xk + sk) − mk(sk)

fk − mk(sk)

∣

∣

∣

∣

≤ 2
κd∆

2
k

‖gk‖∆k

= 2
2κd∆k

‖gk‖
≤ 1 − ηv. (3.7)

Therefore, ρk ≥ ηv and the iteration is very successful.
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3.5 Proof of Lemma 3.5

Suppose otherwise that ∆k can become arbitrarily small. In particular, assume that iteration k

is the first such that

∆k+1 ≤ κε. (3.8)

Then since the radius for the previous iteration must have been larger, the iteration was unsuc-

cessful, and thus γd∆k ≤ ∆k+1. Hence

∆k ≤ εmin

(

1

κh + κb

,
(1 − ηv)

2κd

)

≤ ‖gk‖min

(

1

κh + κb

,
(1 − ηv)

2κd

)

But this contradicts the assertion of Lemma 3.4 that the k-th iteration must be very successful.

3.6 Proof of Lemma 3.6

The mechanism of the algorithm ensures that x∗ = xk0+1 = xk0+j for all j > 0, where k0 is the

index of the last successful iterate. Moreover, since all iterations are unsuccessful for sufficiently

large k, the sequence {∆k} converges to zero. If ‖gk0+1‖ > 0, Lemma 3.4 then implies that there

must be a successful iteration of index larger than k0, which is impossible. Hence ‖gk0+1‖ = 0.

3.7 Proof of Theorem 3.7

Lemma 3.6 shows that the result is true when there are only a finite number of successful it-

erations. So it remains to consider the case where there are an infinite number of successful

iterations. Let S be the index set of successful iterations. Now suppose that

‖gk‖ ≥ ε (3.9)

for some ε > 0 and all k, and consider a successful iteration of index k. The fact that k is

successful, Corollary 3.2, Lemma 3.5, and the assumption (3.9) give that

fk − fk+1 ≥ ηs[fk − mk(sk)] ≥ δε
def
= 1

2
ηsεmin

[

ε

1 + κb

, κε

]

. (3.10)

Summing now over all successful iterations from 0 to k, it follows that

f0 − fk+1 =
k

∑

j=0

j∈S

[fj − fj+1] ≥ σkδε,

where σk is the number of successful iterations up to iteration k. But since there are infinitely

many such iterations, it must be that

lim
k→∞

σk = +∞.

Thus (3.9) can only be true if fk+1 is unbounded from below, and conversely, if fk+1 is bounded

from below, (3.9) must be false, and there is a subsequence of the ‖gk‖ converging to zero.
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3.8 Proof of Theorem 3.8

Suppose otherwise that fk is bounded from below, and that there is a subsequence of successful

iterates, indexed by {ti} ⊆ S, such that

‖gti‖ ≥ 2ε > 0 (3.11)

for some ε > 0 and for all i. Theorem 3.7 ensures the existence, for each ti, of a first successful

iteration `i > ti such that ‖g`i
‖ < ε. That is to say that there is another subsequence of S

indexed by {`i} such that

‖gk‖ ≥ ε for ti ≤ k < `i and ‖g`i
‖ < ε. (3.12)

We now restrict our attention to the subsequence of successful iterations whose indices are in the

set

K
def
= {k ∈ S | ti ≤ k < `i},

where ti and `i belong to the two subsequences defined above.

The subsequences {ti}, {`i} and K are all illustrated in Figure 3.1, where, for simplicity, it is

assumed that all iterations are successful. In this figure, we have marked position j in each of the

subsequences represented in abscissa when j belongs to that subsequence. Note in this example

that `0 = `1 = `2 = `3 = `4 = `5 = 8, which we indicated by arrows from t0 = 0, t1 = 1, t2 = 2,

t3 = 3, t4 = 4 and t5 = 7 to k = 9, and so on.
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Figure 3.1: The subsequences of the proof of Theorem 3.8

As in the previous proof, it immediately follows that

fk − fk+1 ≥ ηs[fk − mk(sk)] ≥ 1

2
ηsεmin

[

ε

1 + κb

,∆k

]

(3.13)

holds for all k ∈ K because of (3.12). Hence, since {fk} is, by assumption, bounded from below,

the left-hand side of (3.13) must tend to zero when k tends to infinity, and thus that

lim
k→∞

k∈K

∆k = 0.
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As a consequence, the second term dominates in the minimum of (3.13) and it follows that, for

k ∈ K sufficiently large,

∆k ≤
2

εηs

[fk − fk+1].

We then deduce from this bound that, for i sufficiently large,

‖xti − x`i
‖ ≤

`i−1
∑

j=ti
j∈K

‖xj − xj+1‖ ≤
`i−1
∑

j=ti
j∈K

∆j ≤
2

εηs

[fti − f`i
]. (3.14)

But, because {fk} is monotonic and, by assumption, bounded from below, the right-hand side

of (3.14) must converge to zero. Thus ‖xti − x`i
‖ tends to zero as i tends to infinity, and hence,

by continuity, ‖gti − g`i
‖ also tend to zero. However this is impossible because of the definitions

of {ti} and {`i}, which imply that ‖gti − g`i
‖ ≥ ε. Hence, no subsequence satisfying (3.11) can

exist.

3.9 Proof of Theorem 3.9

The constraint ‖s‖2 ≤ ∆ is equivalent to

1

2
∆2 − 1

2
sT s ≥ 0. (3.15)

Applying Theorem 1.9 to the problem of minimizing q(s) subject to (3.15) gives

g + Bs∗ = −λ∗s∗ (3.16)

for some Lagrange multiplier λ∗ ≥ 0 for which either λ∗ = 0 or ‖s∗‖2 = ∆ (or both). It remains

to show that B + λ∗I is positive semi-definite.

If s∗ lies in the interior of the trust-region, necessarily λ∗ = 0, and Theorem 1.10 implies

that B + λ∗I = B must be positive semi-definite. Likewise if ‖s∗‖2 = ∆ and λ∗ = 0, it follows

from Theorem 1.10 that necessarily vT Bv ≥ 0 for all v ∈ N+ = {v|sT
∗ v ≥ 0}. If v /∈ N+, then

−v ∈ N+, and thus vT Bv ≥ 0 for all v. Thus the only outstanding case is where ‖s∗‖2 = ∆ and

λ∗ > 0. In this case, Theorem 1.10 shows that vT (B + λ∗I)v ≥ 0 for all v ∈ N+ = {v|sT
∗ v = 0},

so it remains to consider vT Bv when sT
∗ v 6= 0.

Let s be any point on the boundary of the trust-region, and let w = s − s∗. Then

−wT s∗ = (s∗ − s)T s∗ = 1

2
(s∗ − s)T (s∗ − s) = 1

2
wT w (3.17)

since ‖s‖2 = ∆ = ‖s∗‖2. Combining this with (3.16) gives

q(s) − q(s∗) = wT (g + Bs∗) + 1

2
wT Bw = −λ∗w

T s∗ + 1

2
wT Bw = 1

2
wT (B + λ∗I)w, (3.18)

and thus necessarily wT (B + λ∗I)w ≥ 0 since s∗ is a global minimizer. It is easy to show that

s = s∗ − 2
sT
∗ v

vT v
v

lies on the trust-region boundary, and thus for this s, w is parallel to v from which it follows that

vT (B + λ∗I)v ≥ 0.

When B + λ∗I is positive definite, s∗ = −(B + λ∗I)−1g. If this point is on the trust-region

boundary, while s is any value in the trust-region, (3.17) and (3.18) become −wT s∗ ≥ 1

2
wT w and

q(s) ≥ q(s∗) + 1

2
wT (B + λ∗I)w respectively. Hence, q(s) > q(s∗) for any s 6= s∗. If s∗ is interior,

λ∗ = 0, B is positive definite, and thus s∗ is the unique unconstrained minimizer of q(s).
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Figure 3.2: Construction of “missing” directions of positive curvature.

3.10 Newton’s method for the secular equation

Recall that the Newton correction at λ is −φ(λ)/φ′(λ). Since

φ(λ) =
1

‖s(λ)‖2

−
1

∆
=

1

(sT (λ)s(λ))
1

2

−
1

∆
,

it follows, on differentiating, that

φ′(λ) = −
sT (λ)∇λs(λ)

(sT (λ)s(λ))
3

2

= −
sT (λ)∇λs(λ)

‖s(λ)‖3
2

.

In addition, on differentiating the defining equation

(B + λI)s(λ) = −g,

it must be that

(B + λI)∇λs(λ) + s(λ) = 0.

Notice that, rather than the value of ∇λs(λ), merely the numerator

sT (λ)∇λs(λ) = −sT (λ)(B + λI)(λ)−1s(λ)

is required in the expression for φ′(λ). Given the factorization B + λI = L(λ)LT (λ), the simple

relationship

sT (λ)(B + λI)−1s(λ) = sT (λ)L−T (λ)L−1(λ)s(λ) = (L−1(λ)s(λ))T (L−1(λ)s(λ)) = ‖w(λ)‖2
2

where L(λ)w(λ) = s(λ) then justifies the Newton step.
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3.11 Proof of Theorem 3.10

We first show that

di T dj =
‖gi‖2

2

‖gj‖2
2

‖dj‖2
2 > 0 (3.19)

for all 0 ≤ j ≤ i ≤ k. For any i, (3.19) is trivially true for j = i. Suppose it is also true for all

i ≤ l. Then, the update for dl+1 gives

dl+1 = −gl+1 +
‖gl+1‖2

2

‖gl‖2
2

dl.

Forming the inner product with dj , and using the fact that dj T gl+1 = 0 for all j = 0, . . . , l, and

(3.19) when j = l, reveals

dl+1 T dj = −gl+1 T dj +
‖gl+1‖2

2

‖gl‖2
2

dl T dj =
‖gl+1‖2

2

‖gl‖2
2

‖gl‖2
2

‖gj‖2
2

‖dj‖2
2 =

‖gl+1‖2
2

‖gj‖2
2

‖dj‖2
2 > 0.

Thus (3.19) is true for i ≤ l + 1, and hence for all 0 ≤ j ≤ i ≤ k.

We now have from the algorithm that

si = s0 +
i−1
∑

j=0

αjdj =
i−1
∑

j=0

αjdj

as, by assumption, s0 = 0. Hence

si T di =
i−1
∑

j=0

αjdj T di =
i−1
∑

j=0

αjdj T di > 0 (3.20)

as each αj > 0, which follows from the definition of αj , since dj T Hdj > 0, and from relationship

(3.19). Hence

‖si+1‖2
2 = si+1 T si+1 =

(

si + αidi
)T (

si + αidi
)

= si T si + 2αisi T di + αi 2di T di > si T si = ‖si‖2
2

follows directly from (3.20) and αi > 0 which is the required result.

3.12 Proof of Theorem 3.11

The proof is elementary but rather complicated. See

Y. Yuan, “On the truncated conjugate-gradient method”, Math. Programming, 87

(2000) 561:573

for full details.
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