Part 2: Linesearch methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
reIR"

Part C course on continuoue optimization




UNCONSTRAINED MINIMIZATION

minimize f(x)
reIR"

where the objective function f : IR" — IR

® assume that f € C' (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary



ITERATIVE METHODS

® 1in practice very rare to be able to provide explicit minimizer

® iterative method: given starting “guess’ x(, generate sequence
AMSLJ k = vav...

®© ATM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fi = f(@k), gx = g(xr), Hr = H(xy).



LINESEARCH METHODS

® calculate a search direction p; from x;.
® ensure that this direction is a descent direction, i.e.,
gip < 0 i gp #0

so that, for small steps along p;., the objective function
will be reduced

© calculate a suitable steplength aj; > 0 so that
[z + arpr) < [

® computation of ay is the linesearch—may itself be an iteration

® generic linesearch method:

Thyl = Tk T OLDE



STEPS MIGHT BE TOO LONG
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The objective function f(z) = x* and the iterates xp, 1 = o + appy
generated by the descent directions pp = (—1)*" and steps oy =

2+ 3/2M 1 from x4 = 2



STEPS MIGHT BE TOO SHORT
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The objective function f(z) = x* and the iterates xp, 1 = o + appy
generated by the descent directions p, = —1 and steps oy = 1/2%1
from xg = 2



PRACTICAL LINESEARCH METHODS

® in early days, pick a; to minimize

f(xi + apy)

o exact linesearch—univariate minimization

o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”
based



BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given Qipit ~ 0 Am.m; Qipit = C

let a0 = Qipip and [ =0

Until f(ar + aVpy) “<” fy
set oY = 7o) where 7 € (0,1) (e.g., 7 = 1)
and increase [ by 1

Set ap = alt)

® this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

,\A.&.\a 4+ QQVEN\«V QA:\.N\«



ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

f@, + aupy) < flay) + arBapy
for some B € (0,1) (e.g., 8 =0.1 or even 3 = 0.0001)
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BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize ay:

Given Qipit ~ 0 Am.m; Qipit = C

let a0 = Qipip and [ =0

Until f(z, +alp,) < f(x,) +aDBglp,
set oY = 7o) where 7 € (0,1) (e.g., 7 = 1)
and increase [ by 1

Set ap = alt)




SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f € C*, that g(x) is Lipschitz con-
tinuous with Lipschitz constant v(x), that 8 € (0,1) and that p is
a descent direction at x. Then the Armijo condition

flz+ap) < flz) + aBg(z)'p

is satisfied for all o € [0, qpax(y)], Where

_2(8—1g(z)'p
(@) pll;

QB@N




PROOF OF THEOREM 2.1
Taylor’s theorem (Theorem 1.1) +

2(8 —D)g(x)'p
e T

)

fla+ap) < f(z)+ ag@) p+ y(z)e?|pl?
f(z) +ag(x)p+a(f—1)g(x)'p

flz)+aBg(x)'p

VARVAN



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C*, that g(z) is Lipschitz con-
tinuous with Lipschitz constant v, at xy, that g € (0,1) and that
pi 1s a descent direction at x;. Then the stepsize generated by the

backtracking-Armijo linesearch terminates with
27(8 — 1)g; pa
Vel lprlls

Qi 2> MIN | G4t




PROOF OF COROLLARY 2.2
Theorem 2.1 = linesearch will terminate as soon as a'¥) < ..

2 cases to consider:
1. May be that oyt satisfies the Armijo condition = ay, = aypit-
2. Otherwise, must be a last linesearch iteration (the [-th) for which

o >a. = a.>a"" =700 > 1o

Combining these 2 cases gives required result.



GENERIC LINESEARCH METHOD

Given an initial guess xg, let £ =0
Until convergence:
Find a descent direction p; at x;
Compute a stepsize «y. using a
backtracking-Armijo linesearch along pj
Set 1 = x1 + agpr, and increase k by 1




GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic

Linesearch Method,

either
g; =0 for some [ >0
or
lim ,\w —= —O0
k—00
or

lim min (1pg. g5, [P g5/ l1pslls) = 0.

k—o00




PROOF OF THEOREM 2.3
Suppose that g # 0 for all k£ and that lim f > —oo. Armijo =

k—o00

,?i — Ji < Q»Q@mm»

for all kK = summing over first j iterations

J
M ” T
\wt — \o < Qw@%\?@w.
k=0

LHS bounded below by assumption =- RHS bounded below. Sum
composed of -ve terms =

lim a|p; g, =0

k—o00

Let

dof 27(3 — 1) gl pi
Ky = ? | Qipit > A vmw
odliZAlE

where v is the assumed uniform Lipschitz constant.

W & K 1,2, I\ Ky



For k € Iy,

For k € ICo,

27(3 — 1)g;. P

Q>
Y1k I3
2
mi%;A§%|:A&§vAo
-y k||
T
i PE%EL

keki—oo ||y |9 B
Q2 Qipit

lim  |py.g;| = 0.

keko—o00

Combining (1) and (2) gives the required result.



METHOD OF STEEPEST DESCENT

The search direction
Pk — — 3k

gives the so-called steepest-descent direction.

® pg is a descent direction

® pp solves the problem
Ce L def T :
minimize my(xr +p) = fr + gpp subject to ||pll2 = ||gk|2
peIR”

Any method that uses the steepest-descent direction is a
method of steepest descent.



GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g; =0 for some [ >0
or
lim \w\.ﬂ - —0
k—00
or
lim g, = 0.

k—o00




PROOF OF THEOREM 2.4
Follows immediately from Theorem 2.3, since

min (|pg gyl [pr gxl/[12ll2) = llgillo min (L, [lg, )

and thus
lim min (|pg. g5, 121 95/ l1pslls) = 0

k—o00

implies that limy_.. g = 0.



METHOD OF STEEPEST DESCENT (cont.)

® archetypical globally convergent method

® many other methods resort to steepest descent in bad cases
® not scale invariant

® convergence is usually very (very!) slow (linear)

® numerically often not convergent at all



STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (z — 1),
and the iterates generated by the Generic Linesearch steepest-descent
method



MORE GENERAL DESCENT METHODS

Let Bj be a symmetric, positive definite matrix, and define the
search direction pj so that

Bipr = —gi
Then
® pg is a descent direction
® pp solves the problem
minimize SmA&\A + p) « fe+gip+ p' Bip

peIR”

® if the Hessian Hj. is positive definite, and B = Hj,, this is
Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction, either

g; =0 for some [ >0

or
lim \w\a - —0
k—o00
or
lim g =0
k—o00

provided that the eigenvalues of Bj are uniformly bounded and
bounded away from zero.




PROOF OF THEOREM 2.5
Let Admin(Bg) and Apax(Bgx) be the smallest and largest eigenvalues of
B;.. By assumption, there are bounds Apin > 0 and Apax such that

\/55 < V,BEAmwv <

>~ T m mexAm\av m ygmx
]I

and thus that

%mIH
m\av — \/BEAmeHv < ” b < VBQNAmIH

AL <A — <
I '

max — B@NA

) = Ao (Br) < A
for any nonzero vector s. Thus

P4 96l = 191 By gl > Aain(Br D1 96ll5 > Al gi |l
In addition

Ipell = 95 By "k < Amax( By gl < Auiullgill2.

__@\A:w A yBE:Q»:w



:w\a.Q\&_ BE
> 192
125l = R
Thus
. T T V__,Sa__w : C,. __ __v
min ASASA_“_?AQL\:?A:MV = Ty Amin 19k 112
max
—
\A:IVHwo min (|pr.gel, [P 91/ 11Pkll2) =
—

lim g, = 0.

k—o00



MORE GENERAL DESCENT METHODS (cont.)

® may be viewed as “scaled” steepest descent
® convergence is often faster than steepest descent

® can be made scale invariant for suitable By



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR". Then suppose that the iterates generated by the
init = 1 and 8 < 4, in which the
search direction is chosen to be the Newton direction p, = —H L 9y

Generic Linesearch Method with o

whenever possible, has a limit point x, for which H(x,) is positive

definite. Then
(i) ag = 1 for all sufficiently large k,
(ii) the entire sequence {x} converges to x,, and

(iii) the rate is Q-quadratic, i.e, there is a constant xk > 0.

o o —

< K.
k—oo |lop — a3 T




PROOF OF THEOREM 2.6

Consider \wﬁn&w = x,. Continuity = H;. positive definite for all k € K
c

sufficiently large = dky > 0:

Bmmwﬁw > I min(H) __@w__w

Vko < k € K, where A\pin(H,) = smallest eigenvalue of H(z,) =

PE 9l = —Prgr = P Hp > S (| k3. (3)
<\ao < k € \ﬂu and
l _
wm\ﬂmwwooﬁw O

since Theorem 2.5 = at least one of the LHS of (3) and

A
[P |2 [P |2

converges to zero for such k.




Taylor’s theorem = dz;. between x; and x; + p; such that
flzp+ o) = fi + P g + 00 H(20)p;
Lipschitz continuity of H & Hyipr + g = 0 =

fley +p) = fro — e 9 = $Wrg + i H(20)py)
= cﬁ 9y + Dy F%i @MAEAQAV — Hy)p;,)
Yvllar — &\A__M:Bw:w > WQ__Fa:w
(4)

I

Now pick k sufficiently large so that

YIpkll2 < Amin(Hi)(1 = 205).
+3)+4) =

flay+pp) — fi < p g+ Smin(H) (1 = 28)|Ip, 15

y(1 = (1= 28))p1.9;, = BP9
—> unit stepsize satisfies the Armijo condition for all sufficiently large

kel

VARVA



Now note that ||H_ ||y < 2/Amin(H,) for all sufficiently large k € K.

The iteration gives

Thi1 — T = T — T — H g = 2 — 2 — H, ' (g1 — g(22))

= H,. ' (g(x.) — gr — Hi(x. — x1)) .
But Theorem 1.3 =

lg(z.) — ge — Hi (2 — ) |y < yllwe — 23

|k = zally < VNHE alloe — 2l
which is (iii) when & = 2v/ A (Hy). for k € K.

Result (ii) follows since once iterate becomes sufficiently close to .,
(iii) for k € K sufficiently large implies k + 1 € K = K = IN. Thus
(i) and (iii) are true for all k sufficiently large.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (z — 1),
and the iterates generated by the Generic Linesearch Newton method



MODIFIED NEWTON METHODS

If H; is indefinite, it is usual to solve instead

(Hy + My)pr = Brpr = —gs
where

® M. chosen so that B, = H; + M, is “sufficiently” positive definite

© M = 0 when Hy is itself “sufficiently” positive definite

Possibilities:
© It Hj, has the spectral decomposition H, = @»b»@m then
By, = Hy, + M, = Q. max(e, | D;|)Q;
© My = max(0, € — A\pin(Hy)) I
© Modified Cholesky: B, = H, + M, = L, L]



QUASI-NEWTON METHODS

Various attempts to approximate Hy:
© Finite-difference approximations:
(Hp)e; = h™ ' (g(xy + hey) — gr) = (By)e;
for some “small” scalar A > 0

® Secant approximations: try to ensure the secant condition
Bii1sy = yp = Hpq18,, where s, = x4 — o and yp = Gr+1 — Gk

o Symmetric Rank-1 method (but may be indefinite or even

fail):
(yr — Brsi)(yr — Brsi)'
(Y — Brsk)! sk

o BFGS method: (symmetric and positive definite if yi s > 0):

Bjy1 = By +

T T
Y.y B,s,s. B
Bi1 = By + = — okt
Yi Sk Sk ByiSy




MINIMIZING A CONVEX QUADRATIC MODEL

For convex models ( By, positive definite)

pr. = (approximate) arg min fi +p’ g} + ip’ Bip
peIR”

Generic convex quadratic problem: (B positive definite)

(approximately) minimize ¢(p) = p’ g + Lp’ Bp
peIR”



MINIMIZATION OVER A SUBSPACE

Given vectors {d’,: ..., d" 1}, let
© D'=(d":---:d™)
® Subspace D' = {p | p = D'p; for some p,; € IR'}

© p' = arg min ¢(p)
@mﬁ&

Result: D'Tq¢' =0, where ¢' = Bp' + g

Proof: require p' = b&@wg where ﬁw = arg min @Quwgv
pqa€IR’

But ¢(D'py) = pi D' g+ ipt D' BD'p, =

0=D"BD'py+D'"'g=D"(BD'py+g)=D"(Bp' +g)=D"g

Equivalently: d7¢'=0for j =0,...,i —1



MINIMIZATION OVER A SUBSPACE (cont.)

Result: p' = pi~! — @1 T¢i"1DI(DITBD')~

Proof: Clearly p'~t € D=1 C D
—> require p' = p'~' + D'p!}, where p, = arg min g(p' " + D'py)
pa€IR’
But g(p'~! + D'py)
() +pg D' (g + m@Zv +4p, D' BD'p,
Q% Hv NUN T @ H f@& NUN ﬂmusﬁg
Qw vnTB&A&N HHQN Hv mﬁgwgﬂmuﬁﬁg
ér@.@ e; 18 1-th unit vector —
@ — |&~ H% 1— HANusﬂmNusv



MINIMIZATION OVER A B-CONJUGATE SUBSPACE

Minimizer over D% p' = p=! — d= 1 g1 DY D' T BD") te,
Suppose in addition the members of D’ are B-conjugate:

© B-conjugacy: d'TBd’ =0 (i # j)

Result: p' = p"~ ! + o'~ 'd"™ !, where

&&IH ﬂ.Qs.IH

- Ji-1T Bi-1

Proof: D' BD' = diagonal matrix with entries d’  Bd’
for j=0,...i—1

— (D'TBD") ™! = diagonal matrix with entries 1/d’ I Bd’
for j=0,...i—1

— (D''BD") le; = (1/d T Bd'~)e,

ol —




BUILDING A B-CONJUGATE SUBSPACE
o dTg=0forj=0,...,i—1

Since this implies ¢’ is independent of D?, let
i—1
dl — |QN+MQG&Q
§=0
Aim: find 3% so that d' is B-conjugate to D"

Result (orthogonal gradients): g' ¢/ = 0 for all i # j
Proof: span{g'} = span{d'}

— ¢/ = ,\Mno AIRdF for some A7

— ¢'Tg) = mno Vg Tdd = 0 when j < i



BUILDING A B-CONJUGATE SUBSPACE (cont.)

od =—g +3 7 8d

o &g =0forj=0,...,i— 1, where ¢ = Bp' + g
Result: ¢'Td' = —||¢'|3

i T gi i T i i—=1 aij i T 35

Proof: ¢'"d'=—¢'" g +MUT©Q€ d’

lg'll3
d'TBd
Proof: by definition

Corollary: o' = £ 0 <g' # 0

B ,Qs. %&&
d! Hm%

D\.H



BUILDING A B-CONJUGATE SUBSPACE (cont.)

o g'tg/ =0 for all i # j

1|2
Result: Qs. 'Bal =0 if j <i—1and Qs. TR — __,Q :Hw
'~

H:.oow p/ Tl = P + Q,w.%. & ¢/t = Bpitl 4 ¢

— ¢/t = ¢/ + o/ Bd

= ¢'"g/" =g'"g + /g "B

— ¢'TBd =0if j <i—1

while .QN S.Q@. H .QN. ﬂ.Q@.I.H + Q.%.IH.QN. ﬂm&@.lH i,,u — -1
— g TBd = g 3/a



BUILDING A B-CONJUGATE SUBSPACE (cont.)

o IQ@. + MUMMO Q&i\,ﬂ
o d*"'Bg' =0ifk <i—1and d'TBg' = ||¢'||3/a' "
o ol = ||g1|2/d T Bdi—!

Result: 87 =0for j <i—1and il =g = F:ww
Proof: B-conjugacy = - lgi-1ll3
0=d"Bd = -d'"Bg' + ) p*"Bd* = -d'"Bg' + 7d’ " Bd’
— Q&. — %ﬂmm&\%ﬂm%wno

Result immediate for j <7 —1. For j =17 — 1,

giil = d~' "By’ _ lg'll3 _ lg'll3
d TRl Qi i@ 1TRg—1  |gL|2




CONJUGATE-GRADIENT METHOD

Given p’ =0, set ¢ = ¢, d’ = —¢g and i = 0.
Gbﬁz g' “small” iterate
= I,QN ﬂ%\% T'Bd
@. = @ + a'd
gt =g'+ a'Bd’
@. = :Qigw\__m@.:w
&Tl tl QS&S

and EQ@%@ ? by 1

Important features

o d gt =0=¢g/Tg" forall j =0,...,1

© ,Qﬂ@@. < 0Ofori=1,...,n = descent direction for any p; = p

(

o stop: ||¢'|| < min(||g]|“,n)||lg|l (0<n,w<1) = fast convergence



CONJUGATE GRADIENT METHOD GIVES DESCENT

i—2
.Q@.IH ﬂ&@.IH _ &N.IH HA.Q + m@@.lwv _ &@.IH MJ.Q 4+ MD@.&&IH ﬂm&m _ &N.IH MJ.Q
=0
p' minimizes ¢(p) in D' =
i i1 g—trd—! N g'd—! !
p=r di-1TBdi—1 =P di-1T Bdi—1 .
— (gTd—1)2

T i _ T, i1
gPr=9P T oargu-1
— glp' < g'p'~! = (induction)
g'p <0

since

gTpl = — gl <0

= pp = p' is a descent direction



CG METHODS FOR GENERAL QUADRATICS

Suppose f(x) is quadratic and x = x¢ + p
Taylors theorem —
f(x) = f(wo+p) = flwo) +p' glwo) + 4p" H(xo)p

® can minimize as function of p using CG

o itr, =20+ p = ms. = QA&OV + EA&OV? = mﬁsv

| VT .
© o = I%QMNM&OV% = arg min f(x; + ad')

(07



NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic f(x)

Given " and g(xg), set d’ = —g(xg) and 7 = 0.
Until g(xy) “small” iterate

(4

o' = arg min f(z; + ad')

(0]
Tip1 = x; + a'd
B = llg(zi)lI3/ lg(x:)l]3
&il _ |QA&.&+HV s Qs&s
and increase 7 by 1

may also be used for nonlinear f(x) (Fletcher & Reeves)
® replace calculation of o by suitable linesearch

® other methods pick different 3’ to ensure descent



