Notes for Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization

Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk)

January 31, 2006

5 Sketches of proofs for Part 5

5.1 Proof of Theorem 5.1

Denote the left generalized inverse of $A^{T}(x)$ by

$$A^{+}(x) = (A(x)A^{T}(x))^{-1}A(x)$$

at any point for which A(x) is full rank. Since, by assumption, $A(x_*)$ is full rank, these generalized inverses exists, and are bounded and continuous in some open neighbourhood of x_* .

Now let

$$y_k = -\frac{c(x_k)}{\mu_k}$$

as well as

$$y_* = A^+(x_*)g(x_*).$$

It then follows from the inner-iteration termination test

$$||g(x_k) - A^T(x_k)y_k|| \le \epsilon_k \tag{5.1}$$

and the continuity of $A^+(x_k)$ that

$$||A^{+}(x_k)g(x_k) - y_k||_2 = ||A^{+}(x_k)\left(g(x_k) - A^{T}(x_k)y_k\right)||_2 \le 2||A^{+}(x_*)||_2 \epsilon_k.$$

Then

$$||y_k - y_*||_2 \le ||A^+(x_*)g(x_*) - A^+(x_k)g(x_k)||_2 + ||A^+(x_k)g(x_k) - y_k||_2$$

which implies that $\{y_k\}$ converges to y_* . In addition, continuity of the gradients and (5.1) implies that

$$g(x_*) - A^T(x_*)y_* = 0,$$

while the fact that $c(x_k) = -\mu_k y_k$ with bounded y_k implies that

$$c(x_*) = 0.$$

Hence (x_*, y_*) satisfies the first-order optimality conditions.

5.2 Proof of Theorem 5.2

The proof of convergence of y_k to $y_* \stackrel{\text{def}}{=} A^+(x_*)g(x_*)$ for which $g(x_*) = A^T(x_*)y_*$ is exactly as for Theorem 5.1. For the second part of the theorem, the definition of y_k and the triangle inequality gives

$$||c(x_k)|| = \mu_k ||u_k - y_k|| \le \mu_k ||y_k - y_*|| + \mu_k ||u_k - y_*||.$$

the first term on the right-hand side converges to zero as y_k approaches y_* with bounded μ_k , while the second term has the same limit because of the assumptions made. Hence $c(x_*) = 0$, and (x_*, y_*) satisfies the first-order optimality conditions.