Part 0: A gentle introduction to nonlinear optimization

Nick Gould (RAL)

minimize f(x) subject to $c_{\mathcal{E}}(x) = 0$ and $c_{\mathcal{I}}(x) \ge 0$ $x \in \mathbb{R}^n$

Part C course on continuoue optimization

AN EXAMPLE

Optimization of a high-pressure gas network

Transco
National
Transmission
System

British Gas (Transco) Oxford University B A I

WHAT IS NONLINEAR PROGRAMMING?

Nonlinear optimization \equiv nonlinear programming

minimize f(x) subject to $c_{\mathcal{E}}(x) = 0$ and $c_{\mathcal{I}}(x) \ge 0$

where

objective function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

constraints $c_{\mathcal{E}}: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_e} \ (m_e \leq n)$ and $c_{\mathcal{I}}: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_i}$

 \odot there may also be integrality restrictions

NODE EQUATIONS

$$q_1 + q_2 - q_3 - d_1 = 0$$
where q_i flows
 d_i demands
 q_3

 q_2

In general: Aq - d = 0· linear
· sparse
· structured

PIPE EQUATIONS

$$p_2^2 - p_1^2 + k_1 q_1^{2.8359} = 0$$

where p_i pressures q_i flows k_i constants

In general:
$$A^T p^2 + K q^{2.8359} = 0$$

- · non-linear
- \cdot sparse
- \cdot structured

OTHER CONSTRAINTS

Bounds on pressures and flows

$$p_{\min} \le p \le p_{\max}$$

 $q_{\min} \le q \le q_{\max}$

simple bounds on variables

COMPRESSOR CONSTRAINTS

$$q_1 - q_2 + z_1 \cdot c_1(p_1, q_1, p_2, q_2) = 0$$

where p_i pressures

 q_i flows

 z_i 0–1 variables

= 1 if machine is on

In general:
$$A_2^T q + z \cdot c(p,q) = 0$$

- · non-linear
- · sparse
- $\cdot 0$ -1 variables \cdot structured

c_i nonlinear functions

OBJECTIVES

Many possible objectives

- \odot maximize / minimize sum of pressures
- minimize compressor fuel costs
- minimize supply
- + combinations of these

STATISTICS

British Gas National Transmission System

- 199 nodes
- \circ 196 pipes
- 21 machines

Steady state problem

 $\sim 400 \text{ variables}$

24-hour variable demand problem with 10 minute discretization $\sim 58,000$ variables

Challenge: Solve this in real time

(SOME) OTHER APPLICATION AREAS

- minimum energy problems
- gas production models
- hydro-electric power scheduling
- o structural design problems
- portfolio selection
- o parameter determination in financial markets
- production scheduling problems
- \circ computer tomography (image reconstruction)
- \odot efficient models of alternative energy sources
- traffic equilibrium models

TYPICAL PROBLEM

This problem is typical of real-world, large-scale applications

- simple bounds
- linear constraints
- nonlinear constraints
- o structure
- ⊙ global solution "required"
- o integer variables
- discretization

CLASSIFICATION OF OPTIMIZATION PROBLEMS

