Part 1: Optimality conditions
and why they are important

Nick Gould (RAL)

c(z) >0, g(x)+ Al (z)y=0, y>0

Part C course on continuoue optimization

NOTATION

Use the following throughout the course:

glz) V. f(x) gradient of f
H(z) Vi f(2) Hessian matrix of f
a;(x) o V.ci(x) gradient of ith constraint
Hi(x) dof VeaCi() Hessian of ith constraint
af (z)
A(z) « Vae(z) = . Jacobian matrix of ¢
ay,(x)
Uz, y) o f(z) —yTe(z) Lagrangian function, where
y are Lagrange multipliers
H(z,y) o Vi l(z,y) = Hessian of the Lagrangian

OPTIMIZATION PROBLEMS

Unconstrained minimization:

minimize f(z)
z€IR"

where the objective function f : IR" — IR

Equality constrained minimization:

minimize f(x) subject to ¢(z) =0
reR"

where the constraints ¢ : IR" — IR™ (m < n)

Inequality constrained minimization:

minimize f(z) subject to c¢(z) >0
r€IR"

where ¢ : IR" — IR™ (m may be larger than n)

LIPSCHITZ CONTINUITY

® X and ) open sets
o F: X —=Y

© ||+ |lx and || - ||y are norms

Then
® F'is Lipschitz continuous at z € X if 3 y(z) such that
1F(z) = Fla)lly < v(@)lz — |
forall z € X.

© F'is Lipschitz continuous throughout/in X if 3 7 such that

[F(2) = F(z)lly <Allz — 2|«
forall z and 2 € X.



USEFUL TAYLOR APPROXIMATIONS

Theorem 1.1. Let S be an open subset of IR", and suppose
f S — IR is continuously differentiable throughout S. Suppose
further that g(z) is Lipschitz continuous at z, with Lipschitz con-
stant v*(x) in some appropriate vector norm. Then, if the segment
x+0s e Sforallde0,1],
|[f (@ +5) —=m"(@ + )| < 37" (@)]s]%, where
mE(z+s) = f(z) + glz)’s.

If f is twice continuously differentiable throughout S and H(z) is
Lipschitz continuous at z, with Lipschitz constant v9(x),

|f(z+s) —m%(x + )] < 1y%)|s]|”, where
mP(z + 5) = f(x) + mm&vﬂm + 15T H(x)s.

ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.3. Let S be an open subset of IR", and suppose F :
S — IR™ is continuously differentiable throughout S. Suppose
further that V,F(z) is Lipschitz continuous at x, with Lipschitz
constant v%(z) in some appropriate vector norm and its induced
matrix norm. Then, if the segment x + 0s € S for all § € [0, 1],

1F(x +5) = Mz + )| < 47" ()lls[,

where
Mz +s) = F(z) + V,F(z)s.

MEAN VALUE THEOREM

Theorem 1.2. Let S be an open subset of IR", and suppose f :
S — IR is twice continuously differentiable throughout S. Suppose
further that s # 0, and that the interval [z, z + s] € S. Then

flx+s)=f(z)+ m@vﬂm +1sTH(2)s

for some z € (z,x + s).

OPTIMALITY CONDITIONS

Optimality conditions are useful because:

© they provide a means of guaranteeing that a
candidate solution is indeed optimal
(sufficient conditions), and

® they indicate when a point is not optimal
(necessary conditions)

Furthermore they

© guide in the design of algorithms, since
lack of optimality <=-indication of improvement



UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.4. Suppose that f € C!, and that x, is a local mini-
mizer of f(x). Then
g(z.) = 0.

Second-order necessary optimality:

Theorem 1.5. Suppose that f € C?, and that x, is a local mini-
mizer of f(x). Then g(x.) = 0 and H(z,) is positive semi-definite,
that is

s'H(z,)s >0 forall s € IR"

PROOF OF THEOREM 1.5
Suppose otherwise that s” H (x,)s < 0.
Taylor expansion in the direction s gives

flz. +as) = f(x,) + 1a’s"H(z,)s + O(a?),

since g(x,) = 0. For sufficiently small o, —1a?s"H(z,)s > O(a?),
and thus

f@e+as) < flz,) +1a?s" H(z,)s < f(x.).

This contradicts the hypothesis that x, is a local minimizer.

PROOF OF THEOREM 1.4
Suppose otherwise, that g(z.) # 0.
Taylor expansion in the direction —g(x,) gives

flaw = ag(a)) = f(z.) - allg(z.)|* + O(a?).
For sufficiently small o, a|g(x.)|*> > O(a?), and thus

flae = ag(ay) < flz.) = jallgl@)? < fla).

This contradicts the hypothesis that x, is a local minimizer.

UNCONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.6. Suppose that f € C? that x, satisfies the con-
dition g(z,) = 0, and that additionally H(z,) is positive definite,
that is

s"H(z.)s >0 forall s#0¢cIR"

Then z, is an isolated local minimizer of f.




PROOF OF THEOREM 1.6
Continuity = H(z) positive definite Y in open ball A around ..

z,+5 € N + generalized mean value theorem = 3z between z, and
., + s for which

flaa+s) = flz.) +gla)s +§s"H(z)s
= f(x,) +1sTH(2)s
> flx)

Vs # (0 = x, is an isolated local minimizer.

PROOF OF THEOREM 1.7
Constraint qualification = 3 vector valued C? (C? for Theorem 1.8)
function z(«) of the scalar « for which
z(0) =z, and c(z(a)) =0
and
z(a) =z, + as + ta’p + O(a?)

+ Taylor’s theorem =—>

0 = ¢i(z(a) = c(z. + as + La’p + O(a?))
ci(zy) + al (z.) (as + a®p) + Ja?s"Hy(z,)s + O(a?)
= aal (z,)s + 1o? (al (z)p + s Hy(z,)s) + O(a?)

Matching similar asymptotic terms =
Alzy)s =0 (1)

and
al(z)p+ s Hi(x,)s =0 Vi=1,...,m (2)

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.7. Suppose that f, ¢ € C!, and that z, is a local
minimizer of f(z) subject to ¢(x) = 0. Then, so long as a first-
order constraint qualification holds, there exist a vector of Lagrange
multipliers y, such that

(primal feasibility) and
(dual feasibility).

c(xy) =
g(z.) — AT (2. )y, =

Now consider objective function

fla(@)) = fla.+as+ia’p+0(a?))

fls) + glza)” (as + 1a?p) + 3a?s"H(z.)s + O(a?)

= f(z.) + ag(z.)'s + 302 (g(z.)'p+ s"H(z.)s) + O(a?)

(3)

f(x) unconstrained along z(a) =
sTg(z,)T =0 forall s such that A(z,)s = 0. 4)
Let S be a basis for null space of A(z,) =
g(z.) = AT(z.)ys + Sz ()
for some y, and z,. (4) = ¢ (2.)S =0+ A(x,)S =0 =
0=5"g(x,) = STA (2,)y. + ST Sz, = STSz,.
= STSz, =0+ S full tank = 2z, =0 + (5) =
gl.) = A(2,)y. = 0.




EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.8. Suppose that f, ¢ € C?, and that z, is a local
minimizer of f(z) subject to ¢(z) = 0. Then, provided that first-
and second-order constraint qualifications hold, there exist a vector
of Lagrange multipliers y, such that

sTH(z,,y.)s >0 forall s € N/

where

N ={seR"| A(z,)s = 0}.

LINEAR INEQUALITIES — FARKAS’ LEMMA

Fundamental theorem of linear inequalities

Farkas’ lemma. Given any vectors ¢ and a;, 1 € A, the set
S={s]g's<0 and a;'s >0 for i € A}

is empty if and only if

gEC =1 yia; | yi >0 forall ic A
€A

PROOF OF THEOREM 1.8
gla.) — AT(z.)y. = 0. (6)
while (3) =
fla(a)) = f(w) +ha® (P g(w,) + s"H(z)s) + Oa®)  (7)
for all s and p satistying A(z.)s = 0 and

al(z.)p+s"H(z,)s =0 Yi=1,...,m. (8)
Hence, necessarily, Do) + T H(z)s > 0 (9)
T

pyle.) = .Mu@*v%ﬂs@*v == .Mu@@%e@gvm
= (9) is o@:?m_mbmﬂu -

sT{ H(x,) — MSUA@*YEAEV s=s' H(x,, y:)s >0
for all s satisfying \»A&MH =0.

FARKAS’ LEMMA (cont.)

Left: g ¢ C = separated from {a;}ic4 by the hyperplane s"v = 0
Right: g€ C



PROOF OF FARKAS’ LEMMA
e trivial if C = 0.
e otherwise, if g € C & sTa; > 0 fori € A
= mﬂmHM@EﬂSWoHv S=10
i€A
e otherwise, g ¢ C. Consider any ¢ € C and
min [|g —¢fly = min [lg — |5,
ceC ceC

where
c=c(lel llg—cls < llg —el}-

C closed (obvious but non-triviall) & {c¢ | |lg — ¢|l2 < |lg — €ll2}

compact = (' non-empty and compact = (Weierstrass) 3

¢, = arg min ||g — ¢||2
ceC

INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.9. Suppose that f, ¢ € C!, and that z, is a local
minimizer of f(x) subject to ¢(x) > 0. Then, provided that a first-
order constraint qualification holds, there exist a vector of Lagrange
multipliers g, such that

¢(z,) > 0 (primal feasibility),
g(z:) = AT(z)y. =0

ond 4, > 0 (dual feasibility) and

¢i(z4)[y«)i = 0 (complementary slackness).

Often known as the Karush-Kuhn-Tucker (KKT) conditions

0,c. € convex C = ac, € CV a > 0= ¢(a) = |lg — ac3
minimized at « =1 = ¢'(1) =0 =
e.l(e, —g)=0. (10)
¢ € convex C = ¢, &, +0(c—c.) € CV 0 € [0,1]. Optimality of ¢,
—
lg = edll3 < lg — e + bes — I3
Expanding and taking the limit as § — 0 & (10) =
0<(g—c) (. —¢) = (. —g)c.
Defining s = ¢, — g = e>0VeelC =
sta; >0Vie A.
Alsoc, €C& g C = s#0& (10) =
mﬂm =—sl's<0

— s€8.

PROOF OF THEOREM 1.9

Consider feasible perturbations about z.. ¢(z.) > 0= ¢;(z) > 0
for small perturbations = need only consider perturbations that are
constrained by ¢;(z) > 0fori € A L ¢i(xy) = 0}.

Consider z(a): z(0) = @, ¢;(x(a)) > 0 for ¢ € A and

r(a) =z, + as + a’p + O(a?)

.
0 < ci(z()) = clz. + as + sap + O(a?))
= ci(z) + ai(x) s + Ja?p + 1asT Hy(x.)s + O(a?)
= aa;(z,)" s + o2 A@Aa*vﬂﬁ + mﬂm&@*vmv +0(a?)
Vie A=
sTaiz,) >0 Vie A (11)
and

plag(z,) + s Hy(z,)s > 0 when s’ai(z,) =0 Vi€ A (12)



Expansion (3) of f(z(«))
fla(a) = flz.) + ag(z.)"s + 4a® (g(z.)"p+ T H(z.)s) + O(a)
= x, can only be a local minimizer if
S=1{s|s"g(x.) <0 and s"a;(x,) >0 for i € A} = 0.

Result then follows directly from Farkas’ lemma.

PROOF OF THEOREM 1.10
Expansion

fla(@)) = flz.) +ag(z.)"s +3a” (9(z) p+ s H(w.)s) + O(a?)

for change in objective function dominated by as”g(z,) for feasible
perturbations unless s” g(z,) = 0, in which case the expansion

fa(a)) = fz.) +10” (pTg(x.) + 5" H(z,)s) + O(a?)
is relevant =
plg(z,) + s H(z,)s >0 (13)
holds for all feasible s for which mﬂm@*v =0 =

=s'g(x,) = M@L%ﬂ@%&b — cither (y,); = 0 or a;(z,)"s = 0.
icA
= second-order feasible perturbations characterised by s € N/,.

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.10. Suppose that f, ¢ € C?, and that z, is a local
minimizer of f(z) subject to ¢(x) > 0. Then, provided that first-
and second-order constraint qualifications hold, there exist a vec-
tor of Lagrange multipliers y, for which primal/dual feasibility and
complementary slackness requirements hold as well as

sTH(x,,y.)s >0 forall s € N,

where

o | sTai(z) =0ifci(z,) =0 & [ya]; > 0 &
Ne=qselr sTai(z.) > 0if ¢;(x,) =0 & [y.)i = 0

Focus on subset of all feasible arcs that ensure ¢;(z(a)) = 0if (y.); > 0
and ¢;(z(a)) > 0if (y.); =0fori € A = s € N|.
When ¢;(z(a)) =0 =

al (x)p + s"Hy(z,)s =0

—
plg(x.) = M@L%ﬂ@%&*v = M (y)ipTai(z.)
icA icA
(y4)i>0
- MU (y)is" Hiw.)s = IM@LEHEQ*K
€A €A
(y+)i>0

F03) = STH@aps= o (He) - b)) o
i1
plg(x,) +sTH(z,)s > 0.

for all s € N,



INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.11. Suppose that f, ¢ € C?, that x, and a vector of
Lagrange multipliers y, satisfy

c(zy) >0, g(xy,) — \»QAHL@* =0,y >0, and c¢;(x.)[ysi =0

and that
sTH(y,1.)s > 0

for all s in the set

T,. =0if ¢ _ .
N, =dscIR mqms@?v 0if ¢i(z.) =0 & FLS. M m.%

stai(x,) > 0if ¢;(zy) = 0 & [y

Then z, is an isolated local minimizer of f(z) subject to ¢(x) > 0.

PROOF OF THEOREM 1.11
Consider any feasible arc x(«). Already shown

sTaiz,) >0 Vie A (14)
and

plai(x,) + s"Hy(x,)s > 0 when s’ai(z,) =0 Vie A (15)

and that second-order feasible perturbations are characterized by A..

(15) = plgle) = D () alz) =Y (g ai(z.)

€A €A
sTa;(x.)=0
> IMUA@LN.%@@L% = IMUA@LN@&F.@L&
icA icA
sTa;(x.)=0
and hence by assumption that m

plg(e) +s"H(z)s = o' | H(z.) = Y (y)iHix.) | s
= sTH(x.,y.)s Wum
Vs e Ni + (3) + (14) = f(z(a)) > f(x.) V sufficiently small c.



