Part 2: Linesearch methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
r€IR"

Part C course on continuoue optimization

UNCONSTRAINED MINIMIZATION

minimize f(z)
relR"

where the objective function f :IR" — IR

© assume that f € C! (sometimes C?) and Lipschitz

© often in practice this assumption violated, but not necessary




ITERATIVE METHODS

® in practice very rare to be able to provide explicit minimizer
© iterative method: given starting “guess” x(, generate sequence
{z}, k=1,2,...
© AIM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: f = f(xx), gr = g(@x), Hr = H(xy).

LINESEARCH METHODS

© calculate a search direction p; from x;
® ensure that this direction is a descent direction, i.e.,
gipy <0 if g #0

so that, for small steps along pi, the objective function
will be reduced

© calculate a suitable steplength a; > 0 so that
[+ arpr) < fi

© computation of ay is the linesearch—may itself be an iteration

® generic linesearch method:

Tkl = Tk + QP



STEPS MIGHT BE TOO LONG

f(z) s

25F

0.5

I I I I I I I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 T

The objective function f(z) = z? and the iterates x4 = 21 + aupr
generated by the descent directions pp = (—1)*! and steps a; =
2+ 3/28 1 from xy = 2

STEPS MIGHT BE TOO SHORT
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The objective function f(x) = 2% and the iterates zp.1 = x5 + agpi
generated by the descent directions py = —1 and steps ay = 1/2F!
from zg = 2



PRACTICAL LINESEARCH METHODS

® in early days, pick ay to minimize
f(@ + apy)
o exact linesearch—univariate minimization
o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”
based

BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given ajpir > 0 (e.g., aipit = 1)

let o) = ajpit and [ =0

Until f(l‘k + ()z(l)pk) <7
set oY) = 7o) where 7 € (0,1) (e.g., 7 =1)
and increase [ by 1

Set ay, = )

© this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

© need to tighten requirement

f(xk + a(l)pk) u<77fk



ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

flag+ oppy) < flxy) + wBgi g
for some 5 € (0,1) (e.g., 8 = 0.1 or even 5 = 0.0001)
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BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize ay:

Given aypix > 0 (e.g., aypix = 1)

let o) = ajpit and [ =0

Until f(x, +aPp,) < f(x,) +aPBglp,
set oY) = 7oV where 7 € (0,1) (e.g., 7 = 1)
and increase [ by 1

Set a = all)




SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f € C!, that g(x) is Lipschitz con-
tinuous with Lipschitz constant v(x), that g € (0, 1) and that p is
a descent direction at . Then the Armijo condition
flz+ap) < f(z) + abg(x)'p
is satisfied for all o € [0, Quyax(s)], Where
2(8 — 1)g(@)'p
v(@)]lpll3

max —

PROOF OF THEOREM 2.1

Taylor’s theorem (Theorem 1.1) +

2(8—1)g(x)'p
v(@)llplI3

IA

0}

Y



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C!, that g(z) is Lipschitz con-
tinuous with Lipschitz constant v at xy, that § € (0,1) and that
pi is a descent direction at xy. Then the stepsize generated by the
backtracking-Armijo linesearch terminates with

27(6 — 1)91:5191«)
Yellell3

Q. > min (O‘inita

PROOF OF COROLLARY 2.2

Theorem 2.1 = linesearch will terminate as soon as o) < qyax.
2 cases to consider:

1. May be that ajj¢ satisfies the Armijo condition = ;. = ajpit-
2. Otherwise, must be a last linesearch iteration (the [-th) for which

I+1)

all) > Opax —> QO > al = 7oV > T Olmax

Combining these 2 cases gives required result.



GENERIC LINESEARCH METHOD

Given an initial guess xg, let £ =0
Until convergence:
Find a descent direction pj at
Compute a stepsize ;. using a
backtracking-Armijo linesearch along py
Set xr11 = xr + agpr, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method,

either
g =0 for some [ >0
or
lim fk = —00
k— 00
or

tim min (|pgg,l. pigel /pells) = 0.




PROOF OF THEOREM 2.3
Suppose that g, # 0 for all k and that klim fr > —o0. Armijo =

frr — fr < . Bpi gy

for all K = summing over first j iterations

J
T
fj+1 —fo < E 0Py G-
k=0

LHS bounded below by assumption => RHS bounded below. Sum
composed of -ve terms =

lim v |pf gyl =0
k—oo
Let

def
Ky =

27(3 — 1)gt o
{k g > 2O >§’fpk} &Y {12, 3\ K
Yokl

where v is the assumed uniform Lipschitz constant.

For k € K4,
27(8 — 1)g} px
o =~ 5
YIprll3
— 27(8—1) (gipx ?
aph g < ( g ) <0
. o |2l
T
i PE9E (1)
keky—oo HpkHQ
For k € Iy,
Q2 Ot
—
li Lol =0. 2
kelclgf_l)w |pkgk’ ( )

Combining (1) and (2) gives the required result.



METHOD OF STEEPEST DESCENT

The search direction
Pk = — Gk

gives the so-called steepest-descent direction.

® pi 1s a descent direction

© pg solves the problem

L def :
minimize my (zy +p) = fi + gip subject to ||plla = ||gkll2
peIR”

Any method that uses the steepest-descent direction is a
method of steepest descent.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g =0 for some [ >0
or
Ii = —
g, fe= o0
or
lim gr = 0.

k—oo




PROOF OF THEOREM 2.4
Follows immediately from Theorem 2.3, since

min (|p£gk‘: |p£gk|/HpkH2) = ||ng2mm (1, HngQ)

and thus
T win (1pf g . [0 gl /pill) = 0

implies that limy_, o gr = 0.

METHOD OF STEEPEST DESCENT (cont.)

® archetypical globally convergent method

® many other methods resort to steepest descent in bad cases
® not scale invariant

© convergence is usually very (very!) slow (linear)

© numerically often not convergent at all



STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (x — 1)%,
and the iterates generated by the Generic Linesearch steepest-descent
method

MORE GENERAL DESCENT METHODS

Let B be a symmetric, positive definite matrix, and define the
search direction py so that

Bipr = — gk
Then
® py is a descent direction
® pg solves the problem
minimize ka(ﬂck +p) o fr + g/zp + %PTka

peIR™

© if the Hessian Hj, is positive definite, and Bj, = Hj, this is
Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction, either

g =0 for some [ >0

or
lim fk = —00
k—oo
or
lim gr = 0
k—o0

provided that the eigenvalues of B are uniformly bounded and
bounded away from zero.

PROOF OF THEOREM 2.5
Let Amin(Bg) and Apax(By) be the smallest and largest eigenvalues of
By.. By assumption, there are bounds A, > 0 and Apay such that

and thus that

M < Ak (Br) = Auin(B ) <

max — max

for any nonzero vector s. Thus

1 9%l = 198 Bt gkl > Amin (B O 96ll3 > Aol 913
In addition

12£l13 = 91 Bi 29k < Amax(By )06l < Amiall 9113

||pkH2 < )‘r:ﬂlanklb



|pggk ‘ > >\min

= grll2

ells > S 941

Thus

. g lls .
min (‘ngk‘a |p:159k‘/HpkH2) > b\ 522 min ()\mina ||9k||2)
max
—
kh_)ﬂgo min (|p£9k|7 |pggk‘/||pk||2) =0
—

li = 0.
Jin o1

MORE GENERAL DESCENT METHODS (cont.)

© may be viewed as “scaled” steepest descent
® convergence is often faster than steepest descent

® can be made scale invariant for suitable B,



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR". Then suppose that the iterates generated by the
Generic Linesearch Method with a1 = 1 and § < §, in which the
search direction is chosen to be the Newton direction p, = —H, 1 9y

whenever possible, has a limit point x, for which H(z.) is positive
definite. Then

(i) o = 1 for all sufficiently large k,
(ii) the entire sequence {x}} converges to z,, and
(iii) the rate is Q-quadratic, i.e, there is a constant £ > 0.

T e |
k=oo log — w5~

PROOF OF THEOREM 2.6
Consider En,%xk‘ = x,. Continuity = Hj, positive definite for all k € IC
€

sufficiently large = dky > 0:

PrHpy > i (L) |||l

Vko < k € IC, where A\pin(H,) = smallest eigenvalue of H(z,) =

Pr gkl = —prgr = pr Hypr > i (Ho) ||pr3- (3)
Vko < k € IC, and
I —0
ki oo P

since Theorem 2.5 == at least one of the LHS of (3) and

pigrl _  pig
lpellz (ol
converges to zero for such k.

> %)\min(H*> ”pkHQ




Taylor’s theorem = dz; between x; and x; + pi such that
fay+py) = fr+pioy + i H(z)py
Lipschitz continuity of H & Hypr + g = 0 =

Y(pla, + phH(z1)py)

Y(ptg, + piHipy) + 5(0F (H (2) — Hi)py,)

Wz — zrllallpelld < vllpslls "
4

fxp +pp) — [ — 0Ly

IA I

Now pick k sufficiently large so that

'7||pkH2 S )\min<H>k>(1 - 25)
+3)+ 4) =

flap+pp) = fi < 30pge + $in(Ho) (1 = 25)|Ip[13

2
$(1— (1 —20))pi 9, = Bpi gy
— unit stepsize satisfies the Armijo condition for all sufficiently large

ke

IA A

Now note that ||[H, ||y, < 2/Amin(Hx) for all sufficiently large k € K.
The iteration gives

Thi1 — T = xp — T — H 'gp = 21, — 20 — H. ' (g — g(2))
= H; ' (g(zs) — gp — Hi(w, — 1)) -
But Theorem 1.3 =

lg(z.) = g — Hie (2 — @) [ly < yllws — 2ll2

ki = @ally < YIHH ol — 2l
which is (iii) when k = 2v/Apnim(H,). for k € K.

Result (ii) follows since once iterate becomes sufficiently close to xy,
(iii) for k& € K sufficiently large implies k + 1 € = K = IN. Thus
(i) and (iii) are true for all k sufficiently large.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (x — 1)%,
and the iterates generated by the Generic Linesearch Newton method

MODIFIED NEWTON METHODS

If Hy, is indefinite, it is usual to solve instead
(Hy + My)pr = Bipr = — g
where
© M. chosen so that By = Hj + M, is “sufficiently” positive definite

© M, =0 when Hy, is itself “sufficiently” positive definite

Possibilities:
© If Hj, has the spectral decomposition H,; = QkaQg then
By = Hy + M = Q max(e, | D,)Q}
© My = max(0, e — Apin(Hg)) I
© Modified Cholesky: B, = H, + M, = L, LT



QUASI-NEWTON METHODS

Various attempts to approximate Hy:
© Finite-difference approximations:
<Hk>€i ~ h_1<g($k + h@l) — gk) = (B]J@Z
for some “small” scalar h > 0

® Secant approximations: try to ensure the secant condition
Bii15k = yp = Hyp118p, where sp = 21 — o3 and Y = gry1 — Gk

o Symmetric Rank-1 method (but may be indefinite or even
fail):

(yx — Brsi)(yr. — Brsi)”

(yr — Brsi)" s

o BFGS method: (symmetric and positive definite if y; s;, > 0):

Bjy1 = By +

T T
Y.y B, s, s. B

Biy1 = By + - — =t h ok
Y Sk 51 D5y

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models (B positive definite)

pr = (approximate) arg min f;, + p’ g{ + 1p” Byp
peIR"

Generic convex quadratic problem: (B positive definite)

(approximately) minimize ¢(p) = p’ g + ip’ Bp
pEIR™



MINIMIZATION OVER A SUBSPACE

Given vectors {d°,: ..., d""'}, let
© D= (d":---:d™)
© Subspace D' = {p | p= D'py for some py € IR"}

© p' = arg min q(p)
peD!
Result: DiTgl =0, where ¢' = Bp' + g

Proof: require p' = D'p,, where p}, = arg min ¢(D'pq)
P4€IR’
But ¢(D'py) = pi D' Tg + ipI D'TBD'p, =

0=D"BD'p,+D'"g=D"(BD'p;+g)=D"(Bp' +g)= D"y

Equivalently: ' T¢g' =0for j =0,...,i—1

MINIMIZATION OVER A SUBSPACE (cont.)

® djTgi:OfOTj:0,---,i—1,wheregi:Bpi+g
Result: p' = pi~! — d1T¢=1DI(DITB D)L,

Proof: Clearly p"~t € D=1 c D'

— require p' = p'~ ! + D'p,, where p}, = arg min ¢(p'~' + D'p,)
pa€IR’

But g(p"~! + Dpy)

g +pi D' (g + Bp™') + 4pi D' " BD'p,

q<pi—1) + le“Dz Tgi—l + %pgDz TBDz'pd

q(p™™") + pg(d= g e + jpg D' BD'p,

where e; is 2-th unit vector =—

pé — _di—l Tgi—1<Di TBDZ‘>—1€Z,



MINIMIZATION OVER A B-CONJUGATE SUBSPACE

Minimizer over D': p' = p'=t — "1 T¢g"=1DY(D'T BD") e,
Suppose in addition the members of D' are B-conjugate:

® B-conjugacy: d'TBd’ =0 (i # j)

Result: p' = p'~ ! + o'~ 1d'~!, where

i—1T i—1
i—1 d g

e
Proof: D'TBD' = diagonal matrix with entries d/ T Bd’
for j=0,...i—1

= (D'TBD")~! = diagonal matrix with entries 1/d’ T Bd’
for j=0,...i—1

— (D'TBD")te; = (1/d ' TBd'1)e;

a

BUILDING A B-CONJUGATE SUBSPACE
o dTg =0forj=0,...,i—1

Since this implies ¢’ is independent of D, let
1—1
di — _gl+z/32jdj
j=0
Aim: find 89 so that d’ is B-conjugate to D’

Result (orthogonal gradients): ¢°Tg/ = 0 for all i # j
Proof: span{g'} = span{d'}

— ¢/ = Z‘Z:O R dk for some /¥

— ¢ Ty =31 _ Vg TdF = 0 when j < i



BUILDING A B-CONJUGATE SUBSPACE (cont.)

o d=—g +ZZ L B

© djTg’zOfor] :0,...,i—1,wheregi:Bpi+g
Result: ¢'Td' = —||¢'||3

Proof: ¢'Td' = —¢'T¢g' + Z;;E BiigiTdi

12
Corollary: o = d|l|gl|3|iil #£0<=g' #0
Proof: by definition -
. gz sz

¢ T T4TBd

BUILDING A B-CONJUGATE SUBSPACE (cont.)

o d=—g + 37 BId
© g'Tg) =0foralli#j

Result: ¢/ TBd’ =0if j <i—1and ¢’ T Bd'"™ =

Proof: p/t' =p/ + a/d/ & ¢ = Bp't!l + ¢

— ¢/"' = ¢/ + o/ Bd’

s i Tyt = giTgi 4 qigi TR

— ¢TBd = 0ifj<i—1

while ¢’ Tg' = ¢’ Tg" ' + o' g TBdtif j =i —1
— ¢ B = 3o



BUILDING A B-CONJUGATE SUBSPACE (cont.)

o di — _gi + 22;10 ﬁlkdk
o d*TBg' =0if k <i—1and d~'TBg’' = ||¢||3/a’*
® az’—l — Hgi—lug/di—l TBdi—l

1gi-1l13

Result: 87 =0for j<i—1land 81 = 3 =

Proof: B-conjugacy — i

0=d'"Bd' = —d'"Bg'+ ) p*d'"Bd" = -’ "Bg' + pd’ " Bd’

—s 3= d/TBg A TR

Result immediate for j < ¢ —1. For j =4 — 1,
giil = d'"Bg lg'll3 R
T dTBA T ol TR g2

CONJUGATE-GRADIENT METHOD

Given p° =0, set g = g, d* = —g and i = 0.
Until ¢* “small” iterate

Q/i — _gi sz/dz Tde

P = pi 4 aidd

g+l = g + o' Bd

B =1lg3/19'l13

di—i—l — _gi—i—l + 5zdz

and increase ¢ by 1

Important features
o dTgt=0=¢g/Tg" forall j=0,...,1

© g'p’ < 0fori=1,...,n = descent direction for any p, = p

o stop: [|¢°|| < min(||g]|*, n)||lg|| (0<n,w<1) = fast convergence



CONJUGATE GRADIENT METHOD GIVES DESCENT

1—2

gifl Tdifl _ difl T(g + Bpifl) _ difl Tg + Zajdifl Tij _ difl Tg
=0
p’ minimizes ¢(p) in D' =
i il g —'d! g1 = i1l _ gtd—
p=p di-1T Bi—1 =P di-1T Bi—1
— _ _ (gTdi—1)?
T i __ T i-1__ _\9
gr =9p Ji-1TBgi-1’
= ¢'p' < g'p"~! = (induction)
g'pt <0
since A
Dol o
9' By

= pp = p' is a descent direction

CG METHODS FOR GENERAL QUADRATICS

Suppose f(z) is quadratic and x = z¢ + p
Taylors theorem —

® can minimize as function of p using CG

o ifr,=x+p = gi = g(xo) + H(xo)p; = g(x;)

-
| i .
¢ — g(xi) = arg min f(x; + ad')

T T TH ) d

«



NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic f(x)

Given z° and g(xg), set d° = —g(xy) and ¢ = 0.
Until g(xy) “small” iterate

o' = arg min f(z; + ad’)
o

Tir1 = T + Oéidi

B = llglaie )13/l

dz—I—l — _g<xi+1> + Bzdz

and increase ¢ by 1

may also be used for nonlinear f(z) (Fletcher & Reeves)
© replace calculation of o by suitable linesearch

© other methods pick different 3’ to ensure descent



