Part 4: Active-set methods
for linearly constrained optimization

Nick Gould (RAL)

minimize  f(z) subject to Az >b
r€IR"

Part C course on continuoue optimization

LINEARLY CONSTRAINED MINIMIZATION

>
minimize f(z) subject to A:r;{ - }b

z€IR"

where the objective function f : IR" — IR

© assume that f € C'! (sometimes C?) and Lipschitz

© often in practice this assumption violated, but not necessary

© important special cases:
o linear programming: f(z) = g’z

o quadratic programming: f(z) = ¢z + 2T Hx

Concentrate here on quadratic programming



QUADRATIC PROGRAMMING

QP: minimize q(z) =g’z + laTHz subject to Az >b
zeIR”

© H is n by n, real symmetric, g € IR"

aj [b]1
© A= : is m by n real, b =
a, [b]n

® in general, constraints may

o have upper bounds: b/ < Az < b*
o include equalities: A°x = b°
o involve simple bounds: <z <av

o Include network constraints . ..

PROBLEM TYPES

Convex problems

© H is positive semi-definite (27 Hx > 0 for all )
© any local minimizer is global

© important special case: H = 0 <= linear programming

Strictly convex problems

© H is positive definite (27 Hz > 0 for all 2 # 0)

© unique minimizer (if any)



CONVEX EXAMPLE

min(xl — 1)2 + (Ig — 05)2
subject to x1 + x5 < 1
3r1+ a0 < 1.5
(1'1, $2) Z 0

\\\\

\ \\‘

Contours of objective function

PROBLEM TYPES (II)

General (non-convex) problems

© H may be indefinite (z7 Hz < 0 for some z)
© may be many local minimizers

© may have to be content with a local minimizer

® problem may be unbounded from below



NON-CONVEX EXAMPLE

min —2(z1 — 0.25)% + 2(zy — 0.5)?
subject to x1 + x5 < 1
3r1+ 29 < 1.5
(331, ZL’Q) Z 0

Contours of objective function

PROBLEM TYPES (III)

Small

© values/structure of matrix data H and A irrelevant
© currently min(m, n) = O(10?)

Large

© values/structure of matrix data H and A important
© currently min(m, n) > O(10%)

Huge

® factorizations involving H and A are unrealistic

® currently min(m, n) > O(10°)



WHY IS QP SO IMPORTANT?

© many applications

o portfolio analysis, structural analysis, VLSI design, discrete-time
stabilization, optimal and fuzzy control, finite impulse response
design, optimal power flow, economic dispatch . ..

o ~ 500 application papers
® prototypical nonlinear programming problem

© basic subproblem in constrained optimization:

minimize  f(z) minimize [+ ¢’z + iz’ Ha
z€IR" _— z€IR"
subject to ¢(z) > 0 subject to Az +¢ >0

—>  SQP methods (= Course Part 7)

OPTIMALITY CONDITIONS

Recall: the importance of optimality conditions is:
® to be able to recognise a solution if found by accident or design

© to guide the development of algorithms



FIRST-ORDER OPTIMALITY

QP:  minimize g(z) = g7x + laT Hx subject to Ax > b
z€IR"

Any point x, that satisfies the conditions

Az, >b (primal feasibility)
Hr,+g— ATy, =0 and y, >0 (dual feasibility)
Az, — bl; - [y = 0 for all i (complementary slackness)

for some vector of Lagrange multipliers y, is a
first-order critical (or Karush-Kuhn-Tucker) point

If [Az, — b], = 0 <= [y.); > 0 for all i =
the solution is strictly complementary

SECOND-ORDER OPTIMALITY

QP:  minimize ¢(z) = ¢g'x + 2" Hz subject to Az > b
relR"

Let

N+—{S

Any first-order critical point x, for which additionally

als =0 for all i such that alx, = [b], and [y.]; >0 and
al's >0 for all i such that a!xz, = [b], and [y.); =0

s"Hs >0 (resp. > 0) forall s € Ny

is a second-order (resp. strong second-order) critical point

Theorem 4.1: x, is a (an isolated) local minimizer of QP <=
x, is (strong) second-order critical



WEAK SECOND-ORDER OPTIMALITY

QP:  minimize g(z) = g'x + ol Hx subject to Ax > b
z€IR”

Let
N ={s|als=0 forall i suchthat a z, = [b];}

7

Any first-order critical point x, for which additionally
sTHs >0 forall se N

is a weak second-order critical point

Note that
® a weak second-order critical point may be a maximizer!

® checking for weak second-order criticality is easy (strong is hard)

NON-CONVEX EXAMPLE

min 23 + x5 — 61,1,
subject to x1 + x5 < 1
31+ 290 < 1.5
(x1,22) >0

205 0 05 1 15

Contours of objective function:
note that escaping from the origin may be difficult!



[ DUALITY

QP:  minimize g(z) = g7x + iaT Hx subject to Ax > b
z€IR”

If QP is convex, any first-order critical point is a global minimizer
If H is strictly convex, the problem

maximize — gt H g+ (AH 1g+b)Ty — Wl AH ATy
yeIR™, y>0

is known as the dual of QP
© QP is the primal
® primal and dual have same KK'T' conditions
© if primal is feasible, optimal value of primal = optimal value dual

® can be generalized for simply convex case ]

ALGORITHMS

Essentially two classes of methods (slight simplification)
active set methods :

primal active set methods aim for dual feasibility while maintain-
ing primal feasibility and complementary slackness

dual active set methods aim for primal feasibility while maintaining

dual feasibility and complementary slackness

interior-point methods : aim for complementary slackness while
maintaining primal and dual feasibility (= Course Part 6)



EQUALITY CONSTRAINED QP

The basic subproblem in all of the methods we will consider is

EQP: minimize g’z + iz Hz subject to Az =0 «—

zeIR"

Assume A is m by n, full-rank (preprocess if necessary)

© First-order optimality (Lagrange multipliers )

(A5)(5)-(7)

© Second-order necessary optimality:
sTHs > 0 for all s for which As = 0

© Second-order sufficient optimality:
sTHs > 0 for all s # 0 for which As =0

EQUALITY CONSTRAINED QP (II)

EQP: minimize ¢(z) = g’z + o' Hz subject to Az =0
zeR”

Four possibilities:

: H AT x —q
and H is second-order sufficient = unique minimizer x

(ii) (%) holds, H is second-order necessary, but 3s such that Hs = 0
and As = 0 = family of weak minimizers z + as for any o € IR

(iii) 3s for which As =0, Hs = 0 and g's < 0 =
¢(-) unbounded along direction of linear infinite descent s

(iv) 3s for which As =0 and sTHs < 0 =
q(+) unbounded along direction of negative curvature s



CLASSIFICATION OF EQP METHODS

(A5)(5)- ()

Three basic approaches:

Aim to solve

full-space approach
range-space approach
null-space approach

For each of these can use
direct (factorization) method

iterative (conjugate-gradient) method

FULL-SPACE/KKT/AUGMENTED SYSTEM APPROACH

H AT r )\ [ —g
A 0 —y ) \ 0
® KKT matrix
H AT

is symmetric, indefinite = use Bunch-Parlett type factorization
o K =PLBL"PT
o P permutation, L unit lower-triangular
o B block diagonal with 1x1 and 2x2 blocks

© LAPACK for small problems, MA27 /MA57 for large ones

© Theorem 4.2: H is second-order sufficient <=
K non-singular and has precisely m negative eigenvalues



RANGE-SPACE APPROACH

T
() (A)-() e
For non-singular H
© eliminate z using first block of (x) =
AH ATy = AH g followed by Hz = —g + ATy
® strictly convex case => H and AH 'A” positive definite =

Cholesky factorization

© Theorem 4.3: H is second-order sufficient <=
H and AH'AT have same number of negative eigenvalues

o AH'AT usually dense = factorization only for small m

NULL-SPACE APPROACH

(BE))-(0) @

let n by n —m S be a basis for null-space of A = AS =0

©

® second block (%) = x = Say

O]

premultiply first block (%) by ST =
STHSzs=—STg

® Theorem 4.4: H is second-order sufficient <=
STHS is positive definite = Cholesky factorization

© STHS usually dense = factorization only for small n — m



NULL-SPACE BASIS
Require n by n — m null-space basis S for A = AS =0

Non-orthogonal basis: let A =(A4; As)P

© P permutation, A; non-singular

— S = PT <_A11A2>
1

© generally suitable for large problems. Best A;?
Orthogonal basis: let A= (L 0)Q

Q1

> orthonormal
9

© L non-singular (e.g., triangular), Q) = (

= S=0Q]

® more stable but ... generally unsuitable for large problems

[ ITERATIVE METHODS FOR SYMMETRIC
LINEAR SYSTEMS

Bx =10
Best methods are based on finding solutions from the Krylov space
K={r B B(Br"),..} (r’ = b — Ba")
B indefinite: use MINRES method
B positive definite: use conjugate gradient method

© usually satisfactory to find approximation rather than

exact solution
® usually try to precondition system, i.e., solve
C'Bx=C""
where C71B ~ [ ]



[ ITERATIVE RANGE-SPACE APPROACH

AH ATy = AH g followed by Hz = —g + ATy
For strictly convex case => H and AH ' AT positive definite
H~! available: ( directly or via factors),
use conjugate gradients to solve AH 'ATy = AH g
© matrix vector product AH ATy = (A (H ' (A"v)))
© preconditioning? Need to approximate (likely dense) AH AT

H~' not available: use composite conjugate gradient method
(Urzawa’s method) iterating both on solutions to

AH ATy = AH ' and Hz=—g+ ATy

at the same time (may not converge) ]

[ ITERATIVE NULL-SPACE APPROACH

STHSz, = —STg followed by = = Szy
© use conjugate gradient method

o matrix vector product STHSvy = (ST (H(Svy)))
o preconditioning? Need to approximate (likely dense) STHS

o if we encounter sy such that si(STHS)s, < 0 = s = Nsy
is a direction of negative curvature since As = 0 and s’ Hs < 0

o Advantage: Az™™ = () ]



[ ITERATIVE FULL-SPACE APPROACH

(55)(5)-(7)

® use MINRES with the preconditioner

M 0
0 AN1AT
where M and N ~ H.

o Disadvantage: Az®™™ £ ()

® use conjugate gradients with the preconditioner

M AT
A 0
where M ~ H.

o Advantage: Az®™> =( ]

ACTIVE SET ALGORITHMS

QP:  minimize ¢(z) = g7x + laT Hx subject to Ax > b
z€IR"

The active set A(x) at x is
Alx) = {i | aj o = [0l:}
If x, solves QP, we have
argmin g(z) subject to Az >b
= argming(x) subject to alz = [b]; for all i € A(z,)

A working set W(zx) at x is a subset of the active set for which
the vectors {a;}, i € W(x) are linearly independent



BASICS OF ACTIVE SET ALGORITHMS

Basic idea: Pick a subset Wy of {1, ..., m} and find
Tpy1 = argmin g(z) subject to a x = [b], for all i € W

If x4 does not solve QP, adjust Wy to form W1 and repeat

Important issues are:
® how do we know if zp,1 solves QP 7

® if 21 does not solve QP, how do we pick the next
working set W1 7

Notation: rows of Ay are those of A indexed by W
components of by are those of b indexed by W

PRIMAL ACTIVE SET ALGORITHMS
Important feature: ensure all iterates are feasible, i.e., Az > b

— Akxk = bk and AkZEk+1 = bk
—> Tj.1 = X} + Sp, where
sp= argmin EQP,
= arg min q(zy + s) subject to Aps =0

equality constrained problem

Need an initial feasible point x



PRIMAL ACTIVE SET ALGORITHMS
— ADDING CONSTRAINTS

s = argmin g(xy + s) subject to Ags =0

What if x; + s; 18 not feasible?

® a currently inactive constraint 7 must become active at xp + ag.s;
for some o, < 1 — pick the smallest such «,

® move instead to zr1 = Tk + s, and set Wi = Wi + {j}

PRIMAL ACTIVE SET ALGORITHMS
— DELETING CONSTRAINTS

What if x311 = x1 + s is feasible 7 —
Ty = argmin g(x) subject to al z = [b];, for all i € W

—> d Lagrange multipliers y;; such that

H Al 7 T
Ap 0O —Yk+1 b,

Three possibilities:
© q(xps1) = —o0 (not strictly-convex case only)

© Ypr1 > 0 = x4 is a first-order critical point of QP

® [ygr1]i < 0 for some i = ¢(z) may be improved by considering
W1 = Wi\ {j}, where j is the i-th member of W



ACTIVE-SET APPROACH

0. Starting point

0”. Unconstrained minimizer

1. Encounter constraint A

1’. Minimizer on constraint A

2. Encounter constraint B,
move off constraint A

3. Minimizer on constraint B

= required solution

LINEAR ALGEBRA

Need to solve a sequence of EQP,s in which

A
cither Wi =Wi +{j} = Aj1= azlf

J

. Ay
or Win=Wi\{j} = A= a}Ll
J
Since working sets change gradually, aim to update

factorizations rather than compute afresh



RANGE-SPACE APPROACH — MATRIX UPDATES

Need factors Lk+1L;§:F+1 = AkHH_lAgJrl given L, LT = A, H1AT

When Apq = (217]3 ) —

J
A HAT A H 'a,
—1 4T
Ak+1H Ak+1 - (aleAéj afH%j)

L; 0
L pr—
k+1 (ZT )\)

where

Lil = A H 'a; and )\ = \/afH—laj — 7]

Essentially reverse this to remove a constraint

NULL-SPACE APPROACH — MATRIX UPDATES

Need factors Ag1 = (Lgr1 0)Qp+1 given

Ap=(Ly  0)Qy = (Ly 0) (g;;)

To add a constraint (to remove is similar)

Ak Lk 0
A p— p—
k+1 ol ) (aT T TAT Qr

j Wi a5 Woy

B Ly 0 I 0 I 0 0
N ajTlTkaJTQTk 0our 0U g

B Ly 0 10,
B ajT I oel 0U :
(Lis1 0) Qs

where the Householder matrix U reduces ()9 ra; to oey = (

;)



[ FULL-SPACE APPROACH — MATRIX UPDATES
W,. becomes W, = A;. = ( Ac ) becomes A, = ( Ac )

AD AA
Solving
H A se \ | g
goary [ [HATAT AL o) s\ o)
A0 | [ A4 0 0] 0 0 —Yc 0
Ay 0 0| 0 I —yp [ =1 0 |;
Ay 0 0 0 0 —Ya 0
\ 0 0 T 0 0]\ w \ 0/

[ FULL-SPACE APPROACH — MATRIX UPDATES (CONT.)

...can solve

<f{Ag>e_/ HOAT AL AT o\ [ s\ (o)
0

A 0 Ac 0 00 0 || e
AD 0 0 0 1 —UYp = 0
Ay 0 0 0 O —Ya 0
\ 0 0 I 0 0)\ w ) \o)
using the factors of
H Al
K. = k
and the Schur complement
1 AT
. (AAO())(HAC,f) OAg
= —
I A
00 0 0 I



[ SCHUR COMPLEMENT UPDATING

© Major iteration starts with factorization of

H AT
K. = k

© As W, changes to Wy, factorization of

-1 T

. (AAO())(H A{) ’%Ag
-

007\ A4 o -

is updated not recomputed

® Once dim Sy exceeds a given threshold, or it is cheaper to
factorize/use Ky than maintain/use K} and Sy, start the
next major iteration ]

PHASE-1

To find an initial feasible point zy such that Axy > b
© use traditional (simplex) phase-1, or
© let 7 = min(b — Az, 0), and solve (0, €0) = (T guessy )]

minimize & subject to Ax +&r >b and £ >0
z€IR", £€R

Alternatively, use a single-phase method
© Big-M: for some sufficiently large M

minimize ¢(x) + ME subject to Ax +&r > b and & > 0
z€IR", £€IR

© (1QP (p > 0) — may be reformulated as a QP

minimize ¢(x) + p|| max(b — Az, 0)||
z€IR"



CONVEX EXAMPLE

2

min(x; — 1)% + (29 — 0.5)?
subject to x1 + x5 < 1
3r1+ 19 < 1.5
(x1,29) >0

0.5[

05 : ‘ :
-1 -05 0 05 1 15

Contours of penalty function g(z) + p|| max(b — Az, 0)|| (with p = 2)

NON-CONVEX EXAMPLE

2

min —2(x1 — 0.25)* + 2(x9 — 0.5)?
subject to x1 + x5 < 1
3r;+ 19 < 1.5
(1'1,162) Z 0
051 \

05 L 1 L
-1 -05 0 0.5 1 1.5

Contours of penalty function g(z) + p|| max(b — Az, 0)|| (with p = 3)



TERMINATION, DEGENERACY & ANTI-CYCLING

So long as ay. > 0, these methods are finite:
® finite number of steps to find an EQP with a feasible solution

© finite number of EQP with feasible solutions

If x); is degenerate (active constraints are dependent) it is possible that
ay = 0. If this happens infinitely often

© may make no progress (a cycle) = algorithm may stall

Various anti-cycling rules
© Wolfe’s and lexicographic perturbations
© least-index — Bland’s rule

® Fletcher’s robust method

NON-CONVEXITY

® causes little extra difficulty so long as suitable factorizations
are possible

© Inertia-controlling methods tolerate at most one negative
eigenvalue in the reduced Hessian. Idea is

1. start from working set on which problem is strictly convex
(e.g., a vertex)

2. if a negative eigenvalue appears, do not drop any further
constraints until 1. is restored

3. a direction of negative curvature is easy to obtain in 2.

© latest methods are not inertia controlling = more flexible



COMPLEXITY

© When the problem is convex, there are algorithms that will
solve QP in a polynomial number of iterations

o some interior-point algorithms are polynomial

o no known polynomial active-set algorithm

© When the problem is non-convex, it is unlikely that there are
polynomial algorithms

o problem is NP complete

o even verifying that a proposed solution is locally optimal is
NP hard

NON-QUADRATIC OBJECTIVE

When f(z) is non quadratic
© H = Hj changes
© active-set subproblem
Ty ~ argmin f(z) subject to alx = [b]; for all i € W),

o iteration now required but each step satisfies A;s =0
— linear algebra as before

o usually solve subproblem inaccurately
> when to stop?
> which Lagrange multipliers in this case?

> need to avoid zig-zagging in which working sets repeat



