Part 3: Trust-region methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
reIR"

Part C course on continuoue optimization




UNCONSTRAINED MINIMIZATION

minimize f(x)
relR"

where the objective function f : IR" — IR

© assume that f € C' (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary



LINESEARCH VS TRUST-REGION METHODS

©® Linesearch methods
o pick descent direction py
o pick stepsize ay to “reduce” f(xp + apy)
© Thy1 = T + OkPk
© Trust-region methods
o pick step sy to reduce “model” of f(xy + )

o accept Ty = Tty if decrease in model inherited by f(xx+sk)

o otherwise set .1 = 2, “refine” model



TRUST-REGION MODEL PROBLEM

Model f(xi + s) by:

® linear model

Sm?v = fi + mﬂbw

® quadratic model — symmetric By,

SmAmv = fi + mﬂmw + wmﬂm\ﬁw

Major difficulties:
® models may not resemble f(xy + s) if s is large
® models may be unbounded from below

o linear model - always unless g, = 0

o quadratic model - always if By is indefinite,
possibly if By, is only positive semi-definite



THE TRUST REGION

Prevent model my(s) from unboundedness by imposing a

trust-region constraint
Is]] < Ay

for some “suitable” scalar radius Ay > 0
—> trust-region subproblem

approx minimize mg(s) subject to ||s]| < Ay
seIR"

® in theory does not depend on norm || - ||

® in practice it might!



OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model
mi(s) = mi(s) = fr + s gr + 15" Bys
and the fo-trust region norm || - || = || - ||
Note:
© B = Hj, is allowed

© analysis for other trust-region norms simply adds extra constants
in following results



BASIC TRUST-REGION METHOD

Given k =0, Ay > 0 and x(, until “convergence” do:
Build the second-order model m(s) of f(xy + s).
“Solve” the trust-region subproblem to find s
for which m(sg) “<” fr and ||si|| < Ag, and define

o — &AI,\ASALw@L.

i = my(sp)
If pp > n, [very successful] 0<n, <1
set Tpi1 = xp + sp and Ap 1 = 1A v > 1

Otherwise if pp > ns then [successful] [0 <ns <1n, <1

set xp11 = T + s and A1 = Ay
Otherwise [unsuccessful]

set xp11 = xp and Appq = YA 0<v<1

Increase k by 1




“SOLVE” THE TRUST REGION SUBPROBLEM?

At the very least

©

aim to achieve as much reduction in the model as would an iteration
of steepest descent

Cauchy point: sj = —ajg, where

aj = arg min my(—ag,) subject to allg;|| < A,

a>0

= arg min my(—ag;)
O<a<Ap/l|grll

o minimize quadratic on line segment = very easy!
require that

my(sp) < my(sy) and |[[s;|| < A

in practice, hope to do far better than this



ACHIEVABLE MODEL DECREASE

Cauchy point within the trust-region |

fie = mi(sp) 2 5| gkl min

Theorem 3.1. If my(s) is the second-order model and s is its

sl| < Ag,

ol 5]

1+ | Bell’




PROOF OF THEOREM 3.1
my(—agr) = fi — allgill® + La’gg By
Result immediate if g = 0.

Otherwise, 3 possibilities

(i) curvature gi Byg, < 0 = my(—ag;) unbounded from below as «
increases = Cauchy point occurs on the trust-region boundary.

(ii) curvature gi B,g;, > 0 & minimizer my(—ag) occurs at or beyond
the trust-region boundary = Cauchy point occurs on the trust-
region boundary:.

(i) the curvature gf B,g, > 0 & minimizer my(—ag;), and hence
Cauchy point, occurs before trust-region is reached.

Consider each case in turn;



Case (i)

mi(—agy) = fi, — allgll” + WQMQ\W@AQ@ < fr. — allgl® (1)
Cauchy point lies on boundary of the trust region =—>
Ay
el

(2)

ap =

() +2)=

Ay,
Jr— Simmv > __,Q\A:wg = __SA__PA > W__SA__PA.



Case (ii

af ¥ arg min my(—ag)
— )
o lal
9k Brg
.

(3)+ @)+ (5) =

fie — my(

Sk

)

memmg < __Sa__w

atellgell® —

gl

Ay
__Sﬂ__

&QL gi: mg
= 3| gk ll Ay

= fi — allgil]” + 1a’g), By,

30| g I



Case (iii

fr — my(sf) = agllgnll® + 3(ak)’gf Bugy
ot ol
ﬂm\?@w wmmmg
:Q;
mwm
> __$__ |
1+ || B

where
192 Begrl < lgelPI Bl < Nlgrll*(1+ (| B))

because of the Cauchy-Schwarz inequality:.



Corollary 3.2. If my(s) is the second-order model, and sy is an
improvement on the Cauchy point within the trust-region ||s|| <

Ay,

)

1 gl
fre — me(si) > 1llgk|| min , A,




DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 3.3. Suppose that f € C?, and that the true and model
Hessians satisfy the bounds || H (z)|| < &y, for all x and || By|| < ks
for all £ and some s, > 1 and k; > 0. Then

fzy, + 51) — my(s,)] < KA

where kg = §(kj, + K;), for all k.




PROOF OF LEMMA 3.3
Mean value theorem =—

flae+ si) = f(@r) + 55 Vaf (@) + 15, Vo f () s

for some & € [z, xp + sx]. Thus

| f(ap + ) — mi(sk)| = 3|siH(&k)sk — st Bisk| < ilsi H (&) sk + 3| si Brsk]

Ykn 4 s)||sil]® < waA,

VAN

using the triangle and Cauchy-Schwarz inequalities.



ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 3.4. Suppose that f € C?, that the true and model Hes-
sians satisfy the bounds || Hy|| < kp, and ||By|| < &y for all k£ and
some kp > 1 and K, > 0, and that kg = Lk, + Kk;). Suppose
furthermore that g, # 0 and that

1 C N d@v
Kp + \A@v 2K g

Ay < llgel| min

Then iteration k is very successtul and

A1 > Ay




PROOF OF LEMMA 3.4
By definition,
1+ || Bill < ki + Ky

+ first bound on A, =—>

g%l < g%l
kK, + Ky ~ 14+ __mw:

Ay <

Corollary 3.2 =

fi = mi(sk) = 3| gkl min

+ Lemma 3.3 + second bound on A, —

flxg + sp) — my(sg) <5 ka7 _ w@bw
fe=ma(sr) 17 llgrllde lgnl

—> pp > 1, = iteration is very successful.

ok — 1| = <1-—mn,




RADIUS WON’T SHRINK TO ZERO AT NON-OPTIMAL
POINTS

Lemma 3.5. Suppose that f € C?, that the true and model Hes-
sians satisfy the bounds || Hy|| < kp, and ||Bg|| < &y for all k£ and
some kp > 1 and K, > 0, and that kg = Lk, + ;). Suppose

furthermore that there exists a constant € > 0 such that ||gx|| > €
for all £. Then

def 1 ﬁ - sev
Kp+ Ky 2Ky

for all k.




PROOF OF LEMMA 3.5
Suppose otherwise that iteration k is first for which

A1 < Ke.

A > A1 = iteration k£ unsuccessful = v;Ar < Ay 1. Hence

1 (1—n,
A < emin QA )
Ky + Kp 2K
. 1 1 — v
< gl min L )

Kp + \Aéu 2K

But this contradicts assertion of Lemma 3.4 that iteration & must be
very successtul.



POSSIBLE FINITE TERMINATION

Lemma 3.6. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all £. Suppose furthermore that
there are only finitely many successful iterations. Then z; = z, for
all sufficiently large k and g(x,) = 0.




PROOF OF LEMMA 3.6
Lko+j = Lho+1 — L

for all 5 > 0, where kq is index of last successtul iterate.
All iterations are unsuccessful for sufficiently large k = {Ax} — 0

+ Lemma 3.4 then implies that if || gx+1|| > 0 there must be a successful
iteration of index larger than kg, which is impossible = ||gx,+1]| = 0.



GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 3.7. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all k. Then either

g; =0 for some [ >0

or
lim \w = —00
k—o00
or
liminf ||gx|| = 0.

k—o00




PROOF OF THEOREM 3.7

Let S be the index set of successtul iterations. Lemma 3.6 = true
Theorem 3.7 when |S| finite.

So consider |S| = oo, and suppose fi bounded below and

lgrll = € (6)

for some € > 0 and all k£, and consider some k£ € S.
+ Corollary 3.2, Lemma 3.5, and the assumption (6) =

e . ¢
e — fer1 > qu\ﬂ — S\AAEAV_ > e « 575€ Min 14 Ke
+ Kyp
— "
Jo— fir1 = WOS — fiv1] = orde,
jes

where oy, is the number of successtul iterations up to iteration k. But

lim o, = +00.
k— 00

— f; unbounded below = a subsequence of the ||gx|| — 0



GLOBAL CONVERGENCE

Theorem 3.8. Suppose that f € C2, and that both the true and
model Hessians remain bounded for all £. Then either

g; =0 for some [ >0

or
\a:Hb \\A = —0
or
lim g = 0.

k—o00




PROOF OF THEOREM 3.8
Suppose otherwise that f; is bounded from below, and that there is a

subsequence {t;} C &, such that
lgs;]] = 2e >0 (7)
for some € > 0 and for all ¢. Theorem 3.7 = 3{¢;} C S such that
lgell > € for ¢t <k < ¢ and [|g,|| <e. (8)

Now restrict attention to indices in

\ﬂﬁwﬁ,ﬁ\am%_ﬁm\aAmgw
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Figure 3.1: The subsequences of the proof of Theorem 3.8



As in proof of Theorem 3.7, (8) =

€
L+ ky
forall ke K = LHS of (9) — 0 as k — co =

fr = fre1 = nslfr — mp(sp)] > inge min

DL (9)

L S =0
kek
— )
Ay < —[fr = fenl:
€N
for k£ € K sufficiently large =—>

l;—1
__&5. - M~§__ < N
j

Sy, — fol. - (10)

ti—1 2
Jz; — 2| < £ A; < —
=t 7=t €7)s
JEX JeX
for ¢ sufficiently large.
But RHS of (10) — 0 = ||z1, — x,|| — 0 as 7 tends to infinity

+ continuity = ||gt, — 91| — 0.



Impossible as ||g:, — g¢.|| > € by definition of {¢;} and {/;} = no
subsequence satisfying (7) can exist.



II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize ¢(s) = s’ g + Ls’ Bs subject to [|s|| < A
s€IR"

ATIM: find s, so that

q(s+) < q(s7) and [[s.]| <A

Might solve
© exactly = Newton-like method

® approximately = steepest descent/conjugate gradients



THE /,-NORM TRUST-REGION SUBPROBLEM

minimize ¢(s) = s’ g+ 1s' Bs subject to ||s|ls < A
selR"

Solution characterisation result:

Theorem 3.9. Any global minimizer s, of q(s) subject to [|s|ls <
A satisfies the equation

(B+ A\1)s. = —g,

where B+ A\, is positive semi-definite, A, > 0 and A.(||s«|][2—A) =
0. It B 4+ A1 is positive definite, s, is unique.




PROOF OF THEOREM 3.9
Problem equivalent to minimizing g(s) subject to 1A? — lsfs > 0.
Theorem 1.9 =

g+ Bs, = — s, (11)

for some Lagrange multiplier A, > 0 for which either A\, = 0 or ||s.]|2 =
A (or both). It remains to show B + \.[ is positive semi-definite.

If s, lies in the interior of the trust-region, A, = 0, and Theorem 1.10
—> B + \.I = B is positive semi-definite.

If ||s¢]2 = A and X\, = 0, Theorem 1.10 = v! Bv > 0 for all
veN, ={vlslv>0} fvg Ny = —veN, = v/ Bv>0for
all v.

Only remaining case is where ||s||o = A and A, > 0. Theorem 1.10
— vl (B+\1)v >0 forallv e N, = {v|slv =0} = remains to
consider v! Bv when slv # 0.



Figure 3.2: Construction of “missing” directions of positive curvature.



Let s be any point on the boundary 0 R of the trust-region R, and let
w=5s—8S,. Then

—w's, = (5, — 8) s, = L5, — 8) (5, — 5) = lwlw (12)

since ||s|la = A = [|s«]|2. (11) + (12) =
q(s) — q(s.) = w' (g + Bs,) + w! Bw
= —Mwls, + wéﬂmé = WéﬂAm + A )w,
= w! (B + \.J)w > 0 since s, is a global minimizer. But

slo

(13)

veEIR

S =8, — 2
vl

= (for this s) w||lv = v (B + \.1)v > 0.

When B + A, is positive definite, s, = —(B + y*NvL@ If s, € 0R
and s € R, (12) and (13) become —w?s, > lwlw and q(s) > q(s,) +
Lw! (B 4+ \.J)w respectively. Hence, q(s) > q(s,) for any s # s,. If
Sy 18 interior, A\, = 0, B is positive definite, and thus s, is the unique

unconstrained minimizer of q(s).



ALGORITHMS FOR THE /,-NORM SUBPROBLEM

T'wo cases:

® B positive-semi definite and Bs = —g satisfies ||s]|s < A =
Sy =S
® B indefinite or Bs = —g satisfies ||s||s > A
In this case
o (B+MI)s, = —gand sls, = A?
o nonlinear (quadratic) system in s and A

o concentrate on this



EQUALITY CONSTRAINED /,--NORM SUBPROBLEM

Suppose B has spectral decomposition
B=U"AU
® U eigenvectors
® A diagonal eigenvalues: Ay < Ay < ... <\,
Require B + AI positive semi-definite = A > —)\4

Define
s(\)=—(B+ )¢
Require
D) = [ls(A)]f; = A2
Note (vi =elUg)

2
) = [UTA+ M) Ugll; = 35—



CONVEX EXAMPLE

(X)) ¢

solution curve as A varies

o Ww O
o O O



NONCONVEX EXAMPLE

(X)) ¢ |

Ny

|
o o =
o w O

| | . <—— minus leftmost eigenvalue

Y

o O O



THE “HARD” CASE

p(A) ¢

1
B = 0
0

o w O
o O O

|
[
|
|
|
|
[
|
|
|
— .
| ~<—— minus leftmost eigenvalue
_ .
|




SUMMARY

For indefinite B,
Hard case occurs when ¢ orthogonal to eigenvector uq
for most negative eigenvalue A\

® OK if radius is radius small enough

® No “obvious” solution to equations ... but
solution is actually of the form

where
S Slim — :BVHVI\/H

o ||stim + out|ls = A



HOW TO SOLVE |[s()\)|2 = A
DON'T!!

Solve instead the secular equation

%Av,v def 1 |FH©

EC

® no poles

© smallest at eigenvalues (except in hard case!)

® analytic function = ideal for Newton

® global convergent (ultimately quadratic rate except in hard case)

® need to safeguard to protect Newton from the hard & interior
solution cases



THE SECULAR EQUATION

o(\) 1

: 1 o2 1 o2 1
min —;s87 + 1585 + 581 + Sy

subject to||s||2 < 4

Y




NEWTON’S METHOD FOR SECULAR EQUATION
Newton correction at A is —¢(\)/¢’(A). Differentiating
|

1 1 1
P = sV~ A (sTO)s()E A
oy Imﬂgvﬂym@,v _ Imﬂ@vﬁym@,v
R ) AR POV

Differentiating the defining equation
(B+A)s(A\) =—g9g = (B+A)V s(A)+s(A) =0.
Notice that, rather than V)s(\), merely
sTAVas(A) = —sT (A\)(B + A)(N) ts(N)
required for ¢/(\). Given the factorization B + M = L(A\) LT (\) =

sEON)(B 4+ M) 7ts(A) = sEN LN L7HA)s(A)
= (L7 N)s(A) (LT N)s(N) = lw (N2
where L(N)w(\) = s(\).



NEWTON’S METHOD & THE SECULAR EQUATION

Let A > —A; and A > 0 be given
Until “convergence” do:
Factorize B+ A\ = LL'
Solve LL's = —¢
Solve Lw = s
Replace A by

bl =2 el
-
AT




SOLVING THE LARGE-SCALE PROBLEM

® when n is large, factorization may be impossible
® may instead try to use an iterative method to approximate

o Steepest descent leads to the Cauchy point
o obvious generalization: conjugate gradients ... but

> what about the trust region?

> what about negative curvature?



CONJUGATE GRADIENTS TO “MINIMIZE” qfs)

Given 8" =0,set ¢" = ¢, d’ = —g and i = 0
Gsﬁ_ g' “small” or breakdown, iterate
= |lg'll3/d" " B’
mtl = s' + o'd
Q&+ — m@ +ng&@.
B = :Qigw\__m@:w
&TL TL Qs&s

and 59@@% 1 by 1

Important features
© g =Bs/ +qgforall j=0,...,3
o d gt =0forallj=0,...,1

o ¢ Tgt =0forall j =0,...,1



CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 3.10. Suppose that the conjugate gradient method is
applied to minimize g(s) starting from s” = 0, and that d' ? Bd' > 0
for 0 <4 < k. Then the iterates s’ satisfy the inequalities

Isll2 < lIs" "I

for 0 <j3<k-—1.




PROOF OF THEOREM 3.10
First show that

w

for all 0 < 7 < ¢ < k. For any ¢, (14) is trivially true for j =
Suppose it is also true for all ¢+ < I. Then, the update for d'*! gives

g™ 113
A = gty g1l
(alk
Forming the inner product with d’, and using the fact that &/ 7 ¢!*' = 0
for all 7 =0,...,1, and (14) when j = [, reveals

l
dH TG = — g1 Tqi :mﬁ:w%ﬂ%
9112
_ __fQIL__W :QN__M __m%:w _ :Q
19115 1197113 19713
Thus (14) is true for ¢ < [+ 1, and hence for all 0 < j < i < k.

I.H:m

S N> 0.



Now have from the algorithm that

; o A=l il
s'=s"+ Y ddd =3 &
7=0 j=0
as, by assumption, s” = 0. Hence
T A L
s Tt = @MQ /T = W@ oI Td >0 (15)
j= j=

as each o/ > 0, which follows from the definition of o/, since &/ " Hd’ >

0, and from relationship (14). Hence

|siH|2 = sitl Tgitl = A% 4 Q&%v% A% 4 Q&%.v
= 575 4205 Td + i 2di Tdi > s Tst = || )2

follows directly from (15) and o' > 0 which is the required result.



TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration ¢ if
1. d""Bd' < 0 = problem unbounded along d"

2. ||s" + a'd'l]s > A = solution on trust-region boundary

In both cases, stop with s, = s’ + a®d’, where a” chosen as positive

root of
:mN.Lwa%__w = A

Crucially
q(s:) < q(s°) and |[s.]l < A

—> TR algorithm converges to a first-order critical point



HOW GOOD IS TRUNCATED C.G.7

In the convex case . ..very good

Theorem 3.11. Suppose that the truncated conjugate gradient
method is applied to minimize ¢(s) and that B is positive definite.
Then the computed and actual solutions to the problem, s, and s

satisfy the bound
q(s:) < 3a(sy)

In the non-convex case ... maybe poor

© e.g., if g =0 and B is indefinite = ¢(s.) =0



WHAT CAN WE DO IN THE NON-CONVEX CASE?

Solve the problem over a subspace

® instead of the B-conjugate subspace for CG, use the equivalent
Lanczos orthogonal basis

o Gram-Schmidt applied to CG (Krylov) basis D"
o Subspace Q' = {s | s = Q's, for some s, € IR’}
o Q' is such that
Q@.ﬂ@@. — [ and @Nﬂmﬁw@ _ HNJN
where T" is tridiagonal and Q' Tg = ||g|2 €1
o ' trivial to generate from CG D!



GENERALIZED LANCZOS TRUST-REGION METHOD

s' = arg min q(s) subject to [|s]ls < A
s€Q!
— s' = (Q's,, where
s, = arg min ||g|lye; s, + s, T"s, subject to |[|s, [l <A
sq€IR’
© advantage T" has very sparse factors = can solve the problem
using the earlier secular equation approach

© can exploit all the structure here = use solution for one problem
to initialize next

® until the trust-region boundary is reached, it is conjugate gradients
—> switch when we get there



