Part 1: Optimality conditions and why they are important

Nick Gould (RAL)

$$c(x) \ge 0$$
, $g(x) + A^T(x)y = 0$, $y \ge 0$

Part C course on continuoue optimization

OPTIMIZATION PROBLEMS

Unconstrained minimization:

$$\text{minimize } f(x) \\
 x \in \mathbb{R}^n$$

where the objective function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

Equality constrained minimization:

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

where the **constraints** $c : \mathbb{R}^n \longrightarrow \mathbb{R}^m \ (m \le n)$

Inequality constrained minimization:

minimize
$$f(x)$$
 subject to $c(x) \ge 0$
 $x \in \mathbb{R}^n$

where $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ (m may be larger than n)

NOTATION

Use the following throughout the course:

$$g(x) \stackrel{\mathrm{def}}{=} \nabla_x f(x)$$
 gr
 $H(x) \stackrel{\mathrm{def}}{=} \nabla_x f(x)$ H_0
 $a_i(x) \stackrel{\mathrm{def}}{=} \nabla_x c_i(x)$ gr
 $H_i(x) \stackrel{\mathrm{def}}{=} \nabla_x c(x) \equiv \begin{pmatrix} a_1^T(x) \\ \cdots \\ a_m(x) \end{pmatrix}$ H_0
 $\ell(x,y) \stackrel{\mathrm{def}}{=} f(x) - y^T c(x)$ L_{ϵ}

 $\mathbf{gradient} \ \mathrm{of} \ f$

Hessian matrix of f

gradient of ith constraint

Hessian of ith constraint

Jacobian matrix of c

Lagrangian function, where y are Lagrange multipliers
Hessian of the Lagrangian

 $H(x,y) \stackrel{\mathrm{def}}{=}$

 $\nabla_{xx}\ell(x,y) \equiv$

 $H(x) - \sum_{i=1} y_i H_i(x)$

LIPSCHITZ CONTINUITY

- \odot $\mathcal X$ and $\mathcal Y$ open sets
- \circ $F: \mathcal{X} \to \mathcal{Y}$
- $\circ \|\cdot\|_{\mathcal{X}}$ and $\|\cdot\|_{\mathcal{Y}}$ are norms

Then

o F is Lipschitz continuous at $x \in \mathcal{X}$ if $\exists \gamma(x)$ such that

$$||F(z) - F(x)||_{\mathcal{Y}} \le \gamma(x)||z - x||_{\mathcal{X}}$$

for all $z \in \mathcal{X}$.

F is Lipschitz continuous throughout/in \mathcal{X} if $\exists \gamma$ such that

$$||F(z) - F(x)||_{\mathcal{Y}} \le \gamma ||z - x||_{\mathcal{X}}$$

for all x and $z \in \mathcal{X}$.

USEFUL TAYLOR APPROXIMATIONS

 $x + \theta s \in \mathcal{S} \text{ for all } \theta \in [0, 1],$ stant $\gamma^{L}(x)$ in some appropriate vector norm. Then, if the segment further that g(x) is Lipschitz continuous at x, with Lipschitz con-**Theorem 1.1.** Let S be an open subset of \mathbb{R}^n , and suppose $f:\mathcal{S}
ightarrow \mathrm{IR}$ is continuously differentiable throughout \mathcal{S} . Suppose

$$|f(x+s) - m^L(x+s)| \le \frac{1}{2}\gamma^L(x)||s||^2$$
, where $m^L(x+s) = f(x) + g(x)^T s$.

If f is twice continuously differentiable throughout S and H(x) is Lipschitz continuous at x, with Lipschitz constant $\gamma^{\vee}(x)$,

$$|f(x+s) - m^{Q}(x+s)| \le \frac{1}{6}\gamma^{Q}(x)||s||^{3}$$
, where $m^{Q}(x+s) = f(x) + g(x)^{T}s + \frac{1}{2}s^{T}H(x)s$.

MEAN VALUE THEOREM

further that $s \neq 0$, and that the interval $[x, x + s] \in \mathcal{S}$. Then $\mathcal{S} \to \mathrm{IR}$ is twice continuously differentiable throughout \mathcal{S} . Suppose **Theorem 1.2.** Let S be an open subset of \mathbb{R}^n , and suppose f:

$$f(x+s) = f(x) + g(x)^T s + \frac{1}{2}s^T H(z)s$$

for some $z \in (x, x + s)$.

ANOTHER USEFUL TAYLOR APPROXIMATION

 $\mathcal{S} \to \mathbb{R}^m$ is continuously differentiable throughout \mathcal{S} . Suppose matrix norm. Then, if the segment $x + \theta s \in \mathcal{S}$ for all $\theta \in [0, 1]$, constant $\gamma^{L}(x)$ in some appropriate vector norm and its induced further that $\nabla_x F(x)$ is Lipschitz continuous at x, with Lipschitz **Theorem 1.3.** Let S be an open subset of \mathbb{R}^n , and suppose F:

$$||F(x+s) - M^L(x+s)|| \le \frac{1}{2} \gamma^L(x) ||s||^2,$$

where

$$M^{L}(x+s) = F(x) + \nabla_{x}F(x)s.$$

OPTIMALITY CONDITIONS

Optimality conditions are useful because:

- they provide a means of guaranteeing that a candidate solution is indeed optimal (sufficient conditions), and
- they indicate when a point is not optimal (necessary conditions)

Furthermore they

guide in the design of algorithms, since lack of optimality \iff indication of improvement

UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

mizer of f(x). Then **Theorem 1.4.** Suppose that $f \in C^1$, and that x_* is a local mini-

$$g(x_*) = 0.$$

Second-order necessary optimality:

mizer of f(x). Then $g(x_*) = 0$ and $H(x_*)$ is positive semi-definite. that is **Theorem 1.5.** Suppose that $f \in \mathbb{C}^2$, and that x_* is a local mini $s^T H(x_*) s \ge 0$ for all $s \in \mathbb{R}^n$.

Suppose otherwise, that $g(x_*) \neq 0$.

Taylor expansion in the direction $-g(x_*)$ gives

$$f(x_* - \alpha g(x_*)) = f(x_*) - \alpha ||g(x_*)||^2 + O(\alpha^2).$$

For sufficiently small α , $\frac{1}{2}\alpha ||g(x_*)||^2 \ge O(\alpha^2)$, and thus

$$f(x_* - \alpha g(x_*)) \le f(x_*) - \frac{1}{2}\alpha ||g(x_*)||^2 < f(x_*).$$

This contradicts the hypothesis that x_* is a local minimizer.

Suppose otherwise that $s^T H(x_*) s < 0$.

Taylor expansion in the direction s gives

$$f(x_* + \alpha s) = f(x_*) + \frac{1}{2}\alpha^2 s^T H(x_*) s + O(\alpha^3),$$

and thus since $g(x_*) = 0$. For sufficiently small α , $-\frac{1}{4}\alpha^2 s^T H(x_*) s \geq O(\alpha^3)$,

$$f(x_* + \alpha s) \le f(x_*) + \frac{1}{4}\alpha^2 s^T H(x_*) s < f(x_*).$$

This contradicts the hypothesis that x_* is a local minimizer.

UNCONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

that is dition $g(x_*) = 0$, and that additionally $H(x_*)$ is positive definite, **Theorem 1.6.** Suppose that $f \in C^2$, that x_* satisfies the con-

 $s^T H(x_*) s > 0$ for all $s \neq 0 \in \mathbb{R}^n$.

Then x_* is an isolated local minimizer of f.

Continuity $\Longrightarrow H(x)$ positive definite $\forall x$ in open ball \mathcal{N} around x_* .

 $x_* + s$ for which $x_* + s \in \mathcal{N} + \text{generalized mean value theorem} \Longrightarrow \exists z \text{ between } x_* \text{ and}$

$$f(x_* + s) = f(x_*) + g(x_*)^T s + \frac{1}{2} s^T H(z) s$$

= $f(x_*) + \frac{1}{2} s^T H(z) s$
> $f(x_*)$

 $\forall s \neq 0 \Longrightarrow x_*$ is an isolated local minimizer.

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

multipliers y_* such that order constraint qualification holds, there exist a vector of Lagrange minimizer of f(x) subject to c(x) = 0. Then, so long as a first-**Theorem 1.7.** Suppose that $f, c \in C^1$, and that x_* is a local

$$c(x_*)=0$$
 (primal feasibility) and $g(x_*)-A^T(x_*)y_*=0$ (dual feasibility).

function $x(\alpha)$ of the scalar α for which Constraint qualification \implies 3 vector valued C^2 (C^3 for Theorem 1.8)

$$x(0) = x_* \text{ and } c(x(\alpha)) = 0$$

and

$$x(\alpha) = x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3)$$

+ Taylor's theorem \Longrightarrow

$$0 = c_i(x(\alpha)) = c(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3))$$

= $c_i(x_*) + a_i^T(x_*) \left(\alpha s + \frac{1}{2}\alpha^2 p\right) + \frac{1}{2}\alpha^2 s^T H_i(x_*) s + O(\alpha^3)$
= $\alpha a_i^T(x_*) s + \frac{1}{2}\alpha^2 \left(a_i^T(x_*) p + s^T H_i(x_*) s\right) + O(\alpha^3)$

Matching similar asymptotic terms \Longrightarrow

$$A(x_*)s = 0 \tag{1}$$

and

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0 \quad \forall i = 1, \dots, m$$
 (2)

Now consider objective function

$$f(x(\alpha)) = f(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3))$$

$$= f(x_*) + g(x_*)^T \left(\alpha s + \frac{1}{2}\alpha^2 p\right) + \frac{1}{2}\alpha^2 s^T H(x_*) s + O(\alpha^3)$$

$$= f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*) s\right) + O(\alpha^3)$$
(3)

f(x) unconstrained along $x(\alpha) \Longrightarrow$

$$s^T g(x_*)^T = 0$$
 for all s such that $A(x_*)s = 0$.

4

Let S be a basis for null space of $A(x_*) \Longrightarrow$

$$g(x_*) = A^T(x_*)y_* + Sz_* (5$$

for some y_* and z_* . (4) $\Longrightarrow g^T(x_*)S = 0 + A(x_*)S = 0 \Longrightarrow$ $0 = S^T g(x_*) = S^T A^T (x_*) y_* + S^T S z_* = S^T S z_*.$

$$\implies S^T S z_* = 0 + S \text{ full rank} \implies z_* = 0 + (5) \Longrightarrow$$
$$g(x_*) - A^T(x_*) y_* = 0.$$

EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

of Lagrange multipliers y_* such that and second-order constraint qualifications hold, there exist a vector minimizer of f(x) subject to c(x) = 0. Then, provided that first-**Theorem 1.8.** Suppose that $f, c \in \mathbb{C}^2$, and that x_* is a local

$$s^T H(x_*, y_*) s \ge 0$$
 for all $s \in \mathcal{N}$

where

$$\mathcal{N} = \left\{ s \in \mathbb{R}^n \mid A(x_*)s = 0 \right\}.$$

$$g(x_*) - A^T(x_*)y_* = 0. (6)$$

while $(3) \Longrightarrow$

$$f(x(\alpha)) = f(x_*) + \frac{1}{2}\alpha^2 \left(p^T g(x_*) + s^T H(x_*) s \right) + O(\alpha^3)$$
 (

for all s and p satisfying $A(x_*)s = 0$ and

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0 \ \ \forall i = 1, ..., m.$$

 ∞

Hence, necessarily,
$$p^T g(x_*) + s^T H(x_*) s \ge 0$$

But (6) + (8)
$$\Longrightarrow m$$

 $p^T g(x_*) = \sum_{i=1}^m (y_*)_i p^T a_i(x_*) = -\sum_{i=1}^m (y_*)_i s^T H_i(x_*) s$

 \implies (9) is equivalent to

$$s^{T} \left(H(x_{*}) - \sum_{i=1}^{m} (y_{*})_{i} H_{i}(x_{*}) \right) s \equiv s^{T} H(x_{*}, y_{*}) s \ge 0$$

for all s satisfying $A(x_*)s = 0$.

LINEAR INEQUALITIES — FARKAS' LEMMA

Fundamental theorem of linear inequalities

Farkas' lemma. Given any vectors g and a_i , $i \in \mathcal{A}$, the set

$$S = \{s \mid g^T s < 0 \text{ and } a_i^T s \ge 0 \text{ for } i \in A\}$$

is empty if and only if

$$g \in C = \left\{ \sum_{i \in \mathcal{A}} y_i a_i \mid y_i \ge 0 \text{ for all } i \in \mathcal{A} \right\}$$

FARKAS' LEMMA (cont.)

Left: $g \notin \mathcal{C} \Longrightarrow \text{ separated from } \{a_i\}_{i\in\mathcal{A}} \text{ by the hyperplane } s^T v = 0$

Right: $g \in \mathcal{C}$

PROOF OF FARKAS' LEMMA

- trivial if C = 0.
- otherwise, if $g \in \mathcal{C} \& s^T a_i \ge 0$ for $i \in \mathcal{A}$ $\implies s^T g = \sum_{i \in \mathcal{A}} y_i s^T a_i \ge 0 \implies \mathcal{S} = \emptyset$
- otherwise, $g \notin \mathcal{C}$. Consider any $\overline{c} \in \mathcal{C}$ and

$$\min_{c \in \mathcal{C}} \|g - c\|_2 = \min_{c \in \bar{\mathcal{C}}} \|g - c\|_2,$$

where

$$\bar{C} = C \bigcap \{c \mid \|g - c\|_2 \le \|g - \bar{c}\|_2 \}.$$

compact $\implies C$ non-empty and compact \implies (Weierstrass) \exists $\mathcal C$ closed (obvious but non-trivial!) & $\{c \mid \|g-c\|_2 \leq \|g-\bar c\|_2\}$ $c_* = \arg\min_{c \in \mathcal{C}} \|g - c\|_2$

 $0, c_* \in \text{convex } \mathcal{C} \Longrightarrow \alpha c_* \in \mathcal{C} \ \forall \ \alpha \geq 0 \Longrightarrow \phi(\alpha) = \|g - \alpha c_*\|_2^2$ minimized at $\alpha = 1 \Longrightarrow \phi'(1) = 0 \Longrightarrow$

$$c_*^T(c_* - g) = 0. (10)$$

 $c \in \text{convex } \mathcal{C} \Longrightarrow c_* \& c_* + \theta(c - c_*) \in \mathcal{C} \ \forall \ \theta \in [0, 1].$ Optimality of c_*

$$||g - c_*||_2^2 \le ||g - c_* + \theta(c_* - c)||_2^2.$$

Expanding and taking the limit as $\theta \to 0 \& (10) \Longrightarrow$

$$0 \le (g - c_*)^T (c_* - c) = (c_* - g)^T c.$$

Defining $s = c_* - g \Longrightarrow s^T c \ge 0 \ \forall \ c \in \mathcal{C} \Longrightarrow$

$$s^T a_i \ge 0 \ \forall \ i \in \mathcal{A}.$$

Also $c_* \in \mathcal{C} \& g \notin \mathcal{C} \Longrightarrow s \neq 0 \& (10) \Longrightarrow$ $s^T g = -s^T s < 0$

$$\Rightarrow s \in \mathcal{S}$$
.

INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

order constraint qualification holds, there exist a vector of Lagrange multipliers y_* such that minimizer of f(x) subject to $c(x) \geq 0$. Then, provided that a first-**Theorem 1.9.** Suppose that $f, c \in C^1$, and that x_* is a local

$$c(x_*) \geq 0$$
 (primal feasibility), $g(x_*) - A^T(x_*)y_* = 0$ and $y_* \geq 0$ (dual feasibility) and $c_i(x_*)[y_*]_i = 0$ (complementary slackness).

Often known as the **Karush-Kuhn-Tucker** (**KKT**) conditions

constrained by $c_i(x) \geq 0$ for $i \in \mathcal{A} \stackrel{\text{def}}{=} \{i : c_i(x_*) = 0\}$. for small perturbations \implies need only consider perturbations that are Consider $x(\alpha)$: $x(0) = x_*$, $c_i(x(\alpha)) \ge 0$ for $i \in \mathcal{A}$ and Consider feasible perturbations about x_* . $c_i(x_*) > 0 \implies c_i(x) > 0$

$$x(\alpha) = x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3)$$

 \downarrow

$$0 \le c_i(x(\alpha)) = c(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3))$$

= $c_i(x_*) + a_i(x_*)^T \alpha s + \frac{1}{2}\alpha^2 p + \frac{1}{2}\alpha^2 s^T H_i(x_*) s + O(\alpha^3)$
= $\alpha a_i(x_*)^T s + \frac{1}{2}\alpha^2 \left(a_i(x_*)^T p + s^T H_i(x_*) s\right) + O(\alpha^3)$

 $\forall i \in \mathcal{A} \Longrightarrow$

$$s^T a_i(x_*) \ge 0 \ \forall i \in \mathcal{A} \tag{11}$$

and

$$p^{T}a_{i}(x_{*}) + s^{T}H_{i}(x_{*})s \ge 0 \text{ when } s^{T}a_{i}(x_{*}) = 0 \ \forall i \in \mathcal{A}$$
 (12)

Expansion (3) of $f(x(\alpha))$

$$f(x(\alpha)) = f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*) s \right) + O(\alpha^3)$$

 $\implies x_*$ can only be a local minimizer if

$$S = \{s \mid s^T g(x_*) < 0 \text{ and } s^T a_i(x_*) \ge 0 \text{ for } i \in \mathcal{A}\} = \emptyset.$$

Result then follows directly from Farkas' lemma.

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

complementary slackness requirements hold as well as tor of Lagrange multipliers y_* for which primal/dual feasibility and and second-order constraint qualifications hold, there exist a vecminimizer of f(x) subject to $c(x) \geq 0$. Then, provided that first-**Theorem 1.10.** Suppose that $f, c \in \mathbb{C}^2$, and that x_* is a local

$$s^T H(x_*, y_*) s \ge 0$$
 for all $s \in \mathcal{N}_+$

where

$$\mathcal{N}_{+} = \left\{ s \in \mathbb{R}^{n} \middle| \begin{array}{l} s^{T} a_{i}(x_{*}) = 0 \text{ if } c_{i}(x_{*}) = 0 \ \& \ [y_{*}]_{i} > 0 \ \& \\ s^{T} a_{i}(x_{*}) \ge 0 \text{ if } c_{i}(x_{*}) = 0 \ \& \ [y_{*}]_{i} = 0 \end{array} \right\}$$

Expansion

$$f(x(\alpha)) = f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*) s \right) + O(\alpha^3)$$

for change in objective function dominated by $\alpha s^T g(x_*)$ for feasible perturbations unless $s^T g(x_*) = 0$, in which case the expansion

$$f(x(\alpha)) = f(x_*) + \frac{1}{2}\alpha^2 \left(p^T g(x_*) + s^T H(x_*) s \right) + O(\alpha^3)$$

is relevant \Longrightarrow

$$p^T g(x_*) + s^T H(x_*) s \ge 0 \tag{}$$

 $0 = s^T g(x_*) = \sum (y_*)_i s^T a_i(x_*) \Longrightarrow \text{ either } (y_*)_i = 0 \text{ or } a_i(x_*)^T s = 0.$ holds for all feasible s for which $s^T g(x_*) = 0 \Longrightarrow$ $\stackrel{i\in\mathcal{A}}{\Longrightarrow}$ second-order feasible perturbations characterised by $s\in\mathcal{N}_+$.

and $c_i(x(\alpha)) \ge 0$ if $(y_*)_i = 0$ for $i \in \mathcal{A} \implies s \in \mathcal{N}_+$. When $c_i(x(\alpha)) = 0 \Longrightarrow$ Focus on subset of all feasible arcs that ensure $c_i(x(\alpha)) = 0$ if $(y_*)_i > 0$

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0$$

 $p^{T}g(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i}p^{T}a_{i}(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i}p^{T}a_{i}(x_{*})$ $= -\sum_{i \in \mathcal{A}} (y_{*})_{i}s^{T}H_{i}(x_{*})s = -\sum_{i \in \mathcal{A}} (y_{*})_{i}s^{T}H_{i}(x_{*})s$ $\overset{i\in\mathcal{A}}{(y_*)_i>0}$

+ (13)
$$\implies s^T H(x_*, y_*) s \equiv s^T \left(H(x_*) - \sum_{i=1}^m (y_*)_i H_i(x_*) \right) s$$

= $p^T g(x_*) + s^T H(x_*) s \ge 0$.

for all $s \in \mathcal{N}_+$

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Lagrange multipliers y_* satisfy **Theorem 1.11.** Suppose that $f, c \in \mathbb{C}^2$, that x_* and a vector of

$$c(x_*) \ge 0, g(x_*) - A^T(x_*)y_* = 0, y_* \ge 0, \text{ and } c_i(x_*)[y_*]_i = 0$$

and that

$$s^T H(x_*, y_*) s > 0$$

for all s in the set

$$\mathcal{N}_{+} = \left\{ s \in \mathbb{R}^{n} \mid \begin{array}{l} s^{T} a_{i}(x_{*}) = 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} > 0 \& \\ s^{T} a_{i}(x_{*}) \geq 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} = 0. \end{array} \right\}.$$

Then x_* is an isolated local minimizer of f(x) subject to $c(x) \ge 0$.

Consider any feasible arc $x(\alpha)$. Already shown

$$s^{T} a_i(x_*) \ge 0 \quad \forall i \in \mathcal{A} \tag{14}$$

$$p^{T}a_{i}(x_{*}) + s^{T}H_{i}(x_{*})s \ge 0 \text{ when } s^{T}a_{i}(x_{*}) = 0 \ \forall i \in \mathcal{A}$$
 (

and that second-order feasible perturbations are characterized by \mathcal{N}_+

$$(15) \implies p^{T}g(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i}p^{T}a_{i}(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i}p^{T}a_{i}(x_{*})$$

$$\geq -\sum_{i \in \mathcal{A}} (y_{*})_{i}s^{T}H_{i}(x_{*})s = -\sum_{i \in \mathcal{A}} (y_{*})_{i}s^{T}H_{i}(x_{*})s,$$

$$s^{T}a_{i}(x_{*})=0$$

and hence by assumption that
$$p^T g(x_*) + s^T H(x_*) s \ge s^T \left(H(x_*) - \sum_{i=1}^m (y_*)_i H_i(x_*) \right) s$$
$$\equiv s^T H(x_*, y_*) s > 0$$

 $\forall s \in \mathcal{N}_{+} + (3) + (14) \Longrightarrow f(x(\alpha)) > f(x_{*}) \ \forall \text{ sufficiently small } \alpha$