Part 0: A gentle introduction to nonlinear optimization

Nick Gould (RAL)

minimize f(x) subject to $c_{\mathcal{E}}(x) = 0$ and $c_{\mathcal{I}}(x) \ge 0$ $x \in \mathbb{R}^n$

Part C course on continuoue optimization

WHAT IS NONLINEAR PROGRAMMING?

Nonlinear optimization = nonlinear programming

minimize
$$f(x)$$
 subject to $c_{\mathcal{E}}(x) = 0$ and $c_{\mathcal{I}}(x) \ge 0$

where

objective function
$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

constraints
$$c_{\mathcal{E}}: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_e} \ (m_e \leq n)$$
 and $c_{\mathcal{I}}: \mathbb{R}^n \longrightarrow \mathbb{R}^{m_i}$

• there may also be integrality restrictions

AN EXAMPLE

Optimization of a high-pressure gas network

Transco National Transmission System

British Gas (Transco) Oxford University RAL

NODE EQUATIONS

PIPE EQUATIONS

$$p_2^2 - p_1^2 + k_1 q_1^{2.8359} = 0$$

where p_i pressures q_i flows k_i constants

In general:
$$A^T p^2 + Kq^{2.8359} = 0$$

- · non-linear
- · sparse
- · structured

COMPRESSOR CONSTRAINTS

$$q_1 - q_2 + z_1 \cdot c_1(p_1, q_1, p_2, q_2) = 0$$

where p_i pressures q_i flows

 z_i 0–1 variables

= 1 if machine is on

 c_i nonlinear functions

In general: $A_2^T q + z \cdot c(p, q) = 0$

- · non-linear
- · sparse
- · structured
- · 0–1 variables

OTHER CONSTRAINTS

Bounds on pressures and flows

$$p_{\min} \le p \le p_{\max}$$
 $q_{\min} \le q \le q_{\max}$

• simple bounds on variables

OBJECTIVES

Many possible objectives

- maximize / minimize sum of pressures
- minimize compressor fuel costs
- ⊙ minimize supply
- + combinations of these

STATISTICS

British Gas National Transmission System

- \circ 199 nodes
- \circ 196 pipes
- ⊙ 21 machines

Steady state problem ~ 400 variables

24-hour variable demand problem with 10 minute discretization \sim 58,000 variables

Challenge: Solve this in real time

TYPICAL PROBLEM

This problem is typical of real-world, large-scale applications

- simple bounds
- ⊙ linear constraints
- \odot nonlinear constraints
- o structure
- global solution "required"
- \circ integer variables
- discretization

(SOME) OTHER APPLICATION AREAS

- o minimum energy problems
- gas production models
- hydro-electric power scheduling
- o structural design problems
- portfolio selection
- o parameter determination in financial markets
- \circ production scheduling problems
- o computer tomography (image reconstruction)
- efficient models of alternative energy sources
- traffic equilibrium models

CLASSIFICATION OF OPTIMIZATION PROBLEMS

DISCRETE (COMBINATORIAL)

x takes discrete (integer) values

PROGR-AMMING

LINEAR

Enumeration - sometimes trivial often HARD

CONTINUOUS

x takes any values

Calculus Taylor's theorem