
Part 2: Linesearch methods

for unconstrained optimization

Nick Gould (RAL)

minimize
x∈IRn

f(x)

Part C course on continuoue optimization

UNCONSTRAINED MINIMIZATION

minimize
x∈IRn

f(x)

where the objective function f : IRn −→ IR

� assume that f ∈ C1 (sometimes C2) and Lipschitz

� often in practice this assumption violated, but not necessary



ITERATIVE METHODS

� in practice very rare to be able to provide explicit minimizer

� iterative method: given starting “guess” x0, generate sequence

{xk}, k = 1, 2, . . .

� AIM: ensure that (a subsequence) has some favourable limiting

properties:

� satisfies first-order necessary conditions

� satisfies second-order necessary conditions

Notation: fk = f(xk), gk = g(xk), Hk = H(xk).

LINESEARCH METHODS

� calculate a search direction pk from xk

� ensure that this direction is a descent direction, i.e.,

gT
k pk < 0 if gk 6= 0

so that, for small steps along pk, the objective function

will be reduced

� calculate a suitable steplength αk > 0 so that

f(xk + αkpk) < fk

� computation of αk is the linesearch—may itself be an iteration

� generic linesearch method:

xk+1 = xk + αkpk



STEPS MIGHT BE TOO LONG
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The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk

generated by the descent directions pk = (−1)k+1 and steps αk =

2 + 3/2k+1 from x0 = 2

STEPS MIGHT BE TOO SHORT
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The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk

generated by the descent directions pk = −1 and steps αk = 1/2k+1

from x0 = 2



PRACTICAL LINESEARCH METHODS

� in early days, pick αk to minimize

f(xk + αpk)

� exact linesearch—univariate minimization

� rather expensive and certainly not cost effective

� modern methods: inexact linesearch

� ensure steps are neither too long nor too short

� try to pick “useful” initial stepsize for fast convergence

� best methods are either

. “backtracking- Armijo” or

. “Armijo-Goldstein”

based

BACKTRACKING LINESEARCH

Procedure to find the stepsize αk:

Given αinit > 0 (e.g., αinit = 1)

let α(0) = αinit and l = 0

Until f(xk + α(l)pk)“<”fk

set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1
2)

and increase l by 1

Set αk = α(l)

� this prevents the step from getting too small . . . but does not prevent

too large steps relative to decrease in f

� need to tighten requirement

f(xk + α(l)pk)“<”fk



ARMIJO CONDITION

In order to prevent large steps relative to decrease in f , instead require

f(xk + αkpk) ≤ f(xk) + αkβgT
k pk

for some β ∈ (0, 1) (e.g., β = 0.1 or even β = 0.0001)
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BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize αk:

Given αinit > 0 (e.g., αinit = 1)

let α(0) = αinit and l = 0

Until f(xk + α(l)pk) ≤ f(xk) + α(l)βgT
k pk

set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1
2)

and increase l by 1

Set αk = α(l)



SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f ∈ C1, that g(x) is Lipschitz con-

tinuous with Lipschitz constant γ(x), that β ∈ (0, 1) and that p is

a descent direction at x. Then the Armijo condition

f(x + αp) ≤ f(x) + αβg(x)Tp

is satisfied for all α ∈ [0, αmax(x)], where

αmax =
2(β − 1)g(x)Tp

γ(x)‖p‖2
2

PROOF OF THEOREM 2.1

Taylor’s theorem (Theorem 1.1) +

α ≤
2(β − 1)g(x)Tp

γ(x)‖p‖2
2

,

=⇒
f(x + αp) ≤ f(x) + αg(x)Tp + 1

2γ(x)α2‖p‖2

≤ f(x) + αg(x)Tp + α(β − 1)g(x)Tp

= f(x) + αβg(x)Tp



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f ∈ C1, that g(x) is Lipschitz con-

tinuous with Lipschitz constant γk at xk, that β ∈ (0, 1) and that

pk is a descent direction at xk. Then the stepsize generated by the

backtracking-Armijo linesearch terminates with

αk ≥ min

(

αinit,
2τ (β − 1)gT

k pk

γk‖pk‖2
2

)

PROOF OF COROLLARY 2.2

Theorem 2.1 =⇒ linesearch will terminate as soon as α(l) ≤ αmax.

2 cases to consider:

1. May be that αinit satisfies the Armijo condition =⇒ αk = αinit.

2. Otherwise, must be a last linesearch iteration (the l-th) for which

α(l) > αmax =⇒ αk ≥ α(l+1) = τα(l) > ταmax

Combining these 2 cases gives required result.



GENERIC LINESEARCH METHOD

Given an initial guess x0, let k = 0

Until convergence:

Find a descent direction pk at xk

Compute a stepsize αk using a

backtracking-Armijo linesearch along pk

Set xk+1 = xk + αkpk, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f ∈ C1 and that g is Lipschitz con-

tinuous on IRn. Then, for the iterates generated by the Generic

Linesearch Method,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0.



PROOF OF THEOREM 2.3

Suppose that gk 6= 0 for all k and that lim
k→∞

fk > −∞. Armijo =⇒

fk+1 − fk ≤ αkβpT
k gk

for all k =⇒ summing over first j iterations

fj+1 − f0 ≤

j
∑

k=0

αkβpT
k gk.

LHS bounded below by assumption =⇒ RHS bounded below. Sum

composed of -ve terms =⇒

lim
k→∞

αk|p
T
k gk| = 0

Let

K1
def
=

{

k | αinit >
2τ (β − 1)gT

k pk

γ‖pk‖2
2

}

& K2
def
= {1, 2, . . .} \ K1

where γ is the assumed uniform Lipschitz constant.

For k ∈ K1,

αk ≥
2τ (β − 1)gT

k pk

γ‖pk‖2
2

=⇒

αkp
T
k gk ≤

2τ (β − 1)

γ

(

gT
k pk

‖pk‖

)2

< 0

=⇒

lim
k∈K1→∞

|pT
k gk|

‖pk‖2

= 0. (1)

For k ∈ K2,

αk ≥ αinit

=⇒

lim
k∈K2→∞

|pT
k gk| = 0. (2)

Combining (1) and (2) gives the required result.



METHOD OF STEEPEST DESCENT

The search direction

pk = −gk

gives the so-called steepest-descent direction.

� pk is a descent direction

� pk solves the problem

minimize
p∈IRn

mL
k (xk + p)

def
= fk + gT

k p subject to ‖p‖2 = ‖gk‖2

Any method that uses the steepest-descent direction is a

method of steepest descent.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f ∈ C1 and that g is Lipschitz con-

tinuous on IRn. Then, for the iterates generated by the Generic

Linesearch Method using the steepest-descent direction,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0.



PROOF OF THEOREM 2.4

Follows immediately from Theorem 2.3, since

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= ‖gk‖2 min (1, ‖gk‖2)

and thus

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0

implies that limk→∞ gk = 0.

METHOD OF STEEPEST DESCENT (cont.)

� archetypical globally convergent method

� many other methods resort to steepest descent in bad cases

� not scale invariant

� convergence is usually very (very!) slow (linear)

� numerically often not convergent at all



STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2,

and the iterates generated by the Generic Linesearch steepest-descent

method

MORE GENERAL DESCENT METHODS

Let Bk be a symmetric, positive definite matrix, and define the

search direction pk so that

Bkpk = −gk

Then

� pk is a descent direction

� pk solves the problem

minimize
p∈IRn

mQ
k (xk + p)

def
= fk + gT

k p + 1
2p

TBkp

� if the Hessian Hk is positive definite, and Bk = Hk, this is

Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f ∈ C1 and that g is Lipschitz con-

tinuous on IRn. Then, for the iterates generated by the Generic

Linesearch Method using the more general descent direction, either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0

provided that the eigenvalues of Bk are uniformly bounded and

bounded away from zero.

PROOF OF THEOREM 2.5

Let λmin(Bk) and λmax(Bk) be the smallest and largest eigenvalues of

Bk. By assumption, there are bounds λmin > 0 and λmax such that

λmin ≤ λmin(Bk) ≤
sTBks

‖s‖2
≤ λmax(Bk) ≤ λmax

and thus that

λ−1
max ≤ λ−1

max(Bk) = λmin(B
−1
k ) ≤

sTB−1
k s

‖s‖2
≤ λmax(B

−1
k ) = λ−1

min(Bk) ≤ λ−1
min

for any nonzero vector s. Thus

|pT
k gk| = |gT

k B−1
k gk| ≥ λmin(B

−1
k )‖gk‖

2
2 ≥ λ−1

max‖gk‖
2
2

In addition

‖pk‖
2
2 = gT

k B−2
k gk ≤ λmax(B

−2
k )‖gk‖

2
2 ≤ λ−2

min‖gk‖
2
2,

=⇒

‖pk‖2 ≤ λ−1
min‖gk‖2



=⇒
|pT

k gk|

‖pk‖2

≥
λmin

λmax
‖gk‖2

Thus

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

≥
‖gk‖2

λmax
min (λmin, ‖gk‖2)

=⇒

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0

=⇒

lim
k→∞

gk = 0.

MORE GENERAL DESCENT METHODS (cont.)

� may be viewed as “scaled” steepest descent

� convergence is often faster than steepest descent

� can be made scale invariant for suitable Bk



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f ∈ C2 and that H is Lipschitz

continuous on IRn. Then suppose that the iterates generated by the

Generic Linesearch Method with αinit = 1 and β < 1
2, in which the

search direction is chosen to be the Newton direction pk = −H−1
k gk

whenever possible, has a limit point x∗ for which H(x∗) is positive

definite. Then

(i) αk = 1 for all sufficiently large k,

(ii) the entire sequence {xk} converges to x∗, and

(iii) the rate is Q-quadratic, i.e, there is a constant κ ≥ 0.

lim
k→∞

‖xk+1 − x∗‖2

‖xk − x∗‖2
2

≤ κ.

PROOF OF THEOREM 2.6

Consider lim
k∈K

xk = x∗. Continuity =⇒ Hk positive definite for all k ∈ K

sufficiently large =⇒ ∃k0 ≥ 0:

pT
k Hkpk ≥

1
2λmin(H∗)‖pk‖

2
2

∀k0 ≤ k ∈ K, where λmin(H∗) = smallest eigenvalue of H(x∗) =⇒

|pT
k gk| = −pT

k gk = pT
k Hkpk ≥

1
2λmin(H∗)‖pk‖

2
2. (3)

∀k0 ≤ k ∈ K, and

lim
k∈K→∞

pk = 0

since Theorem 2.5 =⇒ at least one of the LHS of (3) and

|pT
k gk|

‖pk‖2
= −

pT
k gk

‖pk‖2
≥ 1

2λmin(H∗)‖pk‖2

converges to zero for such k.



Taylor’s theorem =⇒ ∃zk between xk and xk + pk such that

f(xk + pk) = fk + pT
k gk + 1

2p
T
k H(zk)pk.

Lipschitz continuity of H & Hkpk + gk = 0 =⇒

f(xk + pk) − fk −
1
2p

T
k gk = 1

2(p
T
k gk + pT

k H(zk)pk)

= 1
2(p

T
k gk + pT

k Hkpk) + 1
2(p

T
k (H(zk) − Hk)pk)

≤ 1
2γ‖zk − xk‖2‖pk‖

2
2 ≤

1
2γ‖pk‖

3
2

(4)

Now pick k sufficiently large so that

γ‖pk‖2 ≤ λmin(H∗)(1 − 2β).

+ (3) + (4) =⇒

f(xk + pk) − fk ≤
1
2p

T
k gk + 1

2λmin(H∗)(1 − 2β)‖pk‖
2
2

≤ 1
2(1 − (1 − 2β))pT

k gk = βpT
k gk

=⇒ unit stepsize satisfies the Armijo condition for all sufficiently large

k ∈ K

Now note that ‖H−1
k ‖2 ≤ 2/λmin(H∗) for all sufficiently large k ∈ K.

The iteration gives

xk+1 − x∗ = xk − x∗ − H−1
k gk = xk − x∗ − H−1

k (gk − g(x∗))

= H−1
k (g(x∗) − gk − Hk(x∗ − xk)) .

But Theorem 1.3 =⇒

‖g(x∗) − gk − Hk (x∗ − xk) ‖2 ≤ γ‖x∗ − xk‖
2
2

=⇒

‖xk+1 − x∗‖2 ≤ γ‖H−1
k ‖2‖x∗ − xk‖

2
2

which is (iii) when κ = 2γ/λmin(H∗). for k ∈ K.

Result (ii) follows since once iterate becomes sufficiently close to x∗,

(iii) for k ∈ K sufficiently large implies k + 1 ∈ K =⇒ K = IN. Thus

(i) and (iii) are true for all k sufficiently large.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2,

and the iterates generated by the Generic Linesearch Newton method

MODIFIED NEWTON METHODS

If Hk is indefinite, it is usual to solve instead

(Hk + Mk)pk ≡ Bkpk = −gk

where

� Mk chosen so that Bk = Hk + Mk is “sufficiently” positive definite

� Mk = 0 when Hk is itself “sufficiently” positive definite

Possibilities:

� If Hk has the spectral decomposition Hk = QkDkQ
T
k then

Bk ≡ Hk + Mk = Qk max(ε, |Dk|)Q
T
k

� Mk = max(0, ε − λmin(Hk))I

� Modified Cholesky: Bk ≡ Hk + Mk = LkL
T
k



QUASI-NEWTON METHODS

Various attempts to approximate Hk:

� Finite-difference approximations:

(Hk)ei ≈ h−1(g(xk + hei) − gk) = (Bk)ei

for some “small” scalar h > 0

� Secant approximations: try to ensure the secant condition

Bk+1sk = yk ≈ Hk+1sk, where sk = xk+1 − xk and yk = gk+1 − gk

� Symmetric Rank-1 method (but may be indefinite or even

fail):

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)Tsk

� BFGS method: (symmetric and positive definite if yT
k sk > 0):

Bk+1 = Bk +
yky

T
k

yT
k sk

−
Bksks

T
k Bk

sT
k Bksk

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models (Bk positive definite)

pk = (approximate) arg min
p∈IRn

fk + pTgT
k + 1

2p
TBkp

Generic convex quadratic problem: (B positive definite)

(approximately) minimize
p∈IRn

q(p) = pTg + 1
2p

TBp



MINIMIZATION OVER A SUBSPACE

Given vectors {d0, : . . . , di−1}, let

� Di = (d0 : · · · : di−1)

� Subspace Di = {p | p = Dipd for some pd ∈ IRi}

� pi = arg min
p∈Di

q(p)

Result: Di Tgi = 0, where gi = Bpi + g

Proof: require pi = Dipi
d, where pi

d = arg min
pd∈IRi

q(Dipd)

But q(Dipd) = pT
d Di Tg + 1

2p
T
d Di TBDipd =⇒

0 = Di TBDipi
d + Di Tg = Di T (BDipi

d + g) = Di T (Bpi + g) = Di Tgi

Equivalently: dj Tgi = 0 for j = 0, . . . , i − 1

MINIMIZATION OVER A SUBSPACE (cont.)

� dj Tgi = 0 for j = 0, . . . , i − 1, where gi = Bpi + g

Result: pi = pi−1 − di−1 Tgi−1Di(Di TBDi)−1ei

Proof: Clearly pi−1 ∈ Di−1 ⊂ Di

=⇒ require pi = pi−1 + Dipi
d, where pi

d = arg min
pd∈IRi

q(pi−1 + Dipd)

But q(pi−1 + Dipd)

= q(pi−1) + pT
d Di T (g + Bpi−1) + 1

2p
T
d Di TBDipd

= q(pi−1) + pT
d Di Tgi−1 + 1

2p
T
d Di TBDipd

= q(pi−1) + pT
d (di−1 Tgi−1)ei + 1

2p
T
d Di TBDipd

where ei is i-th unit vector =⇒

pi
d = −di−1 Tgi−1(Di TBDi)−1ei



MINIMIZATION OVER A B-CONJUGATE SUBSPACE

Minimizer over Di: pi = pi−1 − di−1 Tgi−1Di(Di TBDi)−1ei

Suppose in addition the members of Di are B-conjugate:

� B-conjugacy: di TBdj = 0 (i 6= j)

Result: pi = pi−1 + αi−1di−1, where

αi−1 = −
di−1 Tgi−1

di−1 TBdi−1

Proof: Di TBDi = diagonal matrix with entries dj TBdj

for j = 0, . . . i − 1

=⇒ (Di TBDi)−1 = diagonal matrix with entries 1/dj TBdj

for j = 0, . . . i − 1

=⇒ (Di TBDi)−1ei = (1/di−1 TBdi−1)ei

BUILDING A B-CONJUGATE SUBSPACE

� dj Tgi = 0 for j = 0, . . . , i − 1

Since this implies gi is independent of Di, let

di = −gi +
i−1
∑

j=0

βijdj

Aim: find βij so that di is B-conjugate to Di

Result (orthogonal gradients): gi Tgj = 0 for all i 6= j

Proof: span{gi} = span{di}

=⇒ gj =
∑j

k=0 γj,kdk for some γj,k

=⇒ gi Tgj =
∑j

k=0 γj,kgi Tdk = 0 when j < i



BUILDING A B-CONJUGATE SUBSPACE (cont.)

� di = −gi +
∑i−1

j=0 βijdj

� dj Tgi = 0 for j = 0, . . . , i − 1, where gi = Bpi + g

Result: gi Tdi = −‖gi‖2
2

Proof: gi Tdi = −gi Tgi +
∑i−1

j=0 βijgi Tdj

Corollary: αi =
‖gi‖2

2

di TBdi
6= 0 ⇐⇒gi 6= 0

Proof: by definition

αi = −
gi Tdi

di TBdi

BUILDING A B-CONJUGATE SUBSPACE (cont.)

� di = −gi +
∑i−1

j=0 βijdj

� gi Tgj = 0 for all i 6= j

Result: gi TBdj = 0 if j < i − 1 and gi TBdi−1 =
‖gi‖2

2

αi−1

Proof: pj+1 = pj + αjdj & gj+1 = Bpj+1 + g

=⇒ gj+1 = gj + αjBdj

=⇒ gi Tgj+1 = gi Tgj + αjgi TBdj

=⇒ gi TBdj = 0 if j < i − 1

while gi Tgi = gi Tgi−1 + αi−1gi TBdi−1 if j = i − 1

=⇒ gi TBdi−1 = ‖gi‖2
2/α

i−1



BUILDING A B-CONJUGATE SUBSPACE (cont.)

� di = −gi +
∑i−1

k=0 βikdk

� dk TBgi = 0 if k < i − 1 and di−1 TBgi = ‖gi‖2
2/α

i−1

� αi−1 = ‖gi−1‖2
2/d

i−1 TBdi−1

Result: βij = 0 for j < i − 1 and βi i−1 ≡ βi =
‖gi‖

2
2

‖gi−1‖2
2

Proof: B-conjugacy =⇒

0 = dj TBdi = −dj TBgi +
i−1
∑

k=0

βikdj TBdk = −dj TBgi + βijdj TBdj

=⇒ βij = dj TBgi/dj TBdj

Result immediate for j < i − 1. For j = i − 1,

βi i−1 =
di−1 TBgi

di−1 TBdi−1
=

‖gi‖2
2

αi−1di−1 TBdi−1
=

‖gi‖2
2

‖gi−1‖2
2

CONJUGATE-GRADIENT METHOD

Given p0 = 0, set g0 = g, d0 = −g and i = 0.

Until gi “small” iterate

αi = −gi Tdi/di TBdi

pi+1 = pi + αidi

gi+1 = gi + αiBdi

βi = ‖gi+1‖2
2/‖g

i‖2
2

di+1 = −gi+1 + βidi

and increase i by 1

Important features

� dj Tgi+1 = 0 = gj Tgi+1 for all j = 0, . . . , i

� gTpi < 0 for i = 1, . . . , n =⇒ descent direction for any pk = pi

� stop: ‖gi‖ ≤ min(‖g‖ω, η)‖g‖ (0<η, ω<1) =⇒ fast convergence



CONJUGATE GRADIENT METHOD GIVES DESCENT

gi−1 Tdi−1 = di−1 T (g + Bpi−1) = di−1 Tg +
i−2
∑

j=0

αjd
i−1 TBdj = di−1 Tg

pi minimizes q(p) in Di =⇒

pi = pi−1 −
gi−1 Tdi−1

di−1 TBdi−1
di−1 = pi−1 −

gTdi−1

di−1 TBdi−1
di−1.

=⇒

gTpi = gTpi−1 −
(gTdi−1)2

di−1 TBdi−1
,

=⇒ gTpi < gTpi−1 =⇒ (induction)

gTpi < 0

since

gTp1 = −
‖g‖4

2

gTBg
< 0.

=⇒ pk = pi is a descent direction

CG METHODS FOR GENERAL QUADRATICS

Suppose f(x) is quadratic and x = x0 + p

Taylors theorem =⇒

f(x) = f(x0 + p) = f(x0) + pTg(x0) + 1
2p

TH(x0)p

� can minimize as function of p using CG

� if xi = x0 + pi =⇒ gi = g(x0) + H(x0)pi = g(xi)

� αi = −
g(xi)

Tdi

di TH(x0)di
= arg min

α

f(xi + αdi)



NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic f(x)

Given x0 and g(x0), set d0 = −g(x0) and i = 0.

Until g(xk) “small” iterate

αi = arg min
α

f(xi + αdi)

xi+1 = xi + αidi

βi = ‖g(xi+1)‖
2
2/‖g(xi)‖

2
2

di+1 = −g(xi+1) + βidi

and increase i by 1

may also be used for nonlinear f(x) (Fletcher & Reeves)

� replace calculation of αi by suitable linesearch

� other methods pick different βi to ensure descent


