Part 2: Linesearch methods for unconstrained optimization

Nick Gould (RAL)

 $\begin{array}{ll}
\text{minimize} & f(x) \\
x \in \mathbb{R}^n
\end{array}$

Part C course on continuoue optimization

ITERATIVE METHODS

- \odot in practice very rare to be able to provide explicit minimizer
- \odot iterative method: given starting "guess" x_0 , generate sequence

$$\{x_k\}, k = 1, 2, \dots$$

- \odot AIM: ensure that (a subsequence) has some favourable limiting properties:
- \diamond satisfies first-order necessary conditions
- $\diamond\,$ satisfies second-order necessary conditions

Notation:
$$f_k = f(x_k), g_k = g(x_k), H_k = H(x_k).$$

UNCONSTRAINED MINIMIZATION

 $\text{minimize } f(x) \\
 x \in \mathbb{R}^n$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

- $\odot\,$ assume that $f\in C^1$ (sometimes $C^2)$ and Lipschitz
- \odot often in practice this assumption violated, but not necessary

LINESEARCH METHODS

- \odot calculate a **search direction** p_k from x_k
- ensure that this direction is a **descent direction**, i.e.,

$$g_k^T p_k < 0 \text{ if } g_k \neq 0$$

so that, for small steps along p_k , the objective function **will** be reduced

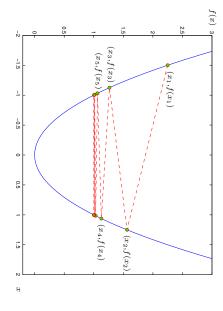
 \odot calculate a suitable **steplength** $\alpha_k > 0$ so that

$$f(x_k + \alpha_k p_k) < f_k$$

- \circ computation of α_k is the **linesearch**—may itself be an iteration
- \odot generic linesearch method:

$$x_{k+1} = x_k + \alpha_k p_k$$

STEPS MIGHT BE TOO LONG



The objective function $f(x)=x^2$ and the iterates $x_{k+1}=x_k+\alpha_k p_k$ generated by the descent directions $p_k=(-1)^{k+1}$ and steps $\alpha_k=2+3/2^{k+1}$ from $x_0=2$

PRACTICAL LINESEARCH METHODS

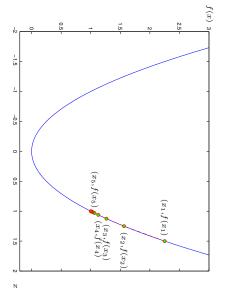
 \odot in early days, pick α_k to minimize

$$f(x_k + \alpha p_k)$$

- exact linesearch—univariate minimization
- rather expensive and certainly not cost effective
- ⊙ modern methods: **inexact** linesearch
- $\diamond\,$ ensure steps are neither too long nor too short
- $\diamond\,$ try to pick "useful" initial stepsize for fast convergence
- best methods are either
- ▷ "backtracking- Armijo" or
- "Armijo-Goldstein"

based

STEPS MIGHT BE TOO SHORT



The objective function $f(x)=x^2$ and the iterates $x_{k+1}=x_k+\alpha_k p_k$ generated by the descent directions $p_k=-1$ and steps $\alpha_k=1/2^{k+1}$ from $x_0=2$

BACKTRACKING LINESEARCH

Procedure to find the stepsize α_k :

Given
$$\alpha_{\text{init}} > 0$$
 (e.g., $\alpha_{\text{init}} = 1$)
let $\alpha^{(0)} = \alpha_{\text{init}}$ and $l = 0$
Until $f(x_k + \alpha^{(l)}p_k)$ "<" f_k
set $\alpha^{(l+1)} = \tau \alpha^{(l)}$, where $\tau \in (0, 1)$ (e.g., $\tau = \frac{1}{2}$)
and increase l by 1
Set $\alpha_k = \alpha^{(l)}$

- \odot this prevents the step from getting too small . . . but does not prevent too large steps relative to decrease in f
- o need to tighten requirement

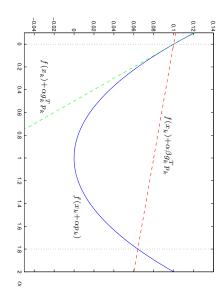
$$f(x_k + \alpha^{(l)}p_k) "<" f_k$$

ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

$$f(x_k + \alpha_k p_k) \le f(x_k) + \alpha_k \beta g_k^T p_k$$

for some
$$\beta \in (0,1)$$
 (e.g., $\beta = 0.1$ or even $\beta = 0.0001$)



SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that $f \in C^1$, that g(x) is Lipschitz continuous with Lipschitz constant $\gamma(x)$, that $\beta \in (0,1)$ and that p is a descent direction at x. Then the Armijo condition

$$f(x + \alpha p) \leq f(x) + \alpha \beta g(x)^T p$$

is satisfied for all $\alpha \in [0, \alpha_{\max(x)}]$, where

$$\alpha_{\max} = \frac{2(\beta - 1)g(x)^T p}{\gamma(x) ||p||_2^2}$$

BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize α_k :

Given
$$\alpha_{\text{init}} > 0$$
 (e.g., $\alpha_{\text{init}} = 1$) let $\alpha^{(0)} = \alpha_{\text{init}}$ and $l = 0$
Until $f(x_k + \alpha^{(l)}p_k) \le f(x_k) + \alpha^{(l)}\beta g_k^T p_k$
set $\alpha^{(l+1)} = \tau \alpha^{(l)}$, where $\tau \in (0,1)$ (e.g., $\tau = \frac{1}{2}$)
and increase l by 1
Set $\alpha_k = \alpha^{(l)}$

PROOF OF THEOREM 2.1

Taylor's theorem (Theorem 1.1) +

$$\alpha \le \frac{2(\beta - 1)g(x)^T p}{\gamma(x) ||p||_2^2},$$

$$f(x + \alpha p) \le f(x) + \alpha g(x)^T p + \frac{1}{2} \gamma(x) \alpha^2 ||p||^2$$

$$\le f(x) + \alpha g(x)^T p + \alpha (\beta - 1) g(x)^T p$$

$$= f(x) + \alpha \beta g(x)^T p$$

 \downarrow

THE ARMIJO LINESEARCH TERMINATES

backtracking-Armijo linesearch terminates with p_k is a descent direction at x_k . Then the stepsize generated by the tinuous with Lipschitz constant γ_k at x_k , that $\beta \in (0,1)$ and that Corollary 2.2. Suppose that $f \in C^1$, that g(x) is Lipschitz con-

$$lpha_k \ge \min\left(lpha_{ ext{init}}, rac{2 au(eta-1)g_k^T p_k}{\gamma_k \|p_k\|_2^2}
ight)$$

GENERIC LINESEARCH METHOD

Given an initial guess x_0 , let k=0

Until convergence:

Find a descent direction p_k at x_k

Compute a stepsize α_k using a

backtracking-Armijo linesearch along p_k

Set $x_{k+1} = x_k + \alpha_k p_k$, and increase k by 1

PROOF OF COROLLARY 2.2

Theorem 2.1 \Longrightarrow linesearch will terminate as soon as $\alpha^{(l)} \le \alpha_{\text{max}}$.

- 2 cases to consider:
- 1. May be that α_{init} satisfies the Armijo condition $\Longrightarrow \alpha_k = \alpha_{\mathrm{init}}$
- 2. Otherwise, must be a last linesearch iteration (the *l*-th) for which

$$\alpha^{(l)} > \alpha_{\max} \implies \alpha_k \ge \alpha^{(l+1)} = \tau \alpha^{(l)} > \tau \alpha_{\max}$$

Combining these 2 cases gives required result.

GLOBAL CONVERGENCE THEOREM

tinuous on \mathbb{R}^n . Then, for the iterates generated by the Generic Linesearch Method, **Theorem 2.3.** Suppose that $f \in C^1$ and that g is Lipschitz con-

either

$$g_l = 0$$
 for some $l \ge 0$

S.

$$\lim_{k \to \infty} f_k = -\infty$$

Or.

$$\lim_{k\to\infty}\min\left(|p_k^Tg_k|,|p_k^Tg_k|/||p_k||_2\right)=0.$$

PROOF OF THEOREM 2.3

Suppose that $g_k \neq 0$ for all k and that $\lim_{k \to \infty} f_k > -\infty$. Armijo \Longrightarrow

$$f_{k+1} - f_k \leq \alpha_k \beta p_k^T g_k$$

for all $k \Longrightarrow$ summing over first j iterations

$$f_{j+1} - f_0 \leq \sum_{k=0}^{\circ} \alpha_k \beta p_k^T g_k.$$

 $f_{j+1}-f_0 \leq \sum_{k=0}^j \alpha_k \beta p_k^T g_k.$ LHS bounded below by assumption \Longrightarrow RHS bounded below. Sum composed of -ve terms \Longrightarrow

$$\lim_{k \to \infty} \alpha_k | p_k^T g_k | = 0$$

$$\mathcal{K}_1 \stackrel{\text{def}}{=} \left\{ k \mid \alpha_{\text{init}} > \frac{2\tau(\beta - 1)g_k^T p_k}{\gamma \|p_k\|_2^2} \right\} \quad \& \quad \mathcal{K}_2 \stackrel{\text{def}}{=} \left\{ 1, 2, \ldots \right\} \setminus \mathcal{K}_1$$

where γ is the assumed uniform Lipschitz constant.

METHOD OF STEEPEST DESCENT

The search direction

$$p_k = -g_i$$

gives the so-called ${f steepest-descent}$ direction

- \circ p_k is a descent direction
- \odot p_k solves the problem

minimize
$$m_k^L(x_k+p) \stackrel{\text{def}}{=} f_k + g_k^T p$$
 subject to $||p||_2 = ||g_k||_2$

method of steepest descent Any method that uses the steepest-descent direction is a

> For $k \in \mathcal{K}_2$, For $k \in \mathcal{K}_1$, $\alpha_k p_k^T g_k \leq \frac{2\tau(\beta-1)}{\gamma} \left(\frac{g_k^T p_k}{\|p_k\|}\right)^2 < 0$ $\lim_{k \in \mathcal{K}_1 \to \infty} \frac{|p_k^T g_k|}{\|p_k\|_2} = 0.$ $\alpha_k \ge \frac{2\tau(\beta - 1)g_k^T p_k}{\gamma \|p_k\|_2^2}$

> > 1

$$lpha_k \geq lpha_{
m init}$$
 $\lim_{k \in \mathcal{K}_2 o \infty} |p_k^T g_k| = 0.$

2

Combining (1) and (2) gives the required result.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

tinuous on \mathbb{R}^n . Then, for the iterates generated by the Generic **Theorem 2.4.** Suppose that $f \in C^1$ and that g is Lipschitz con-Linesearch Method using the steepest-descent direction,

either

$$g_l = 0$$
 for some $l \ge 0$

O.

 $^{\circ}$

$$\lim_{k \to \infty} f_k = -\infty$$

$$\lim_{k \to \infty} g_k = 0.$$

PROOF OF THEOREM 2.4

Follows immediately from Theorem 2.3, since

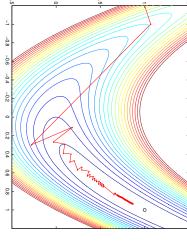
$$\min \left(|p_k^T g_k|, |p_k^T g_k| / \|p_k\|_2 \right) = \|g_k\|_2 \min \left(1, \|g_k\|_2 \right)$$

and thus

$$\lim_{k \rightarrow \infty} \min \left(|p_k^T g_k|, |p_k^T g_k| / ||p_k||_2 \right) = 0$$

implies that $\lim_{k\to\infty} g_k = 0$.

STEEPEST DESCENT EXAMPLE



Contours for the objective function $f(x,y)=10(y-x^2)^2+(x-1)^2$, and the iterates generated by the Generic Linesearch steepest-descent method

METHOD OF STEEPEST DESCENT (cont.)

- \odot archetypical globally convergent method
- \odot many other methods resort to steepest descent in bad cases
- not scale invariant
- \odot convergence is usually very (very!) slow (linear)
- \odot numerically often not convergent at all

MORE GENERAL DESCENT METHODS

Let B_k be a symmetric, positive definite matrix, and define the search direction p_k so that

$$B_k p_k = -g_k$$

Then

- \circ p_k is a descent direction
- \circ p_k solves the problem

minimize
$$m_k^Q(x_k + p) \stackrel{\text{def}}{=} f_k + g_k^T p + \frac{1}{2} p^T B_k p$$

 \odot if the Hessian H_k is positive definite, and $B_k = H_k$, this is Newton's method

MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that $f \in C^1$ and that g is Lipschitz continuous on \mathbb{R}^n . Then, for the iterates generated by the Generic Linesearch Method using the more general descent direction, either

$$g_l = 0$$
 for some $l \ge 0$

Ç

 $^{\circ}$

$$\lim_{k \to \infty} f_k = -\infty$$

 $^{\circ}$

$$\lim_{k \to \infty} g_k = 0$$

provided that the eigenvalues of B_k are uniformly bounded and bounded away from zero.

Thus
$$\frac{|p_k^T g_k|}{||p_k||_2} \ge \frac{\lambda_{\min}}{\lambda_{\max}} ||g_k||_2$$

$$= \min\left(|p_k^T g_k|, |p_k^T g_k|/||p_k||_2\right) \ge \frac{||g_k||_2}{\lambda_{\max}} \min\left(\lambda_{\min}, ||g_k||_2\right)$$

$$\Rightarrow \lim_{k \to \infty} \min\left(|p_k^T g_k|, |p_k^T g_k|/||p_k||_2\right) = 0$$

$$\Rightarrow \lim_{k \to \infty} \lim_{k \to \infty} g_k = 0.$$

PROOF OF THEOREM 2.5

Let $\lambda_{\min}(B_k)$ and $\lambda_{\max}(B_k)$ be the smallest and largest eigenvalues of B_k . By assumption, there are bounds $\lambda_{\min} > 0$ and λ_{\max} such that

$$\lambda_{\min} \le \lambda_{\min}(B_k) \le \frac{s^T B_k s}{\|s\|^2} \le \lambda_{\max}(B_k) \le \lambda_{\max}$$

and thus that

$$\lambda_{\max}^{-1} \leq \lambda_{\max}^{-1}(B_k) = \lambda_{\min}(B_k^{-1}) \leq \frac{s^T B_k^{-1} s}{\|s\|^2} \leq \lambda_{\max}(B_k^{-1}) = \lambda_{\min}^{-1}(B_k) \leq \lambda_{\min}^$$

for any nonzero vector s. Thus

$$|p_k^T g_k| = |g_k^T B_k^{-1} g_k| \geq \lambda_{\min}(B_k^{-1}) ||g_k||_2^2 \geq \lambda_{\max}^{-1} ||g_k||_2^2$$

In additior

$$\|p_k\|_2^2 = g_k^T B_k^{-2} g_k \leq \lambda_{\max}(B_k^{-2}) \|g_k\|_2^2 \leq \lambda_{\min}^{-2} \|g_k\|_2^2,$$

 \downarrow

$$||p_k||_2 \le \lambda_{\min}^{-1} ||g_k||_2$$

MORE GENERAL DESCENT METHODS (cont.)

- \odot may be viewed as "scaled" steepest descent
- \odot convergence is often faster than steepest descent
- \odot can be made scale invariant for suitable B_k

CONVERGENCE OF NEWTON'S METHOD

Theorem 2.6. Suppose that $f \in C^2$ and that H is Lipschitz continuous on \mathbb{R}^n . Then suppose that the iterates generated by the Generic Linesearch Method with $\alpha_{\text{init}} = 1$ and $\beta < \frac{1}{2}$, in which the search direction is chosen to be the Newton direction $p_k = -H_k^{-1}g_k$ whenever possible, has a limit point x_* for which $H(x_*)$ is positive definite. Then

- (i) $\alpha_k = 1$ for all sufficiently large k,
- (ii) the entire sequence $\{x_k\}$ converges to x_* , and
- (iii) the rate is Q-quadratic, i.e, there is a constant $\kappa \geq 0$.

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x_*\|_2}{\|x_k - x_*\|_2^2} \le \kappa.$$

Taylor's theorem $\implies \exists z_k \text{ between } x_k \text{ and } x_k + p_k \text{ such that}$

$$f(x_k + p_k) = f_k + p_k^T g_k + \frac{1}{2} p_k^T H(z_k) p_k.$$

Lipschitz continuity of $H \& H_k p_k + g_k = 0 \Longrightarrow$

$$f(x_k + p_k) - f_k - \frac{1}{2} p_k^T g_k = \frac{1}{2} (p_k^T g_k + p_k^T H(z_k) p_k)$$

$$= \frac{1}{2} (p_k^T g_k + p_k^T H_k p_k) + \frac{1}{2} (p_k^T (H(z_k) - H_k) p_k)$$

$$\leq \frac{1}{2} \gamma ||z_k - x_k||_2 ||p_k||_2^2 \leq \frac{1}{2} \gamma ||p_k||_2^3$$

$$\tag{4}$$

Now pick k sufficiently large so that

$$\gamma ||p_k||_2 \le \lambda_{\min}(H_*)(1 - 2\beta).$$

 $+(3)+(4) \Longrightarrow$

$$\begin{array}{l} f(x_k + p_k) - f_k \leq \frac{1}{2} p_k^T g_k + \frac{1}{2} \lambda_{\min}(H_*) (1 - 2\beta) \|p_k\|_2^2 \\ \leq \frac{1}{2} (1 - (1 - 2\beta)) p_k^T g_k = \beta p_k^T g_k \end{array}$$

 \Longrightarrow unit stepsize satisfies the Armijo condition for all sufficiently large $k\in\mathcal{K}$

PROOF OF THEOREM 2.6

Consider $\lim_{k \in \mathcal{K}} x_k = x_*$. Continuity $\Longrightarrow H_k$ positive definite for all $k \in \mathcal{K}$ sufficiently large $\Longrightarrow \exists k_0 \geq 0$:

$$p_k^T H_k p_k \ge \frac{1}{2} \lambda_{\min}(H_*) \|p_k\|_2^2$$

 $\forall k_0 \leq k \in \mathcal{K}$, where $\lambda_{\min}(H_*) = \text{smallest eigenvalue of } H(x_*) \Longrightarrow$

$$|p_k^T g_k| = -p_k^T g_k = p_k^T H_k p_k \ge \frac{1}{2} \lambda_{\min}(H_*) ||p_k||_2^2.$$
 (3)

 $\forall k_0 \leq k \in \mathcal{K}$, and

$$\lim_{K\to\infty} p_k =$$

since Theorem 2.5 \Longrightarrow at least one of the LHS of (3) and

$$\frac{|p_k^T g_k|}{\|p_k\|_2} = -\frac{p_k^T g_k}{\|p_k\|_2} \ge \frac{1}{2} \lambda_{\min}(H_*) \|p_k\|_2$$

converges to zero for such k.

Now note that $||H_k^{-1}||_2 \le 2/\lambda_{\min}(H_*)$ for all sufficiently large $k \in \mathcal{K}$. The iteration gives

$$\begin{split} x_{k+1} - x_* &= x_k - x_* - H_k^{-1} g_k = x_k - x_* - H_k^{-1} \left(g_k - g(x_*) \right) \\ &= H_k^{-1} \left(g(x_*) - g_k - H_k(x_* - x_k) \right). \end{split}$$

But Theorem $1.3 \Longrightarrow$

$$\|g(x_*) - g_k - H_k \left(x_* - x_k \right) \|_2 \leq \gamma \|x_* - x_k\|_2^2$$

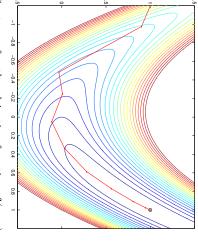
 \parallel

$$\|x_{k+1} - x_*\|_2 \le \gamma \|H_k^{-1}\|_2 \|x_* - x_k\|_2^2$$

which is (iii) when $\kappa = 2\gamma/\lambda_{\min}(H_*)$. for $k \in \mathcal{K}$

Result (ii) follows since once iterate becomes sufficiently close to x_* , (iii) for $k \in \mathcal{K}$ sufficiently large implies $k+1 \in \mathcal{K} \Longrightarrow \mathcal{K} = IN$. Thus (i) and (iii) are true for all k sufficiently large.

NEWTON METHOD EXAMPLE



Contours for the objective function $f(x,y)=10(y-x^2)^2+(x-1)^2$, and the iterates generated by the Generic Linesearch Newton method

QUASI-NEWTON METHODS

Various attempts to approximate H_k :

○ Finite-difference approximations: $(H_h)_{e_i} \approx h^{-1}(q(x_h)_{e_i})$

$$(H_k)e_i \approx h^{-1}(g(x_k + he_i) - g_k) = (B_k)e_i$$

for some "small" scalar h > 0

 \odot Secant approximations: try to ensure the ${\bf secant}$ ${\bf condition}$

 $B_{k+1}s_k = y_k \approx H_{k+1}s_k$, where $s_k = x_{k+1} - x_k$ and $y_k = g_{k+1} - g_k$

 Symmetric Rank-1 method (but may be indefinite or even fail):

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$

 \diamond **BFGS method**: (symmetric and positive definite if $y_k^T s_k > 0$):

$$B_{k+1} = B_k + \frac{y_k y_k^T}{y_k^T s_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k}$$

MODIFIED NEWTON METHODS

If H_k is indefinite, it is usual to solve instead

$$(H_k+M_k)p_k\equiv B_kp_k=-g_k$$

where

o M_k chosen so that $B_k = H_k + M_k$ is "sufficiently" positive definite

o $M_k = 0$ when H_k is itself "sufficiently" positive definite

Possibilities:

 \odot If H_k has the spectral decomposition $H_k = Q_k D_k Q_k^T$ then

$$B_k \equiv H_k + M_k = Q_k \max(\epsilon, |D_k|) Q_k^T$$

 $\odot \ M_k = \max(0, \epsilon - \lambda_{\min}(H_k))I$

 \odot Modified Cholesky: $B_k \equiv H_k + M_k = L_k L_k^T$

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models $(B_k \text{ positive definite})$

$$p_k = (\text{approximate}) \arg \min_{p \in \mathbb{R}^n} f_k + p^T g_k^T + \frac{1}{2} p^T B_k p$$

Generic convex quadratic problem: (B positive definite)

(approximately) minimize
$$q(p) = p^T g + \frac{1}{2} p^T B p$$

MINIMIZATION OVER A SUBSPACE

Given vectors $\{d^0, \ldots, d^{i-1}\}$, let

$$\odot D^i = (d^0 : \cdots : d^{i-1})$$

$$\odot p^i = \arg\min_{p \in \mathcal{D}^i} q(p)$$

Result:
$$D^{iT}g^{i} = 0$$
, where $g^{i} = Bp^{i} + g^{i}$

Result:
$$D^{iT}g^{i} = 0$$
, where $g^{i} = Bp^{i} + g$
Proof: require $p^{i} = D^{i}p_{d}^{i}$, where $p_{d}^{i} = \arg\min_{p_{d} \in \mathbb{R}^{i}} q(D^{i}p_{d})$
But $q(D^{i}p_{d}) = p_{d}^{T}D^{iT}g + \frac{1}{2}p_{d}^{T}D^{iT}BD^{i}p_{d} \Longrightarrow$

$$\text{it } q(D^i p_d) = p_d^T D^{i T} g + \frac{1}{2} p_d^T D^{i T} B D^i p_d \Longrightarrow$$

$$0 = D^{i\,T}BD^ip_d^i + D^{i\,T}g = D^{i\,T}(BD^ip_d^i + g) = D^{i\,T}(Bp^i + g) = D^{i\,T}g^i$$

Equivalently: $d^{jT}g^i = 0$ for j = 0, ..., i-1

MINIMIZATION OVER A B-CONJUGATE SUBSPACE

Minimizer over
$$\mathcal{D}^i\colon p^i=p^{i-1}-d^{i-1\,T}g^{i-1}D^i(D^{i\,T}BD^i)^{-1}e_i$$

Suppose in addition the members of \mathcal{D}^i are B-conjugate

$$\odot$$
 B-conjugacy: $d^{iT}Bd^{j} = 0 \ (i \neq j)$

Result: $p^i = p^{i-1} + \alpha^{i-1}d^{i-1}$, where

$$\alpha^{i-1} = -\frac{d^{i-1} T g^{i-1}}{d^{i-1} T B d^{i-1}}$$

Proof: $D^{iT}BD^{i} = \text{diagonal matrix with entries } d^{jT}Bd^{j}$

for
$$j = 0, ..., i - 1$$

for
$$j = 0, ... i - 1$$

 $\implies (D^{iT}BD^{i})^{-1} = \text{diagonal matrix with entries } 1/d^{jT}Bd^{j}$
for $j = 0, ... i - 1$

$$\implies (D^{iT}BD^{i})^{-1}e_{i} = (1/d^{i-1T}Bd^{i-1})e_{i}$$

MINIMIZATION OVER A SUBSPACE (cont.)

$$omega d^{j} T g^{i} = 0$$
 for $j = 0, \dots, i-1$, where $g^{i} = B p^{i} + g^{i}$

Proof: Clearly
$$p^{i-1} \in \mathcal{D}^{i-1} \subset \mathcal{D}^i$$

Proof: Clearly
$$p^{i-1} \in \mathcal{D}^{i-1} \subset \mathcal{D}^i$$
 \Longrightarrow require $p^i = p^{i-1} + D^i p^i_d$, where $p^i_d = \arg\min_{p_d \in \mathbb{R}^i} q(p^{i-1} + D^i p_d)$

But
$$q(p^{i-1} + D^{i}p_{d})$$

= $q(p^{i-1}) + p_{d}^{T}D^{iT}(g + Bp^{i-1}) + \frac{1}{2}p_{d}^{T}D^{iT}BD^{i}p_{d}$
= $q(p^{i-1}) + p_{d}^{T}D^{iT}g^{i-1} + \frac{1}{2}p_{d}^{T}D^{iT}BD^{i}p_{d}$
= $q(p^{i-1}) + p_{d}^{T}(d^{i-1T}g^{i-1})e_{i} + \frac{1}{2}p_{d}^{T}D^{iT}BD^{i}p_{d}$

where
$$e_i$$
 is *i*-th unit vector \Longrightarrow $p_d^i = -d^{i-1} T g^{i-1} (D^i T B D^i)^{-1} e_i$

$$g_d^i = -d^{i-1} g^{i-1} (D^{iT} B D^i)^{-1} e_i$$

BUILDING A B-CONJUGATE SUBSPACE

$$oldsymbol{0} d^{jT}g^{i} = 0 \text{ for } j = 0, \dots, i-1$$

Since this implies g^i is independent of \mathcal{D}^i , let

$$d^i = -g^i + \sum_{j=0}^{i-1} \beta^{ij} d^j$$

Aim: find β^{ij} so that d^i is B-conjugate to \mathcal{D}^i

Proof: span $\{g^i\}$ = span $\{d^i\}$ $\implies g^j = \sum_{k=0}^j \gamma^{j,k} d^k \text{ for some } \gamma^{j,k}$ $\implies g^{i\,T}g^j = \sum_{k=0}^j \gamma^{j,k}g^{i\,T}d^k = 0 \text{ when } j < i$ **Result** (orthogonal gradients): $g^{iT}g^{j} = 0$ for all $i \neq j$

$$\implies g^{j} = \sum_{k=0}^{j} \gamma^{j,m} d^{n} \text{ for some } \gamma^{j,m}$$

$$\implies g^{i} T g^{j} = \sum_{k=0}^{j} \gamma^{j,k} g^{i} T d^{k} = 0 \text{ when } j < i$$

BUILDING A B-CONJUGATE SUBSPACE (cont.)

$$\odot \ d^i = -g^i + \textstyle \sum_{j=0}^{i-1} \beta^{ij} d^j$$

$$oldsymbol{o} d^j T g^i = 0$$
 for $j = 0, \dots, i-1$, where $g^i = B p^i + g$

Result:
$$g^{i \cdot i} d^i = -\|g^i\|_2^2$$

Result:
$$g^{iT}d^{i} = -\|g^{i}\|_{2}^{2}$$

Proof: $g^{iT}d^{i} = -g^{iT}g^{i} + \sum_{j=0}^{i-1} \beta^{ij}g^{iT}d^{j}$

Corollary:
$$\alpha^i = \frac{\|g^i\|_2^2}{d^{iT}Bd^i} \neq 0 \iff g^i \neq 0$$

Proof: by definition

$$\alpha^i = -\frac{g^{i\,T}d^i}{d^{i\,T}Bd^i}$$

BUILDING A B-CONJUGATE SUBSPACE (cont.)

$$\odot d^i = -g^i + \sum_{k=0}^{i-1} \beta^{ik} d^k$$

$$\odot \ d^{kT}Bg^i = 0 \text{ if } k < i-1 \text{ and } d^{i-1T}Bg^i = \|g^i\|_2^2/\alpha^{i-1}$$

$$\odot \ \alpha^{i-1} = \|g^{i-1}\|_2^2/d^{i-1} \, TBd^{i-1}$$

Result:
$$\beta^{ij} = 0$$
 for $j < i - 1$ and $\beta^{i\,i-1} \equiv \beta^i = \frac{\|g_i\|_2^2}{\|g_{i-1}\|_2^2}$

Proof: B-conjugacy
$$\Longrightarrow$$
 $i-1$

$$0 = d^{jT}Bd^{i} = -d^{jT}Bg^{i} + \sum_{k=0}^{i-1} \beta^{ik}d^{jT}Bd^{k} = -d^{jT}Bg^{i} + \beta^{ij}d^{jT}Bd^{j}$$

$$\implies \beta^{ij} = d^{jT}Bg^{i}/d^{jT}Bd^{j}^{k=0}$$

Result immediate for j < i - 1. For j = i - 1,

$$\beta^{i\;i-1} = \frac{d^{i-1\;T}Bg^i}{d^{i-1}TBd^{i-1}} = \frac{\|g^i\|_2^2}{\alpha^{i-1}d^{i-1}TBd^{i-1}} = \frac{\|g^i\|_2^2}{\|g^{i-1}\|_2^2}$$

BUILDING A B-CONJUGATE SUBSPACE (cont.)

$$\odot d^i = -g^i + \sum_{j=0}^{i-1} \beta^{ij} d^j$$

$$g^{iT}g^{j} = 0$$
 for all $i \neq j$

Result:
$$g^{iT}Bd^{j} = 0$$
 if $j < i - 1$ and $g^{iT}Bd^{i-1} = \frac{\|g^{i}\|_{2}^{2}}{\alpha^{i-1}}$

Proof:
$$p^{j+1} = p^j + \alpha^j d^j \& g^{j+1} = Bp^{j+1} + g$$

 $\implies g^{j+1} = g^j + \alpha^j B d^j$

$$\Rightarrow cj+1 = cj + cjRdj$$

$$\Rightarrow g^{i\,T}g^{j+1} = g^{i\,T}g^j + \alpha^j g^{i\,T}$$

$$\Rightarrow g^{iT}Bd^j = 0 \text{ if } j < i-1$$

$$\Rightarrow \overbrace{g^{i}}^{T}g^{j+1} = g^{i}Tg^{j} + \alpha^{j}g^{i}TBd^{j}$$

$$\Rightarrow g^{i}TBd^{j} = 0 \text{ if } j < i - 1$$
while $g^{i}Tg^{i} = g^{i}Tg^{i-1} + \alpha^{i-1}g^{i}TBd^{i-1} \text{ if } j = i - 1$

$$\Rightarrow g^{i}TBd^{i-1} = ||g^{i}||_{2}^{2}/\alpha^{i-1}$$

$$\Rightarrow g^{\prime +}Bd^{\prime -1} = \|g^{\prime}\|_2^2/\alpha^{\prime -1}$$

CONJUGATE-GRADIENT METHOD

Given
$$p^0 = 0$$
, set $g^0 = g$, $d^0 = -g$ and $i = 0$.
Until g^i "small" iterate
$$\alpha^i = -g^i T d^i d^i T B d^i$$

$$p^{i+1} = p^i + \alpha^i d^i$$

$$g^{i+1} = g^i + \alpha^i B d^i$$

$$g^{i+1} = g^i + \alpha^i B d^i$$

$$\beta^i = \|g^{i+1}\|_2^2 \|g^i\|_2^2$$

$$d^{i+1} = -g^{i+1} + \beta^i d^i$$

Important features

and increase i by 1

$$oldsymbol{0} d^{j} T g^{i+1} = 0 = g^{j} T g^{i+1} \text{ for all } j = 0, \dots, i$$

o
$$g^T p^i < 0$$
 for $i = 1, \dots, n \Longrightarrow$ descent direction for any $p_k = p^i$

○ **stop**:
$$||g^i|| \le \min(||g||^{\omega}, \eta)||g|| (0 < \eta, \omega < 1) \Longrightarrow$$
 fast convergence

CONJUGATE GRADIENT METHOD GIVES DESCENT

$$g^{i-1\,T}d^{i-1} = d^{i-1\,T}(g + Bp^{i-1}) = d^{i-1\,T}g + \sum_{j=0}^{i-2} \alpha_j d^{i-1\,T}Bd^j = d^{i-1\,T}g$$

$$p^i \text{ minimizes } g(p) \text{ in } \mathcal{D}^i \Longrightarrow$$

$$p^{i} \text{ minimizes } q(p) \text{ in } \mathcal{D}^{i} \Longrightarrow$$

$$p^{i} = p^{i-1} - \frac{g^{i-1}Td^{i-1}}{d^{i-1}TBd^{i-1}}d^{i-1} = p^{i-1} - \frac{g^{T}d^{i-1}}{d^{i-1}TBd^{i-1}}d^{i-1}.$$

$$\Longrightarrow g^{T}p^{i} = g^{T}p^{i-1} - \frac{(g^{T}d^{i-1})^{2}}{d^{i-1}TBd^{i-1}},$$

$$\Longrightarrow g^{T}p^{i} < g^{T}p^{i-1} \Longrightarrow \text{ (induction)}$$

$$g^{T}p^{i} < 0$$

$$g^T p^1 = -\frac{\|g\|_2^4}{g^T B g} < 0.$$

 $\implies p_k = p^i$ is a descent direction

NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic f(x)

Given
$$x^0$$
 and $g(x_0)$, set $d^0 = -g(x_0)$ and $i = 0$.
Until $g(x_k)$ "small" iterate
$$\alpha^i = \arg\min f(x_i + \alpha d^i)$$

$$x_{i+1} = x_i + \alpha^i d^i$$

$$\beta^i = \|g(x_{i+1})\|_2^2 / \|g(x_i)\|_2^2$$

$$d^{i+1} = -g(x_{i+1}) + \beta^i d^i$$
and increase i by 1

may also be used for nonlinear f(x) (Fletcher & Reeves)

- \odot replace calculation of α^i by suitable linesearch
- \odot other methods pick different β^i to ensure descent

CG METHODS FOR GENERAL QUADRATICS

Suppose f(x) is quadratic and $x = x_0 + p$

Taylors theorem \Longrightarrow

$$f(x) = f(x_0 + p) = f(x_0) + p^T g(x_0) + \frac{1}{2} p^T H(x_0) p$$

 $\odot\,$ can minimize as function of p using CG

$$\circ \text{ if } x_i = x_0 + p_i \Longrightarrow g^i = g(x_0) + H(x_0)p_i = g(x_i)$$

$$\circ \alpha^i = -\frac{g(x_i)^T d^i}{d^i T H(x_0) d^i} = \arg \min_{\alpha} f(x_i + \alpha d^i)$$