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5 Sketches of proofs for Part 5

5.1 Proof of Theorem 5.1

Denote the left generalized inverse of AT (z) by
-1
At(z) = (A@)AT (@) A2)

at any point for which A(z) is full rank. Since, by assumption, A(x,) is full rank, these generalized
inverses exists, and are bounded and continuous in some open neighbourhood of z,.

Now let
c(zy)

HEk

Y = —

as well as
g = A*(2.)g(.).

It then follows from the inner-iteration termination test
lg(zr) — AT (z1)yel| < ex (5.1)
and the continuity of AT (zy) that
1A% (@)g() = will = A+ @) (9@) — AT @y |, < 204% @) e

Then
lye — Yulla < AT (2)g(2,) — AT (23)9(xp) o + 1A (1) 9(21) — il

which implies that {yx} converges to y.. In addition, continuity of the gradients and (5.1) implies
that

g(ws) — AT(x*)y* =0,

while the fact that c¢(zy) = —puryr with bounded yj implies that
c(xy) =0.

Hence (z+,ys) satisfies the first-order optimality conditions.



5.2 Proof of Theorem 5.2

The proof of convergence of y to ys 4ef At (2,)g(zs) for which g(x.) = AT (z.)y. is exactly as for
Theorem 5.1. For the second part of the theorem, the definition of y; and the triangle inequality
gives

le(@)ll = pellue — yrll < prllye — vl + pellue — yel|.
the first term on the right-hand side converges to zero as y; approaches y, with bounded puy,

while the second term has the same limit because of the assumptions made. Hence ¢(x,) = 0,
and (x,,y.) satisfies the first-order optimality conditions.



