Part 2: Linesearch methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
r€IR"

Part C course on continuoue optimization

ITERATIVE METHODS

® in practice very rare to be able to provide explicit minimizer
© iterative method: given starting “guess” x(, generate sequence
{zx}, k=1,2,...
© ATM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fr = f(xr), gr = g(@r), Hr = H(xy).

UNCONSTRAINED MINIMIZATION

minimize f(z)
z€R"

where the objective function f:IR" — IR

© assume that f € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

LINESEARCH METHODS

© calculate a search direction py from x;
© ensure that this direction is a descent direction, i.e.,
gip, <0 if g £0

so that, for small steps along pg, the objective function
will be reduced

o calculate a suitable steplength «y > 0 so that

J(@p + aupr) < fr
© computation of ay is the linesearch—may itself be an iteration
© generic linesearch method:

Tp41 = Tk + O4Pk



STEPS MIGHT BE TOO LONG
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The objective function f(z) = 22 and the iterates zy,1 = 71 + arpp
generated by the descent directions pp = (—1)"! and steps oy, =
2 +3/2M1 from x = 2

PRACTICAL LINESEARCH METHODS

© in early days, pick ay to minimize

[y + apr)
o exact linesearch—univariate minimization

o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”

based

STEPS MIGHT BE TOO SHORT
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The objective function f(z) = 22 and the iterates z3,1 = x5 + arpp
generated by the descent directions py = —1 and steps ay = 1/2F+!
from xg = 2

BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given ajpip > 0 (e.g., apit = 1)
let ¥ = ;¢ and 1 =0
Until f(zy, + aWp)“<” fi

) = 7o) where 7 € (0,1) (e.g., 7 = 1)

set av
and increase [ by 1

Set ay = alV)

© this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

flap+aVpp) < fi



ARMIJO CONDITION BACKTRACKING-ARMIJO LINESEARCH
In order to prevent large steps relative to decrease in f, instead require
flay+ awpy) < flg) + anByipy

for some 8 € (0,1) (e.g., 8 =0.1 or even 5 = 0.0001)

Procedure to find the stepsize a;:

Given ajpit > 0 (e.g., ajpip = 1)

let o0 = Qjpit and [ =0

Until f(x, +aWp,) < f(z,) +aVBglp,
set o) = 70 where 7 € (0,1) (e.g., 7= 1)
and increase [ by 1

ST | COSETCT &

Set ap = alV)

f(zr+apk)
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fx)+agip
SATISFYING THE ARMIJO CONDITION PROOF OF THEOREM 2.1
Taylor’s theorem (Theorem 1.1) +
Theorem 2.1. Suppose that f € C!, that g(w) is Lipschitz con- o< 2(8 — C,QGWVH%
tinuous with Lipschitz constant y(x), that § € (0,1) and that p is V(@) |pl13

a descent direction at . Then the Armijo condition
_ @) + ag(@)"p + by(x)o?||p|

<
fla +ap) < f(z) + apg(a)"p < flz)+ o@@vﬂﬁ a(f —1)g(z)"p
is satisfied for all o € [0, Qpax(z)], Where = flz)+ aBg(z)'p
28— )g(x)"p
v(@)Ipll3

Dmbg@un -




THE ARMIJO LINESEARCH TERMINATES PROOF OF COROLLARY 2.2
Theorem 2.1 = linesearch will terminate as soon as a!) < ayax.

Coroll 2.9. 9 that O that < Linschit 2 cases to consider:

.Owo mﬁ‘u\w h ) M@ pose mm %‘ © ; “ va Nﬁav ® onmo HM MMH 1. May be that ajyis satisfies the Armijo condition = o = oyt
,aE.pocm with e ;.m CONSTANE T A Lk, P .Q € (0,1) and tha 2. Otherwise, must be a last linesearch iteration (the I-th) for which
P 18 a descent direction at x;. Then the stepsize generated by the

. - . . 1 !
backtracking-Armijo linesearch terminates with =70l > 7oy

al) > Qpax = Q) > al

. 27(8 — 1) g} pi Combining these 2 cases gives required result.
Q2 N | Qpit, cathiomt vmw ¢ ¢ !
Vellpxll3
GENERIC LINESEARCH METHOD GLOBAL CONVERGENCE THEOREM
Given an initial guess xg, let k =0 Theorem 2.3. Suppose that f € C! and that g is Lipschitz con-
Until convergence: tinuous on IR™. Then, for the iterates generated by the Generic
Find a descent direction py at xj Linesearch Method,
Compute a stepsize oy using a cither
backtracking-Armijo linesearch along py 9= 0 for some 1> 0
Set x41 = Tk + appk, and increase k by 1
or
i = e
or

) _@WS_\__E__MV =0.

lim min (|p} g,
Jim min (Ipk 95




PROOF OF THEOREM 2.3
Suppose that g # 0 for all k and that lim f, > —oo. Armijo =

k—o00
S — fi < Q%@MQ\Q

for all K = summing over first j iterations

J
finn =1 = MQ%@W@?

k=0
LHS bounded below by assumption => RHS bounded below. Sum
composed of -ve terms =

lim o |pjg,| = 0

k—o00

Let

def 27(8 — gl pr.
K, & ? | e > 0= Do
Ylpell3

where 7 is the assumed uniform Lipschitz constant.

W &K% {12,. . 0\ K

METHOD OF STEEPEST DESCENT

The search direction
Pk = —3gk

gives the so-called steepest-descent direction.
© pg is a descent direction

© py solves the problem
o L def T :
minimize my/(z; +p) = fi + g;.p subject to ||pll2 = ||gx|2
pER™

Any method that uses the steepest-descent direction is a
method of steepest descent.

For k € Ky,
27(8 = Dgipi

Qg > 3
Ykl
- wlmlé ,Qﬁsa ?
aprgr < —— | 7o ) <0
. S ¥ [pxll
T
T /2 (1)
keKi—oo [|py [l
For k € KCs,
k2 Qjpig
=
li To | =0. 2
peim [Pk gl (2)

Combining (1) and (2) gives the required result.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C' and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g =10 for some [ >0
or
lim \.\ﬁ = —00
k—o0
or
li =0.
Pl




PROOF OF THEOREM 2.4 METHOD OF STEEPEST DESCENT (cont.)
Follows immediately from Theorem 2.3, since

it (|pg gi 1Pk el /11pell2) = gl min (L, llg,l,) © archetypical globally convergent method

and thus . . - - © many other methods resort to steepest descent in bad cases
lim min A_Fam»_q _?mw_\__?ﬂ__& =0 . .
k—oo © not scale invariant
implies that limg_, g = 0.
® convergence is usually very (very!) slow (linear)

© numerically often not convergent at all

STEEPEST DESCENT EXAMPLE MORE GENERAL DESCENT METHODS
" Let By, be a symmetric, positive definite matrix, and define the
search direction py so that
A Bipr = — g
Then
: © pg is a descent direction
, © pg solves the problem
minimize m(zy, + p) Y f+glp+ " Bip
peIR"
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© if the Hessian Hj, is positive definite, and By, = Hj, this is

Contours for the objective function f(z,v) = 10(y — %)% + (z — 1)%,
(=:9) ( " ) Newton’s method

and the iterates generated by the Generic Linesearch steepest-descent
method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f € C! and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction, either

g =0 for some [ >0

or
lim f, =
k—00
or
lim g, =0
k—o0

provided that the eigenvalues of Bj are uniformly bounded and
bounded away from zero.

- gl
ﬁwmw EE:
= g :m
:@\o:m v::mx F
Thus
. lgxlls .
min (Ip g4, IPLgil /|Ipills) = »» 2 min (Amin, [19]l2)
max
=
Jim min (Ipggyl, [prgpl/Ipell2) =
-

lim g; = 0.

k—00

PROOF OF THEOREM 2.5
Let Amin(Br) and Apax(By) be the smallest and largest eigenvalues of
Bj.. By assumption, there are bounds Ay, > 0 and Apax such that
B
kS

v:i: m v:dgm.m».v __%:w

A yE@xAm\av A V,E%a

and thus that

ﬂm\H
mwv = v:ibmm\MHv < i i ° < v::mxAm\H

AL <\l < k%<
[|s]|? i

max — max A

v = yBHSAm\Av m yE:E

for any nonzero vector s. Thus

PEgil = 195 B gkl = Awin (B ) gills > Amicllgills
In addition

:%\a__m =9k .mr 9k > < v::%% v:.@a:w < \/EE:.Q»:?

__@i_w A v,c:::.ga:w

MORE GENERAL DESCENT METHODS (cont.)

© may be viewed as “scaled” steepest descent
@ convergence is often faster than steepest descent

® can be made scale invariant for suitable By,



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR"”. Then suppose that the iterates generated by the
Generic Linesearch Method with o3¢ = 1 and 8 < §, in which the
search direction is chosen to be the Newton direction p, = —H,~ ! 9
whenever possible, has a limit point z, for which H(z,) is positive
definite. Then

(i) ap = 1 for all sufficiently large &,
(ii) the entire sequence {x)} converges to z., and
(iil) the rate is Q-quadratic, i.e, there is a constant £ > 0.

o ke = ol

< K.
koo o — a3

Taylor’s theorem = Jzj, between z; and xy + py such that
flwy+p) = fi+pigy + 5ot H(z)py
Lipschitz continuity of H & Hypy + gr = 0 =

flay+py) = i — pigp = 3(pig, +piH(z)py)
3(pfgy + pt Hipy) + 5(pf (H (2i) — Hy)py)
Wllze = zrllallpgll3 < $yllpgl3

(4)

IN

Now pick k sufficiently large so that

Q\__%\a__w m v:b:%m*vﬁ - MQV
+3)+ (4) =
f@y+ ) = fr < 0 gp + Sdan(H) (1 = 26)[Ip, 13
< 31— (1—28))pfg, = Bt g

= unit stepsize satisfies the Armijo condition for all sufficiently large

ke

PROOF OF THEOREM 2.6

Consider w:ma\ﬂ = x,. Continuity = H}, positive definite for all k € IC
S
sufficiently large = Jko > 0:

%Mm%ﬁ > wyaim*v __?__W

Vky < k € K, where Ayin(H,) = smallest eigenvalue of H(z,) =

Pk 9l = —pigr = PLHD = Awin (L) |[pell5. (3)
Vky < k € K, and
lim  pp =0
kek Do PE

since Theorem 2.5 == at least one of the LHS of (3) and

T T
plg plg,
_w|\a_ = kI N hv:ismm*v:%\ﬂ__w
[F2a1P l|p]]2

converges to zero for such k.

Now note that [[H; ||, < 2/Amin(H.) for all sufficiently large k € K.

The iteration gives

Thpt — o = T — T — Hy gy = 2 — 2 — Hi ' (g — g(2)
= H. ' (g(w.) — g — Hylw, — 1))
But Theorem 1.3 =

lg() = g — Hi (@2 — 2i) [l < vllws — 2ill3

lker = 2ally < A Mo lwe — 2l
which is (iii) when k& = 2v/Anin(Hy). for k € K.
Result (ii) follows since once iterate becomes sufficiently close to .,

(iii) for k € K sufficiently large implies k +1 € K = K = IN. Thus
(i) and (iii) are true for all k sufficiently large.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)? + (z — 1)%,
and the iterates generated by the Generic Linesearch Newton method

QUASI-NEWTON METHODS

Various attempts to approximate Hy:
© Finite-difference approximations:
(Hy)e; ~ b~ (g(zi + he;) — gi) = (Br)e;
for some “small” scalar A > 0
© Secant approximations: try to ensure the secant condition
Bji1sk = yp = Hyy185, where sp = — @ and yp = grt1 — g

o Symmetric Rank-1 method (but may be indefinite or even
fail):
(yx — Brsi)(ys — Brsi)”
(yk — Brsi) sk
o BFGS method: (symmetric and positive definite if y s, > 0):
By = By + @%\w _ m\%%wm\ﬂ
Yisk  siBisi

Byjy1 = By +

MODIFIED NEWTON METHODS

If Hj, is indefinite, it is usual to solve instead
(Hy + My)px = Bipr. = — gk
where
©® M, chosen so that By, = Hy + My, is “sufficiently” positive definite
© M =0 when Hy, is itself “sufficiently” positive definite

Possibilities:
© If Hy, has the spectral decomposition H, = @, D, Q7 then
By = Hy + M, = Q, max(e, |D,)QF
© My = max(0, e — A\ (Hy)) T
© Modified Cholesky: B, = H, + M, = L, LT

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models (B, positive definite)

pr = (approximate) arg min f;. + p’ g} + ip” Bip
Nwmu_u—,‘m\.;

Generic convex quadratic problem: (B positive definite)
(approximately) minimize ¢(p) = p’g + ip” Bp
Emﬂﬂ:



MINIMIZATION OVER A SUBSPACE

Given vectors {d°,: ..., d""1}, let
o Di=(d0: o d)
® Subspace D' = {p | p= D'p, for some py € IR'}

© p' = arg min q(p)
peD’

Result: D'Tg' =0, where ¢' = Bp' + ¢

Proof: require p' = D'p,, where p); = arg min ¢(D'p,)
_@@mgm
But ¢(D'py) = piD'Tg + pI D' "BD'p, =

0=D'"BD'p;+D'"g=D'""(BD'p)+g)=D""(Bp' +9)=D'"¢

Equivalently: ¢/ T¢g' =0for j =0,...,i—1

MINIMIZATION OVER A B-CONJUGATE SUBSPACE

Minimizer over D% pi = pi~t — =1 Tg=1D{(DIT B D) Le;
Suppose in addition the members of D’ are B-conjugate:

© B-conjugacy: d'TBd’ =0 (i # 7)

Result: p' = p'~t + o/~ 'd"~!, where

&@.\H H.Q@.\H

Proof: D'TBD' = diagonal matrix with entries d/ 7 Bd’
for j=0,...i—1

= (D'TBD")~! = diagonal matrix with entries 1/d’ T Bd’
for j=0,...i—1

= (D'TBD")te; = (1/d T Bd" e,

ol —

MINIMIZATION OVER A SUBSPACE (cont.)

o dTgi=0for j=0,...,i—1, where ¢’ = Bp’ +g¢
Result: pi = pi~t — d! HQTHUAD@. TBDH e,
Proof: Clearly p'~' € D'~! ¢ D'

—> require p' = p'~! 4 D'p};, where p); = arg min q(p' ! + D'py)

PER'
But ¢(p'~t + D'py)
=a(p™ ") +pi D' (g + Bp'") + ipg D' T BD'p,
=q(p™) +py D't + 4py D'TBD'p,
= q(p™") +pa(d~" g Ne; + 4pg D' TBD'p,
where e; is i-th unit vector =
hcw = —d-1 HQ&IHA@@. Hm@@.vlwm&

BUILDING A B-CONJUGATE SUBSPACE
o dTg=0forj=0,...,i—1
Since this implies ¢’ is independent of D7, let

i-1

=0
Aim: find 37 so that d' is B-conjugate to D’
Result (orthogonal gradients): ¢’ g/ = 0 for all i # j
Proof: span{g'} = span{d'}

= ¢ =1 _7"*d" for some 47K
— ¢ Tgi = o Vg Tdk =0 when j < i



BUILDING A B-CONJUGATE SUBSPACE (cont.)

od=—g+ MMMU Bidi

o dlg=0for j=0,...,i—1, where g' = Bp' + ¢
Result: ¢'7d’' = —||¢'|13

Proof: ¢'Td' = —¢'T¢' + MUWMV BYg Tl

0|2
Corollary: o' = ¥ #£0<g #0
Proof: by definition -
i .Q@ H&g
a = di'T Bd

BUILDING A B-CONJUGATE SUBSPACE (cont.)

o di = \Qs. + MMIHHO Q%&»
o d*"TBg'=0ifk <i—1and d'TBg' = ||¢'|3/a’~}
® O\H\H _ __.Q@.\H__W\&@.\H Hm&&\u

2
- (B = S 1 and il — 30 llgill3
Result: 7 =0forj<i—1land 8"~ =0 ‘__QTH__W

Proof: B-conjugacy = i

0=d"Bd' = -d"Bg'+> _ p*@"Bd" = —d' "By’ + 8”d’ " Bd’
.. . . . k=
— B =diTBg A TBd"
Result immediate for j < i — 1. For j =i — 1,
d~'"Bg' llg'lI3 _lg'l3

p dTTBd—1 ~ o \di-1TRdT g2

BUILDING A B-CONJUGATE SUBSPACE (cont.)

od=—g+ MUWMW Bidi
o gTg)=0foralli#j

Result: ¢'"Bd’ =0if j <i—1and ¢ TBd'~' =

H:.oow w&.i H. @N. + Q,N.%. & m?; — m§+H +gq

= ¢ = ¢/ + o/Bd’

— ¢ Tgt = ¢'Tg) + /g’ TBd

— ¢ T"Bd =0ifj <i—1

while g'Tg' = g' T + o’ g TBA i j =i — 1
— ¢ "B = ||g3/a’!

CONJUGATE-GRADIENT METHOD

Given p’ =0, set g' =g, d" = —gand i = 0.
Until ¢* “small” iterate

ol = |.QN. H&&\&& TBd

P = pi 4 idi

.QI.H — .Q&. + o' Bd

8= llg I3/ 1lg'll3

dTl = \QN..I +Q&&&

and increase i by 1

Important features
o dTgtl=0=g/Tg" forall j =0,...,i
i

® g'p' <0fori=1,...,n = descent direction for any p, = p

o stop: ||¢']| < min(||g||“,n)|lg]l (0<n,w<1) => fast convergence



CONJUGATE GRADIENT METHOD GIVES DESCENT

i—2
.QN.\H ﬂ&&\u _ &N.\H MJA.QATm%N.\J _ &N.\H MJ.Q + MQ@.&N\H ﬂmmﬁ _ &N.\H m;.Q

J=0
p' minimizes ¢(p) in D' =
. . i—=1T i1 ) T i=1 ]
NuN _ N%\H _ @‘n&N\H — @N\H _ g . &N\H.
di-1TBdi-1 di-1T Bdi—1
- T 7i—1)2
T Tl 9 AT
gpr=9p di-1T Bi-1’
= ¢'p' < ¢"p'' = (induction)
g'p' <0
since I __»
T,1 gll2
gp=- < 0.
9" By

— p, = p' is a descent direction

NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic f(z)

Given 2" and g(xy), set d° = —g(xo) and i = 0.

Until g(xy) “small” iterate

! = arg min f(z; + ad’)
«

Tiy1 = T; + ao'd

B = llg(@is) 13/ lg(z) 13

At = —g(zi) + f'd

and increase ¢ by 1

(07

may also be used for nonlinear f(z) (Fletcher & Reeves)
® replace calculation of o by suitable linesearch

® other methods pick different 3’ to ensure descent

CG METHODS FOR GENERAL QUADRATICS

Suppose f(zx) is quadratic and x = zo + p
Taylors theorem =
fla) = f(xo+p) = flwo) +p"g(wo) + 3p" H(wo)p
© can minimize as function of p using CG
o ifz; =z +pi = ¢' = g(x0) + H(z0)pi = g(x)
glz)"d

© QN. = |§ = arg HHME \.A_&.& + Q&Nv



