
Part 1: Optimality conditions

and why they are important
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c(x) ≥ 0, g(x) + AT (x)y = 0, y ≥ 0

Part C course on continuoue optimization

OPTIMIZATION PROBLEMS

Unconstrained minimization:

minimize
x∈IRn

f(x)

where the objective function f : IRn −→ IR

Equality constrained minimization:

minimize
x∈IRn

f(x) subject to c(x) = 0

where the constraints c : IRn −→ IRm (m ≤ n)

Inequality constrained minimization:

minimize
x∈IRn

f(x) subject to c(x) ≥ 0

where c : IRn −→ IRm (m may be larger than n)



NOTATION

Use the following throughout the course:

g(x)
def
= ∇xf(x) gradient of f

H(x)
def
= ∇xxf(x) Hessian matrix of f

ai(x)
def
= ∇xci(x) gradient of ith constraint

Hi(x)
def
= ∇xxci(x) Hessian of ith constraint

A(x)
def
= ∇xc(x) ≡







aT
1 (x)

· · ·

aT
m(x)






Jacobian matrix of c

`(x, y)
def
= f(x) − yTc(x) Lagrangian function, where

y are Lagrange multipliers

H(x, y)
def
= ∇xx`(x, y) ≡ Hessian of the Lagrangian

H(x) −
m
∑

i=1

yiHi(x)

LIPSCHITZ CONTINUITY

� X and Y open sets

� F : X → Y

� ‖ · ‖X and ‖ · ‖Y are norms

Then

� F is Lipschitz continuous at x ∈ X if ∃ γ(x) such that

‖F (z) − F (x)‖Y ≤ γ(x)‖z − x‖X

for all z ∈ X .

� F is Lipschitz continuous throughout/in X if ∃ γ such that

‖F (z) − F (x)‖Y ≤ γ‖z − x‖X

for all x and z ∈ X .



USEFUL TAYLOR APPROXIMATIONS

Theorem 1.1. Let S be an open subset of IRn, and suppose

f : S → IR is continuously differentiable throughout S . Suppose

further that g(x) is Lipschitz continuous at x, with Lipschitz con-

stant γL(x) in some appropriate vector norm. Then, if the segment

x + θs ∈ S for all θ ∈ [0, 1],

|f(x + s) − mL(x + s)| ≤ 1
2γ

L(x)‖s‖2, where

mL(x + s) = f(x) + g(x)Ts.

If f is twice continuously differentiable throughout S and H(x) is

Lipschitz continuous at x, with Lipschitz constant γQ(x),

|f(x + s) − mQ(x + s)| ≤ 1
6γ

Q(x)‖s‖3, where

mQ(x + s) = f(x) + g(x)Ts + 1
2s

TH(x)s.

MEAN VALUE THEOREM

Theorem 1.2. Let S be an open subset of IRn, and suppose f :

S → IR is twice continuously differentiable throughout S . Suppose

further that s 6= 0, and that the interval [x, x + s] ∈ S . Then

f(x + s) = f(x) + g(x)Ts + 1
2s

TH(z)s

for some z ∈ (x, x + s).



ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.3. Let S be an open subset of IRn, and suppose F :

S → IRm is continuously differentiable throughout S . Suppose

further that ∇xF (x) is Lipschitz continuous at x, with Lipschitz

constant γL(x) in some appropriate vector norm and its induced

matrix norm. Then, if the segment x + θs ∈ S for all θ ∈ [0, 1],

‖F (x + s) − ML(x + s)‖ ≤ 1
2γ

L(x)‖s‖2,

where

ML(x + s) = F (x) + ∇xF (x)s.

OPTIMALITY CONDITIONS

Optimality conditions are useful because:

� they provide a means of guaranteeing that a

candidate solution is indeed optimal

(sufficient conditions), and

� they indicate when a point is not optimal

(necessary conditions)

Furthermore they

� guide in the design of algorithms, since

lack of optimality ⇐⇒indication of improvement



UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.4. Suppose that f ∈ C1, and that x∗ is a local mini-

mizer of f(x). Then

g(x∗) = 0.

Second-order necessary optimality:

Theorem 1.5. Suppose that f ∈ C2, and that x∗ is a local mini-

mizer of f(x). Then g(x∗) = 0 and H(x∗) is positive semi-definite,

that is

sTH(x∗)s ≥ 0 for all s ∈ IRn.

PROOF OF THEOREM 1.4

Suppose otherwise, that g(x∗) 6= 0.

Taylor expansion in the direction −g(x∗) gives

f(x∗ − αg(x∗)) = f(x∗) − α‖g(x∗)‖
2 + O(α2).

For sufficiently small α, 1
2α‖g(x∗)‖2 ≥ O(α2), and thus

f(x∗ − αg(x∗)) ≤ f(x∗) − 1
2α‖g(x∗)‖

2 < f(x∗).

This contradicts the hypothesis that x∗ is a local minimizer.



PROOF OF THEOREM 1.5

Suppose otherwise that sTH(x∗)s < 0.

Taylor expansion in the direction s gives

f(x∗ + αs) = f(x∗) + 1
2α

2sTH(x∗)s + O(α3),

since g(x∗) = 0. For sufficiently small α, −1
4α

2sTH(x∗)s ≥ O(α3),

and thus

f(x∗ + αs) ≤ f(x∗) + 1
4α

2sTH(x∗)s < f(x∗).

This contradicts the hypothesis that x∗ is a local minimizer.

UNCONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.6. Suppose that f ∈ C2, that x∗ satisfies the con-

dition g(x∗) = 0, and that additionally H(x∗) is positive definite,

that is

sTH(x∗)s > 0 for all s 6= 0 ∈ IRn.

Then x∗ is an isolated local minimizer of f .



PROOF OF THEOREM 1.6

Continuity =⇒ H(x) positive definite ∀x in open ball N around x∗.

x∗+s ∈ N + generalized mean value theorem =⇒ ∃z between x∗ and

x∗ + s for which

f(x∗ + s) = f(x∗) + g(x∗)
Ts + 1

2s
TH(z)s

= f(x∗) + 1
2s

TH(z)s

> f(x∗)

∀s 6= 0 =⇒ x∗ is an isolated local minimizer.

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.7. Suppose that f, c ∈ C1, and that x∗ is a local

minimizer of f(x) subject to c(x) = 0. Then, so long as a first-

order constraint qualification holds, there exist a vector of Lagrange

multipliers y∗ such that

c(x∗) = 0 (primal feasibility) and

g(x∗) − AT (x∗)y∗ = 0 (dual feasibility).



PROOF OF THEOREM 1.7

Constraint qualification =⇒ ∃ vector valued C2 (C3 for Theorem 1.8)

function x(α) of the scalar α for which

x(0) = x∗ and c(x(α)) = 0

and

x(α) = x∗ + αs + 1
2α

2p + O(α3)

+ Taylor’s theorem =⇒

0 = ci(x(α)) = c(x∗ + αs + 1
2α

2p + O(α3))

= ci(x∗) + aT
i (x∗)

(

αs + 1
2α

2p
)

+ 1
2α

2sTHi(x∗)s + O(α3)

= αaT
i (x∗)s + 1

2α
2
(

aT
i (x∗)p + sTHi(x∗)s

)

+ O(α3)

Matching similar asymptotic terms =⇒

A(x∗)s = 0 (1)

and

aT
i (x∗)p + sTHi(x∗)s = 0 ∀i = 1, . . . , m (2)

Now consider objective function

f(x(α)) = f(x∗ + αs + 1
2α

2p + O(α3))

= f(x∗) + g(x∗)
T
(

αs + 1
2α

2p
)

+ 1
2α

2sTH(x∗)s + O(α3)

= f(x∗) + αg(x∗)
Ts + 1

2α
2
(

g(x∗)
Tp + sTH(x∗)s

)

+ O(α3)
(3)

f(x) unconstrained along x(α) =⇒

sTg(x∗)
T = 0 for all s such that A(x∗)s = 0. (4)

Let S be a basis for null space of A(x∗) =⇒

g(x∗) = AT (x∗)y∗ + Sz∗ (5)

for some y∗ and z∗. (4) =⇒ gT (x∗)S = 0 + A(x∗)S = 0 =⇒

0 = STg(x∗) = STAT (x∗)y∗ + STSz∗ = STSz∗.

=⇒ STSz∗ = 0 + S full rank =⇒ z∗ = 0 + (5) =⇒

g(x∗) − AT (x∗)y∗ = 0.



EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.8. Suppose that f, c ∈ C2, and that x∗ is a local

minimizer of f(x) subject to c(x) = 0. Then, provided that first-

and second-order constraint qualifications hold, there exist a vector

of Lagrange multipliers y∗ such that

sTH(x∗, y∗)s ≥ 0 for all s ∈ N

where

N = {s ∈ IRn | A(x∗)s = 0} .

PROOF OF THEOREM 1.8

g(x∗) − AT (x∗)y∗ = 0. (6)

while (3) =⇒

f(x(α)) = f(x∗) + 1
2α

2
(

pTg(x∗) + sTH(x∗)s
)

+ O(α3) (7)

for all s and p satisfying A(x∗)s = 0 and

aT
i (x∗)p + sTHi(x∗)s = 0 ∀i = 1, . . . ,m. (8)

Hence, necessarily,
pTg(x∗) + sTH(x∗)s ≥ 0 (9)

But (6) + (8) =⇒
pTg(x∗) =

m
∑

i=1

(y∗)ip
Tai(x∗) = −

m
∑

i=1

(y∗)is
THi(x∗)s

=⇒ (9) is equivalent to

sT

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s ≡ sTH(x∗, y∗)s ≥ 0

for all s satisfying A(x∗)s = 0.



LINEAR INEQUALITIES — FARKAS’ LEMMA

Fundamental theorem of linear inequalities

Farkas’ lemma. Given any vectors g and ai, i ∈ A, the set

S = {s | gTs < 0 and ai
Ts ≥ 0 for i ∈ A}

is empty if and only if

g ∈ C =

{

∑

i∈A

yiai | yi ≥ 0 for all i ∈ A

}

.

FARKAS’ LEMMA (cont.)

C
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a2 a3
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C
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cutting plane

Left: g /∈ C =⇒ separated from {ai}i∈A by the hyperplane sTv = 0

Right: g ∈ C



PROOF OF FARKAS’ LEMMA

• trivial if C = 0.

• otherwise, if g ∈ C & sTai ≥ 0 for i ∈ A

=⇒ sTg =
∑

i∈A

yis
Tai ≥ 0 =⇒ S = ∅

• otherwise, g /∈ C. Consider any c̄ ∈ C and

min
c∈C

‖g − c‖2 = min
c∈C̄

‖g − c‖2,

where

C̄ = C
⋂

{c | ‖g − c‖2 ≤ ‖g − c̄‖2}.

C closed (obvious but non-trivial!) & {c | ‖g − c‖2 ≤ ‖g − c̄‖2}

compact =⇒ C̄ non-empty and compact =⇒ (Weierstrass) ∃

c∗ = arg min
c∈C

‖g − c‖2

0, c∗ ∈ convex C =⇒ αc∗ ∈ C ∀ α ≥ 0 =⇒ φ(α) = ‖g − αc∗‖2
2

minimized at α = 1 =⇒ φ′(1) = 0 =⇒

c∗
T (c∗ − g) = 0. (10)

c ∈ convex C =⇒ c∗&c∗ + θ(c− c∗) ∈ C ∀ θ ∈ [0, 1]. Optimality of c∗
=⇒

‖g − c∗‖
2
2 ≤ ‖g − c∗ + θ(c∗ − c)‖2

2.

Expanding and taking the limit as θ → 0 & (10) =⇒

0 ≤ (g − c∗)
T (c∗ − c) = (c∗ − g)Tc.

Defining s = c∗ − g =⇒ sTc ≥ 0 ∀ c ∈ C =⇒

sTai ≥ 0 ∀ i ∈ A.

Also c∗ ∈ C & g /∈ C =⇒ s 6= 0 & (10) =⇒

sTg = −sTs < 0

=⇒ s ∈ S .



INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.9. Suppose that f, c ∈ C1, and that x∗ is a local

minimizer of f(x) subject to c(x) ≥ 0. Then, provided that a first-

order constraint qualification holds, there exist a vector of Lagrange

multipliers y∗ such that

c(x∗) ≥ 0 (primal feasibility),

g(x∗) − AT (x∗)y∗ = 0

and y∗ ≥ 0
(dual feasibility) and

ci(x∗)[y∗]i = 0 (complementary slackness).

Often known as the Karush-Kuhn-Tucker (KKT) conditions

PROOF OF THEOREM 1.9

Consider feasible perturbations about x∗. ci(x∗) > 0 =⇒ ci(x) > 0

for small perturbations =⇒ need only consider perturbations that are

constrained by ci(x) ≥ 0 for i ∈ A
def
= {i : ci(x∗) = 0}.

Consider x(α): x(0) = x∗, ci(x(α)) ≥ 0 for i ∈ A and

x(α) = x∗ + αs + 1
2α

2p + O(α3)

=⇒

0 ≤ ci(x(α)) = c(x∗ + αs + 1
2α

2p + O(α3))

= ci(x∗) + ai(x∗)
Tαs + 1

2α
2p + 1

2α
2sTHi(x∗)s + O(α3)

= αai(x∗)
Ts + 1

2α
2
(

ai(x∗)
Tp + sTHi(x∗)s

)

+ O(α3)

∀i ∈ A =⇒

sTai(x∗) ≥ 0 ∀i ∈ A (11)

and

pTai(x∗) + sTHi(x∗)s ≥ 0 when sTai(x∗) = 0 ∀i ∈ A (12)



Expansion (3) of f(x(α))

f(x(α)) = f(x∗) + αg(x∗)
Ts + 1

2α
2
(

g(x∗)
Tp + sTH(x∗)s

)

+ O(α3)

=⇒ x∗ can only be a local minimizer if

S = {s | sTg(x∗) < 0 and sTai(x∗) ≥ 0 for i ∈ A} = ∅.

Result then follows directly from Farkas’ lemma.

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.10. Suppose that f, c ∈ C2, and that x∗ is a local

minimizer of f(x) subject to c(x) ≥ 0. Then, provided that first-

and second-order constraint qualifications hold, there exist a vec-

tor of Lagrange multipliers y∗ for which primal/dual feasibility and

complementary slackness requirements hold as well as

sTH(x∗, y∗)s ≥ 0 for all s ∈ N+

where

N+ =

{

s ∈ IRn

∣

∣

∣

∣

∣

sTai(x∗) = 0 if ci(x∗) = 0 & [y∗]i > 0 &

sTai(x∗) ≥ 0 if ci(x∗) = 0 & [y∗]i = 0

}

.



PROOF OF THEOREM 1.10

Expansion

f(x(α)) = f(x∗) + αg(x∗)
Ts + 1

2α
2
(

g(x∗)
Tp + sTH(x∗)s

)

+ O(α3)

for change in objective function dominated by αsTg(x∗) for feasible

perturbations unless sTg(x∗) = 0, in which case the expansion

f(x(α)) = f(x∗) + 1
2α

2
(

pTg(x∗) + sTH(x∗)s
)

+ O(α3)

is relevant =⇒

pTg(x∗) + sTH(x∗)s ≥ 0 (13)

holds for all feasible s for which sTg(x∗) = 0 =⇒

0 = sTg(x∗) =
∑

i∈A

(y∗)is
Tai(x∗) =⇒ either (y∗)i = 0 or ai(x∗)

Ts = 0.

=⇒ second-order feasible perturbations characterised by s ∈ N+.

Focus on subset of all feasible arcs that ensure ci(x(α)) = 0 if (y∗)i > 0

and ci(x(α)) ≥ 0 if (y∗)i = 0 for i ∈ A =⇒ s ∈ N+.

When ci(x(α)) = 0 =⇒

aT
i (x∗)p + sTHi(x∗)s = 0

=⇒

pTg(x∗) =
∑

i∈A

(y∗)ip
Tai(x∗) =

∑

i∈A
(y∗)i>0

(y∗)ip
Tai(x∗)

= −
∑

i∈A
(y∗)i>0

(y∗)is
THi(x∗)s = −

∑

i∈A

(y∗)is
THi(x∗)s

+ (13) =⇒ sTH(x∗, y∗)s ≡ sT

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s

= pTg(x∗) + sTH(x∗)s ≥ 0.

for all s ∈ N+



INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.11. Suppose that f, c ∈ C2, that x∗ and a vector of

Lagrange multipliers y∗ satisfy

c(x∗) ≥ 0, g(x∗) − AT (x∗)y∗ = 0, y∗ ≥ 0, and ci(x∗)[y∗]i = 0

and that

sTH(x∗, y∗)s > 0

for all s in the set

N+ =

{

s ∈ IRn

∣

∣

∣

∣

∣

sTai(x∗) = 0 if ci(x∗) = 0 & [y∗]i > 0 &

sTai(x∗) ≥ 0 if ci(x∗) = 0 & [y∗]i = 0.

}

.

Then x∗ is an isolated local minimizer of f(x) subject to c(x) ≥ 0.

PROOF OF THEOREM 1.11

Consider any feasible arc x(α). Already shown

sTai(x∗) ≥ 0 ∀i ∈ A (14)
and

pTai(x∗) + sTHi(x∗)s ≥ 0 when sTai(x∗) = 0 ∀i ∈ A (15)

and that second-order feasible perturbations are characterized by N+.

(15) =⇒ pTg(x∗) =
∑

i∈A

(y∗)ip
Tai(x∗) =

∑

i∈A
sTai(x∗)=0

(y∗)ip
Tai(x∗)

≥ −
∑

i∈A
sTai(x∗)=0

(y∗)is
THi(x∗)s = −

∑

i∈A

(y∗)is
THi(x∗)s,

and hence by assumption that

pTg(x∗) + sTH(x∗)s ≥ sT

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s

≡ sTH(x∗, y∗)s > 0

∀s ∈ N+ + (3) + (14) =⇒ f(x(α)) > f(x∗) ∀ sufficiently small α.


