Part 3: Trust-region methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(z)
reIR"

Part C course on continuoue optimization

UNCONSTRAINED MINIMIZATION

minimize f(z)
reIR"

where the objective function f :IR" — IR

© assume that f € C? (sometimes C?) and Lipschitz

© often in practice this assumption violated, but not necessary




LINESEARCH VS TRUST-REGION METHODS

® Linesearch methods

o pick descent direction py.
o pick stepsize oy to “reduce” f(x) + apy)
© Tpy1 = T + QPk
® Trust-region methods
o pick step sy to reduce “model” of f(xy + $)
o accept Tpy1 = T+ if decrease in model inherited by f(z+s)

o otherwise set xp,1 = g, “refine” model

TRUST-REGION MODEL PROBLEM

Model f(zy + s) by:
© linear model
my(s) = fr+ s gr
® quadratic model — symmetric By,

mg(s) = fi.+ STgk + %STBkS

Major difficulties:
® models may not resemble f(z) + ) if s is large
® models may be unbounded from below

o linear model - always unless g = 0

o quadratic model - always if By, is indefinite,
possibly if By is only positive semi-definite



THE TRUST REGION

Prevent model my(s) from unboundedness by imposing a

trust-region constraint
]| < Ay

for some “suitable” scalar radius Ay > 0
—> trust-region subproblem

approx minimize myg(s) subject to |[|s|| < Ag
seIR"

® in theory does not depend on norm || - ||

® in practice it might!

OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model
my(s) = mi(s) = fr+ 5" g+ 3s" Bys
and the fo-trust region norm || - || = || - |2
Note:
® By = H; is allowed

© analysis for other trust-region norms simply adds extra constants
in following results



BASIC TRUST-REGION METHOD

Given k =0, Ay > 0 and z(, until “convergence” do:

Build the second-order model m(s) of f(x + s).
“Solve” the trust-region subproblem to find sy,
for which m(sg) “<” fr and ||sg|| < A, and define

B fk_f(mk‘FSk).

Pk =

fi — my(sp)
If pr. > m, [very successful] O<n, <1
set Tpa1 = 11 + S and App1 = 1A\,

Otherwise if p > 7, then [successful] [0 <n, <75, <1

set Tpp1 = xp + s and A = Ag

Otherwise [unsuccessful]

set xr1 = xp and Ay = Yalp 0<yw<1
Increase k£ by 1

“SOLVE” THE TRUST REGION SUBPROBLEM?

At the very least

©

alm to achieve as much reduction in the model as would an iteration
of steepest descent

Cauchy point: s} = —ajg, where
aj = arg min m,(—ag;) subject to «al|g;|| < A,
a>0
= arg min m(—ag;)
O<a<Ap/|lgrll

o minimize quadratic on line segment => very easy!
require that

mk(%) < mk(S@ and HSkH < A

in practice, hope to do far better than this



ACHIEVABLE MODEL DECREASE

Theorem 3.1. If my(s) is the second-order model and s{ is its
Cauchy point within the trust-region [|s|| < Ay,

bl o]

T, D |k
L+ [ Bl

e = ma(sp) = 3| ge]| min

PROOF OF THEOREM 3.1
my(—agy) = fi — allgill* + 4o’ gi Byg;.

Result immediate if g = 0.

Otherwise, 3 possibilities

(i) curvature g} B,g, < 0 = my(—ag) unbounded from below as «
increases = Cauchy point occurs on the trust-region boundary.

(ii) curvature gf B,g; > 0 & minimizer my(—agy) occurs at or beyond
the trust-region boundary = Cauchy point occurs on the trust-
region boundary:.

(iii) the curvature g} B,g, > 0 & minimizer my(—agy), and hence
Cauchy point, occurs before trust-region is reached.

Consider each case in turn;




Case (i)

mi(—agy) = fi — allgll” + ia’gy Brgy, < fi, — allgl®
Cauchy point lies on boundary of the trust region =
ap = ﬂ
Al
1)+ (2) =
Ay
lgell

Jr— mk(S@ > H%HQ = Hgk”Ak > %HngAk-

Case (ii)

o, dof arg min my(—agi) = fr — aHgszQ + %O‘QQkTBk‘gk‘

1gx]?
glichk:gk:

Ay
gl

* c
oy = Zak—

—
O‘Egl{Bkgk < ||9k“2
(3) + (4) + (5) =
fr. = mu(s9) = ogllgll? — dleglPaf Brgy > 3aslgrll?

Ay,
= %Hgk||2”ng = 39l Ay



Case (iii)

lgxl”
ap = ap =
" * 91 Bigy,

fro —my(sy) = QZHQk”Z + %(0475)29531@91@
lgell*—, llgnll
glsz% "9t Brgy
e
QQgBkgé
> 1 gl |
1+ || Bl

where
9% Brgill < N gellPlIBell < llgall?(L+ (| Bell)

because of the Cauchy-Schwarz inequality.

Corollary 3.2. If my(s) is the second-order model, and s is an
improvement on the Cauchy point within the trust-region ||s|| <

Akv
)

Ji — mu(sk) = §|gr|| min :




DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 3.3. Suppose that f € C?, and that the true and model
Hessians satisfy the bounds ||H (z)|| < &y, for all x and ||B|| < ks
for all k£ and some k;, > 1 and k; > 0. Then

|f 2+ 5) — my(sp)] < RrgA,

where kg = (K, + K;), for all k.

PROOF OF LEMMA 3.3
Mean value theorem =—

flap+ sp) = flan) + 5. Vo f (@) + 35k Vo f (&) s
for some & € [xg, xp + sx]. Thus

[f(zx + si) — mulsi)| = dlsp H(E)se — si Bisi| < blsp H(&x)si| + 3]s Brsil
< g+ mo)llskll? < waAR

using the triangle and Cauchy-Schwarz inequalities.



ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 3.4. Suppose that f € C?, that the true and model Hes-
sians satisfy the bounds || Hy|| < kj and ||Bi|| < &y for all k& and
some k;, > 1 and Kk, > 0, and that kg = §(k, + K;). Suppose
furthermore that g, # 0 and that

1 (1_77v> .

A < '
b= Hngmlﬂ /ih+lib7 2Ky

Then iteration k is very successful and

AVEREPVAVS

PROOF OF LEMMA 3.4
By definition,
L+ || Bi|| < kn+ Ko

+ first bound on A, —

lgell . llgel

A < < )
Kp + Kp 1+||Bl<:H

Corollary 3.2 =

ol o

fr = mi(sk) > 3|l gxl| min m, = 3l grl| A
+ Lemma 3.3 + second bound on A, —
_ 2
s — 1] = [+ sp) — my(sk) <2 Kalj, _ deAk <1-n,
Jre — (i) gkl Ak llgxl

— pp > 1, = iteration is very successful.



RADIUS WON’T SHRINK TO ZERO AT NON-OPTIMAL
POINTS

Lemma 3.5. Suppose that f € C?, that the true and model Hes-
sians satisfy the bounds ||Hy|| < kp, and || By|| < #y for all & and
some kp, > 1 and k;, > 0, and that kg = (K, + K;). Suppose

furthermore that there exists a constant € > 0 such that ||gi|| > €
for all k. Then

1 (1 T 771))
Kn + Ky 2Kg

for all k.

PROOF OF LEMMA 3.5
Suppose otherwise that iteration k is first for which

Ak—i—l < Ke.

Ay > Apy = iteration k unsuccessful = ;A < Agyq. Hence

1 1 —mn,
Ay < emin( : (L=n ))
Ky + Ky  2Kg
. 1 1 - v
< fgulmin . )
Kp+ Ky  2Kg

But this contradicts assertion of Lemma 3.4 that iteration k must be
very successful.



POSSIBLE FINITE TERMINATION

Lemma 3.6. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all k. Suppose furthermore that
there are only finitely many successful iterations. Then x; = x, for
all sufficiently large k and g(z.) = 0.

PROOF OF LEMMA 3.6
Lhot+j = Thy+1 = Tx

for all 7 > 0, where kq is index of last successful iterate.
All iterations are unsuccessful for sufficiently large k = {Az} — 0

+ Lemma 3.4 then implies that if || gg,+1|| > 0 there must be a successful
iteration of index larger than ko, which is impossible = ||gg,+1]| = 0.




GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 3.7. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all k. Then either

g1 =0 for some [ >0

or
lim fk: = —00
k—o00
or
lim inf {|gx[| = 0.

PROOF OF THEOREM 3.7

Let & be the index set of successful iterations. Lemma 3.6 = true
Theorem 3.7 when |S] finite.

So consider |S| = 0o, and suppose fi bounded below and

lgrll = € (6)

for some € > 0 and all k, and consider some k € S.
+ Corollary 3.2, Lemma 3.5, and the assumption (6) =

fr— fern = nslfi — ma(se)] > 6 Y Inemin

: 1
7/{:6 .
1+ Ky

k
Jo— fer1 = g:o[fj — fi+1] > 00,
jes
where 0}, is the number of successful iterations up to iteration k. But

lim o = +o00.
k—oo

— f; unbounded below = a subsequence of the ||gg|| — 0




GLOBAL CONVERGENCE

Theorem 3.8. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all k. Then either

g =0 for some [ >0

or
lim fk = —00
k—00
or
lim g = 0.
k—00

PROOF OF THEOREM 3.8
Suppose otherwise that fj is bounded from below, and that there is a

subsequence {t;} C S, such that
gyl = 2e >0 (7)
for some € > 0 and for all 4. Theorem 3.7 = 3{¢;} C S such that
lgr|| > € for t; <k < ¢ and |g,| <e (8)
Now restrict attention to indices in

KY keS|t <k<t}.



llgxll

Y o . .. e ________

Figure 3.1: The subsequences of the proof of Theorem 3.8

As in proof of Theorem 3.7, (8) =

fe = fer = ns[fe — mu(si)] > ims€ min s
forall k€ K= LHSof (9) — 0 as k — o0 =

%im Ak =0

kel

Ac< o= finll
€7)s

for k € IC sufficiently large =—

Ez‘—l Ei—l 2
lot, = zll < E 2y —zjnll < £ Ay < ——{fi; = ful. - (10)
Jj=t; J=t; ET}S
jex jex
for ¢ sufficiently large.
But RHS of (10) — 0 = ||z, — x| — 0 as 7 tends to infinity
+ continuity = ||g¢, — g4,|| — 0.



Impossible as ||g;, — g¢|| > € by definition of {¢;} and {{;} = no
subsequence satisfying (7) can exist.

II: SOLVING THE TRUST-REGION SUBPROBLEM

approximately) minimize ¢(s) = s g+ is” s subject to ||s|| <
i ly) minimj Tg+ 15" Bs subj <A
seIR™

ATM: find s, so that

a(s.) < (") and [s.] < A

Might solve
© exactly = Newton-like method

© approximately = steepest descent/conjugate gradients



THE /(,-NORM TRUST-REGION SUBPROBLEM

minimize ¢(s) = s’ g+ 15’ Bs subject to ||s|lz < A
selR”

Solution characterisation result:

Theorem 3.9. Any global minimizer s, of g(s) subject to ||s||2 <
A satisfies the equation

(B+ Ad)s. = —g,

where B+ A, [ is positive semi-definite, A, > 0 and A (||s.|2—A) =
0. If B+ A1 is positive definite, s, is unique.

PROOF OF THEOREM 3.9
Problem equivalent to minimizing ¢(s) subject to 1A% — 1sTs > 0.
Theorem 1.9 =

g+ Bs, = —\.s, (11)

for some Lagrange multiplier A, > 0 for which either A, = 0 or ||s.||2 =
A (or both). It remains to show B + A.[ is positive semi-definite.

If s, lies in the interior of the trust-region, A, = 0, and Theorem 1.10
—> B+ A\ = B is positive semi-definite.

If [|ssl]2 = A and A\, = 0, Theorem 1.10 = v Bv > 0 for all
veN, ={vlslv>0} fvg Ny = —veN, = v'Bv>0for
all v.

Only remaining case is where ||s.||2 = A and A, > 0. Theorem 1.10
= v (B+\J1)v >0 forallv € N, = {v|sTv =0} = remains to
consider v! Bv when sTv # 0.




Figure 3.2: Construction of “missing” directions of positive curvature.

Let s be any point on the boundary d R of the trust-region R, and let
w =8 — S,. Then

—w's, = (5, — s)'s, = 1(s, — 8) (5, — 5) = lw'w (12)

since ||s|la = A = ||s«]|2. (11) + (12) =
q(s) — q(s.) = w'(g + Bs.) + bw’ Bw
= —\wls, + lw? Bw = lwl (B + \J)w,
— wl (B + \J)w > 0 since s, is a global minimizer. But

sTo

(13)

S=8,—2 v EOR

vl
= (for this s) w||v = vI(B + \.1)v > 0.

When B + M. [ is positive definite, s, = —(B + A1) lg. If s, € 6R
and s € R, (12) and (13) become —w?’s, > lwlw and ¢(s) > q(s.) +
LwT(B 4 M\J)w respectively. Hence, q(s) > q(s,) for any s # s,. If
S, 1s interior, A\, = 0, B is positive definite, and thus s, is the unique
unconstrained minimizer of g(s).



ALGORITHMS FOR THE /,-NORM SUBPROBLEM

Two cases:

® B positive-semi definite and Bs = —g satisfies [|s]|s < A =

Sy = S

© B indefinite or Bs = —g satisfies ||s|[o > A
In this case

o (B+\JI)s, =—gand sls, = A?
o nonlinear (quadratic) system in s and A

o concentrate on this

EQUALITY CONSTRAINED /,-NORM SUBPROBLEM

Suppose B has spectral decomposition
B=U"AU
® U eigenvectors
© A diagonal eigenvalues: Ay < Xy < ... <\,
Require B + Al positive semi-definite = A > —)\;

Define
s(\)=—(B+ M) g
Require
YA = sV = A7
Note (i =elUg)

2
N = [UTA+ A Ugl3= 5
V) = U+ Mgl = $



CONVEX EXAMPLE
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NONCONVEX EXAMPLE
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THE “HARD” CASE
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SUMMARY

For indefinite B,

Hard case occurs when g orthogonal to eigenvector
for most negative eigenvalue A\

© OK if radius is radius small enough

© No “obvious” solution to equations ... but
solution is actually of the form

Slim + OU1
where
¢ Slim — hm)\L_M S(/\)

o ||Stim + ougl|2 = A

o O O



HOW TO SOLVE [s(\)]2 = A
DON'T!!

Solve instead the secular equation

@f 11
PN e T A

=0
® no poles

© smallest at eigenvalues (except in hard casel)
© analytic function = ideal for Newton

© global convergent (ultimately quadratic rate except in hard case)

® need to safeguard to protect Newton from the hard & interior
solution cases

THE SECULAR EQUATION

¢(\) 1

a1 a2 102 1
min —3s7 + 385 + 381 + S

subject tol|s|l2 < 4




NEWTON’S METHOD FOR SECULAR EQUATION
Newton correction at A is —¢(\)/¢'(\). Differentiating
1

S = T

IsVlls A (sT(\)s(A): A
S\ = _ST(A)V)\SO\) ST()\)V,\S()\)

(STsONE sV
Differentiating the defining equation
(B+A)s(A\) =—g = (B+A)Vas(A)+s(A) =0.
Notice that, rather than Vs(), merely
sTINVAs(A) = —sT (\)(B + AD(N) s())
required for ¢/()\). Given the factorization B 4+ A = L(A\)LT(\) =

sTON)(B + M) 7ts(A) = sT(A)L TN LY N)s(N)
= (L7 N)s)) (LM N)s(N) = [lw(N)]3
where L(A)w(X) = s(A).

NEWTON’S METHOD & THE SECULAR EQUATION

Let A > —)A; and A > 0 be given
Until “convergence” do:
Factorize B + A\ = LL"
Solve LLTs = —g
Solve Lw = s

Replace A\ by

bl =2 (1s2)
A |
AT




SOLVING THE LARGE-SCALE PROBLEM

® when n is large, factorization may be impossible
© may instead try to use an iterative method to approximate

o Steepest descent leads to the Cauchy point
o obvious generalization: conjugate gradients ... but

> what about the trust region?

> what about negative curvature?

CONJUGATE GRADIENTS TO “MINIMIZE” q(s)

Given s =0,set " =¢,d’= —gand i =0
Until ¢* “small” or breakdown, iterate

o! = |l¢}3/d 7 B

sl — i 1 qidi

g+l = ¢ + o/ Bd’

B =g I3/ 119113

dz’—H — _gi—H 4 /Bldl

and increase ¢ by 1

Important features

© g =DBs +gforal j=0,...,i
o dTgt =0forall j=0,...,4
o g Tgtt =0foral j=0,...,4



CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 3.10. Suppose that the conjugate gradient method is
applied to minimize g(s) starting from s° = 0, and that d’ T Bd' > 0
for 0 < i < k. Then the iterates s/ satisfy the inequalities

sl < lls” 12

for 0<j<k—1.

PROOF OF THEOREM 3.10
First show that

i NGl e
d'-d = =l|d]]; >0 (14)
197113
for all 0 < 57 < i < k. For any ¢, (14) is trivially true for j = 1.
Suppose it is also true for all ¢ < [. Then, the update for d"*' gives

A — gt g2 g
19'[13
Forming the inner product with d’, and using the fact that d’ T ¢'*! = 0

forall j =0,...,1, and (14) when j = [, reveals

!
AT g = g T 4 g T!%dmdj

[+11|2 I+11]2
12 15

lg" M B NG5, e g o
- Loy L A Y )
g3 NgZl13™ ™ llg’l13 ?
Thus (14) is true for ¢ <[+ 1, and hence for all 0 < j <i < k.




Now have from the algorithm that

P P =
s'=s + Y dd =3 odd
J=0 J=0
as, by assumption, s' = 0. Hence
R N A
sTd ="y adldTd = Zzo oA Td > 0 (15)
j=0 j=

as each o/ > 0, which follows from the definition of o/, since d/ " Hd’ >

0, and from relationship (14). Hence

|12 = st Tgitl = (Si + aidi>T (81 +aidi>
= siTsi 42005 Td + i 2di Tdi > st st = |52

follows directly from (15) and o > 0 which is the required result.

TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration ¢ if
1. d'TBd' < 0 = problem unbounded along d"

2. |Is' + a'd'||y > A = solution on trust-region boundary
g

In both cases, stop with s, = s' + o®d’, where o® chosen as positive
root, of

Is' + a”d']]s = A

Crucially
a(s.) < g(s9) and sl < A

—> TR algorithm converges to a first-order critical point



HOW GOOD IS TRUNCATED C.G.?

In the convex case ... very good

Theorem 3.11. Suppose that the truncated conjugate gradient
method is applied to minimize ¢(s) and that B is positive definite.
Then the computed and actual solutions to the problem, s, and s,
satisfy the bound

q(s+) < q(s)

In the non-convex case ... maybe poor

© e.g., if g =0 and B is indefinite = ¢(s,) =0

WHAT CAN WE DO IN THE NON-CONVEX CASE?

Solve the problem over a subspace

© instead of the B-conjugate subspace for CG, use the equivalent
Lanczos orthogonal basis

o Gram-Schmidt applied to CG (Krylov) basis D"
o Subspace Q' = {s | s = Q's, for some s, € IR'}
o @' is such that
QiTQi — [ and QZTBQZ _ TZ
where T" is tridiagonal and Q*Tg = ||g||2 €1
o @' trivial to generate from CG D'



GENERALIZED LANCZOS TRUST-REGION METHOD

s' = arg min q(s) subject to [|sls < A
s€Q!
— §' = (Q's,, where
s, = arg min ||g|[y ey s, + 1s,T"s, subject to [[s,[l, < A
sq€IR
© advantage T* has very sparse factors = can solve the problem
using the earlier secular equation approach

© can exploit all the structure here = use solution for one problem
to initialize next

© until the trust-region boundary is reached, it is conjugate gradients
=—> switch when we get there



