
Part 4: Active-set methods

for linearly constrained optimization

Nick Gould (RAL)

minimize
x∈IRn

f(x) subject to Ax ≥ b

Part C course on continuoue optimization

LINEARLY CONSTRAINED MINIMIZATION

minimize
x∈IRn

f(x) subject to Ax

{

≥

=

}

b

where the objective function f : IRn −→ IR

� assume that f ∈ C1 (sometimes C2) and Lipschitz

� often in practice this assumption violated, but not necessary

� important special cases:

� linear programming: f(x) = gTx

� quadratic programming: f(x) = gTx + 1
2x

THx

Concentrate here on quadratic programming

QUADRATIC PROGRAMMING

QP: minimize
x∈IRn

q(x) = gTx + 1
2x

THx subject to Ax ≥ b

� H is n by n, real symmetric, g ∈ IRn

� A =






aT
1
...

aT
m




 is m by n real, b =






[b]1
...

[b]m






� in general, constraints may

� have upper bounds: bl ≤ Ax ≤ bu

� include equalities: Aex = be

� involve simple bounds: xl ≤ x ≤ xu

� include network constraints . . .

PROBLEM TYPES

Convex problems

� H is positive semi-definite (xTHx ≥ 0 for all x)

� any local minimizer is global

� important special case: H = 0 ⇐⇒ linear programming

Strictly convex problems

� H is positive definite (xTHx > 0 for all x 6= 0)

� unique minimizer (if any)

CONVEX EXAMPLE

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Contours of objective function

min(x1 − 1)2 + (x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0

PROBLEM TYPES (II)

General (non-convex) problems

� H may be indefinite (xTHx < 0 for some x)

� may be many local minimizers

� may have to be content with a local minimizer

� problem may be unbounded from below

NON-CONVEX EXAMPLE

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Contours of objective function

min−2(x1 − 0.25)2 + 2(x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0

PROBLEM TYPES (III)

Small

� values/structure of matrix data H and A irrelevant

� currently min(m, n) = O(102)

Large

� values/structure of matrix data H and A important

� currently min(m, n) ≥ O(103)

Huge

� factorizations involving H and A are unrealistic

� currently min(m, n) ≥ O(105)

WHY IS QP SO IMPORTANT?

� many applications

� portfolio analysis, structural analysis, VLSI design, discrete-time

stabilization, optimal and fuzzy control, finite impulse response

design, optimal power flow, economic dispatch . . .

� ∼ 500 application papers

� prototypical nonlinear programming problem

� basic subproblem in constrained optimization:

minimize
x∈IRn

f(x)

subject to c(x) ≥ 0
=⇒

minimize
x∈IRn

f + gTx + 1
2x

THx

subject to Ax + c ≥ 0

=⇒ SQP methods (=⇒ Course Part 7)

OPTIMALITY CONDITIONS

Recall: the importance of optimality conditions is:

� to be able to recognise a solution if found by accident or design

� to guide the development of algorithms

FIRST-ORDER OPTIMALITY

QP: minimize
x∈IRn

q(x) = gTx + 1
2x

THx subject to Ax ≥ b

Any point x∗ that satisfies the conditions

Ax∗ ≥ b (primal feasibility)

Hx∗ + g − ATy∗ = 0 and y∗ ≥ 0 (dual feasibility)

[Ax∗ − b]i · [y∗]i = 0 for all i (complementary slackness)

for some vector of Lagrange multipliers y∗ is a

first-order critical (or Karush-Kuhn-Tucker) point

If [Ax∗ − b]i = 0 ⇐⇒ [y∗]i > 0 for all i =⇒

the solution is strictly complementary

SECOND-ORDER OPTIMALITY

QP: minimize
x∈IRn

q(x) = gTx + 1
2x

THx subject to Ax ≥ b

Let

N+ =

{

s

∣
∣
∣
∣
∣

aT
i s = 0 for all i such that aT

i x∗ = [b]i and [y∗]i > 0 and

aT
i s ≥ 0 for all i such that aT

i x∗ = [b]i and [y∗]i = 0

}

Any first-order critical point x∗ for which additionally

sTHs ≥ 0 (resp. > 0) for all s ∈ N+

is a second-order (resp. strong second-order) critical point

Theorem 4.1: x∗ is a (an isolated) local minimizer of QP ⇐⇒

x∗ is (strong) second-order critical

WEAK SECOND-ORDER OPTIMALITY

QP: minimize
x∈IRn

q(x) = gTx + 1
2x

THx subject to Ax ≥ b

Let

N =
{
s | aT

i s = 0 for all i such that aT
i x∗ = [b]i

}

Any first-order critical point x∗ for which additionally

sTHs ≥ 0 for all s ∈ N

is a weak second-order critical point

Note that

� a weak second-order critical point may be a maximizer!

� checking for weak second-order criticality is easy (strong is hard)

NON-CONVEX EXAMPLE

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Contours of objective function:

note that escaping from the origin may be difficult!

min x2
1 + x2

2 − 6x1x2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0

[DUALITY

QP: minimize
x∈IRn

q(x) = gTx + 1
2x

THx subject to Ax ≥ b

If QP is convex, any first-order critical point is a global minimizer

If H is strictly convex, the problem

maximize
y∈IRm, y≥0

− 1
2g

TH−1g + (AH−1g + b)Ty − 1
2y

TAH−1ATy

is known as the dual of QP

� QP is the primal

� primal and dual have same KKT conditions

� if primal is feasible, optimal value of primal = optimal value dual

� can be generalized for simply convex case]

ALGORITHMS

Essentially two classes of methods (slight simplification)

active set methods :

primal active set methods aim for dual feasibility while maintain-

ing primal feasibility and complementary slackness

dual active set methods aim for primal feasibility while maintaining

dual feasibility and complementary slackness

interior-point methods : aim for complementary slackness while

maintaining primal and dual feasibility (=⇒ Course Part 6)

EQUALITY CONSTRAINED QP

The basic subproblem in all of the methods we will consider is

EQP: minimize
x∈IRn

gTx + 1
2x

THx subject to Ax = 0 ←− N.B.

Assume A is m by n, full-rank (preprocess if necessary)

� First-order optimality (Lagrange multipliers y)
(

H AT

A 0

)(

x

−y

)

=

(

−g

0

)

� Second-order necessary optimality:

sTHs ≥ 0 for all s for which As = 0

� Second-order sufficient optimality:

sTHs > 0 for all s 6= 0 for which As = 0

EQUALITY CONSTRAINED QP (II)

EQP: minimize
x∈IRn

q(x) = gTx + 1
2x

THx subject to Ax = 0

Four possibilities:

(i)

(

H AT

A 0

)(

x

−y

)

=

(

−g

0

)

(∗)

and H is second-order sufficient =⇒ unique minimizer x

(ii) (∗) holds, H is second-order necessary, but ∃s such that Hs = 0

and As = 0 =⇒ family of weak minimizers x+αs for any α ∈ IR

(iii) ∃s for which As = 0, Hs = 0 and gTs < 0 =⇒

q(·) unbounded along direction of linear infinite descent s

(iv) ∃s for which As = 0 and sTHs < 0 =⇒

q(·) unbounded along direction of negative curvature s

CLASSIFICATION OF EQP METHODS

Aim to solve (

H AT

A 0

)(

x

−y

)

=

(

−g

0

)

Three basic approaches:

full-space approach

range-space approach

null-space approach

For each of these can use

direct (factorization) method

iterative (conjugate-gradient) method

FULL-SPACE/KKT/AUGMENTED SYSTEM APPROACH

(

H AT

A 0

)(

x

−y

)

=

(

−g

0

)

� KKT matrix

K =

(

H AT

A 0

)

is symmetric, indefinite =⇒ use Bunch-Parlett type factorization

� K = PLBLTP T

� P permutation, L unit lower-triangular

� B block diagonal with 1x1 and 2x2 blocks

� LAPACK for small problems, MA27/MA57 for large ones

� Theorem 4.2: H is second-order sufficient⇐⇒

K non-singular and has precisely m negative eigenvalues

RANGE-SPACE APPROACH

(

H AT

A 0

)(

x

−y

)

=

(

−g

0

)

(∗)

For non-singular H

� eliminate x using first block of (∗) =⇒

AH−1ATy = AH−1g followed by Hx = −g + ATy

� strictly convex case =⇒ H and AH−1AT positive definite =⇒

Cholesky factorization

� Theorem 4.3: H is second-order sufficient⇐⇒

H and AH−1AT have same number of negative eigenvalues

� AH−1AT usually dense =⇒ factorization only for small m

NULL-SPACE APPROACH

(

H AT

A 0

)(

x

−y

)

=

(

−g

0

)

(∗)

� let n by n−m S be a basis for null-space of A =⇒ AS = 0

� second block (∗) =⇒ x = SxN

� premultiply first block (∗) by ST =⇒

STHSxS = −STg

� Theorem 4.4: H is second-order sufficient⇐⇒

STHS is positive definite =⇒ Cholesky factorization

� STHS usually dense =⇒ factorization only for small n−m

NULL-SPACE BASIS

Require n by n−m null-space basis S for A =⇒ AS = 0

Non-orthogonal basis: let A = (A1 A2)P

� P permutation, A1 non-singular

=⇒ S = P T

(

−A−1
1 A2

I

)

� generally suitable for large problems. Best A1?

Orthogonal basis: let A = (L 0)Q

� L non-singular (e.g., triangular), Q =

(

Q1

Q2

)

orthonormal

=⇒ S = QT
2

� more stable but . . . generally unsuitable for large problems

[ITERATIVE METHODS FOR SYMMETRIC

LINEAR SYSTEMS

Bx = b

Best methods are based on finding solutions from the Krylov space

K = {r0, Br0, B(Br0), . . .} (r0 = b−Bx0)

B indefinite: use MINRES method

B positive definite: use conjugate gradient method

� usually satisfactory to find approximation rather than

exact solution

� usually try to precondition system, i.e., solve

C−1Bx = C−1b

where C−1B ≈ I]

[ITERATIVE RANGE-SPACE APPROACH

AH−1ATy = AH−1g followed by Hx = −g + ATy

For strictly convex case =⇒ H and AH−1AT positive definite

H−1 available: (directly or via factors),

use conjugate gradients to solve AH−1ATy = AH−1g

� matrix vector product AH−1ATv =
(
A
(
H−1(ATv)

))

� preconditioning? Need to approximate (likely dense) AH−1AT

H−1 not available: use composite conjugate gradient method

(Urzawa’s method) iterating both on solutions to

AH−1ATy = AH−1g and Hx = −g + ATy

at the same time (may not converge)]

[ITERATIVE NULL-SPACE APPROACH

STHSxN = −STg followed by x = SxN

� use conjugate gradient method

� matrix vector product STHSvN =
(
ST (H(SvN))

)

� preconditioning? Need to approximate (likely dense) STHS

� if we encounter sN such that sT
N(STHS)sN < 0 =⇒ s = NsN

is a direction of negative curvature since As = 0 and sTHs < 0

� Advantage: Axapprox = 0]

[ITERATIVE FULL-SPACE APPROACH

(

H AT

A 0

)(

x

−y

)

=

(

−g

0

)

� use MINRES with the preconditioner
(

M 0

0 AN−1AT

)

where M and N ≈ H .

� Disadvantage: Axapprox 6= 0

� use conjugate gradients with the preconditioner
(

M AT

A 0

)

where M ≈ H .

� Advantage: Axapprox = 0]

ACTIVE SET ALGORITHMS

QP: minimize
x∈IRn

q(x) = gTx + 1
2x

THx subject to Ax ≥ b

The active set A(x) at x is

A(x) = {i | aT
i x = [b]i}

If x∗ solves QP, we have

arg min q(x) subject to Ax ≥ b

≡ arg min q(x) subject to aT
i x = [b]i for all i ∈ A(x∗)

A working setW(x) at x is a subset of the active set for which

the vectors {ai}, i ∈ W(x) are linearly independent

BASICS OF ACTIVE SET ALGORITHMS

Basic idea: Pick a subset Wk of {1, . . . ,m} and find

xk+1 = arg min q(x) subject to aT
i x = [b]i for all i ∈ Wk

If xk+1 does not solve QP, adjust Wk to form Wk+1 and repeat

Important issues are:

� how do we know if xk+1 solves QP ?

� if xk+1 does not solve QP, how do we pick the next

working set Wk+1 ?

Notation: rows of Ak are those of A indexed by Wk

components of bk are those of b indexed by Wk

PRIMAL ACTIVE SET ALGORITHMS

Important feature: ensure all iterates are feasible, i.e., Axk ≥ b

If Wk ⊆ A(xk)

=⇒ Akxk = bk and Akxk+1 = bk

=⇒ xk+1 = xk + sk, where

sk= arg min EQPk

= arg min q(xk + s) subject to Aks = 0
︸ ︷︷ ︸

equality constrained problem

Need an initial feasible point x0

PRIMAL ACTIVE SET ALGORITHMS

— ADDING CONSTRAINTS

sk = arg min q(xk + s) subject to Aks = 0

What if xk + sk is not feasible?

� a currently inactive constraint j must become active at xk + αksk

for some αk < 1 — pick the smallest such αk

� move instead to xk+1 = xk + αksk and set Wk+1 =Wk + {j}

PRIMAL ACTIVE SET ALGORITHMS

— DELETING CONSTRAINTS

What if xk+1 = xk + sk is feasible ? =⇒

xk+1 = arg min q(x) subject to aT
i x = [b]i for all i ∈ Wk

=⇒ ∃ Lagrange multipliers yk+1 such that

(

H AT
k

Ak 0

)(

xk+1

−yk+1

)

=

(

−g

bk

)

Three possibilities:

� q(xk+1) = −∞ (not strictly-convex case only)

� yk+1 ≥ 0 =⇒ xk+1 is a first-order critical point of QP

� [yk+1]i < 0 for some i =⇒ q(x) may be improved by considering

Wk+1 =Wk \ {j}, where j is the i-th member of Wk

ACTIVE-SET APPROACH

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

0
1

2

3
0’

1’

A
B

0. Starting point

0’. Unconstrained minimizer

1. Encounter constraint A

1’. Minimizer on constraint A

2. Encounter constraint B,

move off constraint A

3. Minimizer on constraint B

= required solution

LINEAR ALGEBRA

Need to solve a sequence of EQPks in which

either Wk+1 =Wk + {j} =⇒ Ak+1 =

(

Ak

aT
j

)

or Wk+1 =Wk \ {j} =⇒ Ak =

(

Ak+1

aT
j

)

Since working sets change gradually, aim to update

factorizations rather than compute afresh

RANGE-SPACE APPROACH — MATRIX UPDATES

Need factors Lk+1L
T
k+1 = Ak+1H

−1AT
k+1 given LkL

T
k = AkH

−1AT
k

When Ak+1 =

(

Ak

aT
j

)

=⇒

Ak+1H
−1AT

k+1 =

(

AkH
−1AT

k AkH
−1aj

aT
j H−1AT

k aT
j H−1aj

)

=⇒

Lk+1 =

(

Lk 0

lT λ

)

where

Lkl = AkH
−1aj and λ =

√

aT
j H−1aj − lT l

Essentially reverse this to remove a constraint

NULL-SPACE APPROACH — MATRIX UPDATES

Need factors Ak+1 = (Lk+1 0)Qk+1 given

Ak = (Lk 0)Qk = (Lk 0)

(

Q1 k

Q2 k

)

To add a constraint (to remove is similar)

Ak+1 =

(

Ak

aT
j

)

=

(

Lk 0

aT
j QT

1 k aT
j QT

2 k

)

Qk

=

(

Lk 0

aT
j QT

1 k aT
j QT

2 k

)(

I 0

0 UT

)(

I 0

0 U

)

Qk

=

[(

Lk 0

aT
j QT

1 k σeT
1

)]

︸ ︷︷ ︸
(Lk+1 0)

[(

I 0

0 U

)

Qk

]

︸ ︷︷ ︸
Qk+1

where the Householder matrix U reduces Q2 kaj to σe1 =

(

σ

0

)

[FULL-SPACE APPROACH — MATRIX UPDATES

Wk becomes W` =⇒ Ak =

(

AC

AD

)

becomes A` =

(

AC

AA

)

Solving (

H AT
`

A` 0

)(

s`

−y`

)

=

(

g`

0

)

=⇒

(

H AT
k

Ak 0

)

←−











H AT
C AT

D

AC 0 0

AD 0 0

AT
A

0

0

0

0

I

AA 0 0

0 0 I

0

0

0

0




















s`

−yC

−yD

−yA

u`










=










g`

0

0

0

0










;

y` =

(

yC

yA

)

. . .]

[FULL-SPACE APPROACH — MATRIX UPDATES (CONT.)

. . . can solve
(

H AT
k

Ak 0

)

←−











H AT
C AT

D

AC 0 0

AD 0 0

AT
A

0

0

0

0

I

AA 0 0

0 0 I

0

0

0

0




















s`

−yC

−yD

−yA

u`










=










g`

0

0

0

0










using the factors of

Kk =

(

H AT
k

Ak 0

)

and the Schur complement

S` = −

(

AA 0 0

0 0 I

)(

H AT
k

Ak 0

)−1





AT
A 0

0 0

0 I






. . .]

[SCHUR COMPLEMENT UPDATING

� Major iteration starts with factorization of

Kk =

(

H AT
k

Ak 0

)

� As Wk changes to W`, factorization of

S` = −

(

AA 0 0

0 0 I

)(

H AT
k

Ak 0

)−1





AT
A 0

0 0

0 I






is updated not recomputed

� Once dim S` exceeds a given threshold, or it is cheaper to

factorize/use K` than maintain/use Kk and S`, start the

next major iteration]

PHASE-1

To find an initial feasible point x0 such that Ax0 ≥ b

� use traditional (simplex) phase-1, or

� let r = min(b− Axguess, 0), and solve [(x0, ξ0) = (xguess, 1)]

minimize
x∈IRn, ξ∈IR

ξ subject to Ax + ξr ≥ b and ξ ≥ 0

Alternatively, use a single-phase method

� Big-M : for some sufficiently large M

minimize
x∈IRn, ξ∈IR

q(x) + Mξ subject to Ax + ξr ≥ b and ξ ≥ 0

� `1QP (ρ > 0) — may be reformulated as a QP

minimize
x∈IRn

q(x) + ρ‖max(b− Ax, 0)‖

CONVEX EXAMPLE

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Contours of penalty function q(x) + ρ‖max(b− Ax, 0)‖ (with ρ = 2)

min(x1 − 1)2 + (x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0

NON-CONVEX EXAMPLE

−1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

2

Contours of penalty function q(x) + ρ‖max(b− Ax, 0)‖ (with ρ = 3)

min−2(x1 − 0.25)2 + 2(x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0

TERMINATION, DEGENERACY & ANTI-CYCLING

So long as αk > 0, these methods are finite:

� finite number of steps to find an EQP with a feasible solution

� finite number of EQP with feasible solutions

If xk is degenerate (active constraints are dependent) it is possible that

αk = 0. If this happens infinitely often

� may make no progress (a cycle) =⇒ algorithm may stall

Various anti-cycling rules

� Wolfe’s and lexicographic perturbations

� least-index — Bland’s rule

� Fletcher’s robust method

NON-CONVEXITY

� causes little extra difficulty so long as suitable factorizations

are possible

� Inertia-controlling methods tolerate at most one negative

eigenvalue in the reduced Hessian. Idea is

1. start from working set on which problem is strictly convex

(e.g., a vertex)

2. if a negative eigenvalue appears, do not drop any further

constraints until 1. is restored

3. a direction of negative curvature is easy to obtain in 2.

� latest methods are not inertia controlling =⇒ more flexible

COMPLEXITY

� When the problem is convex, there are algorithms that will

solve QP in a polynomial number of iterations

� some interior-point algorithms are polynomial

� no known polynomial active-set algorithm

� When the problem is non-convex, it is unlikely that there are

polynomial algorithms

� problem is NP complete

� even verifying that a proposed solution is locally optimal is

NP hard

NON-QUADRATIC OBJECTIVE

When f(x) is non quadratic

� H = Hk changes

� active-set subproblem

xk+1 ≈ arg min f(x) subject to aT
i x = [b]i for all i ∈ Wk

� iteration now required but each step satisfies Aks = 0

=⇒ linear algebra as before

� usually solve subproblem inaccurately

. when to stop?

. which Lagrange multipliers in this case?

. need to avoid zig-zagging in which working sets repeat

