LINEARLY CONSTRAINED MINIMIZATION

V

Part 4: Active-set methods minimize f(x) subject to Az< ~ b

. . e e . z€IR™ -
for linearly constrained optimization

where the objective function f : IR" — IR

Nick Gould (RAL)

© assume that f € C! (sometimes C?) and Lipschitz

minimize  f(z) subject to Az >b ® often in practice this assumption violated, but not necessary

zelR"
© important special cases:

Part C course on continuoue optimization o linear UH.O@H.NEEmSﬂ” _\.AHV = .QH&.

o quadratic programming: f(r) = g’z + T Hx
Concentrate here on quadratic programming
QUADRATIC PROGRAMMING PROBLEM TYPES
QP:  minimize ¢(x) =g’z + ol Hx subject to Az >b Convex problems
z€R"

© H is positive semi-definite (27 Hz > 0 for all 2)
® H is n by n, real symmetric, g € IR"

af [b]1
o A= : is m by n real, b =
Q\ﬁ ES

® in general, constraints may

© any local minimizer is global

© important special case: H = 0 <= linear programming

Strictly convex problems

h bounds: b < A b © H is positive definite A&ﬂm x> 0 for all z # 0)
o have upper bounds: b’ < Az <

o include equalities: A%z — b ® unique minimizer (if any)
o involve simple bounds: z! < z < 2

o include network constraints . . .



CONVEX EXAMPLE PROBLEM TYPES (II)
General (non-convex) problems

© H may be indefinite (7 Hx < 0 for some z)

® may be many local minimizers
min(z; — 1) + (22 — 0.5)’ v Y

subject to 1 + 29 < 1 © may have to be content with a local minimizer
31+ w2 < 1.5 ® problem may be unbounded from below
(x1,29) >0
Contours of objective function
NON-CONVEX EXAMPLE PROBLEM TYPES (III)
Small

® values/structure of matrix data H and A irrelevant

min —2(z, — 0.25)% + 2(xy — 0.5)° © curently min(m, n) = 0107

subject to 1 +x2 <1 Large
3r1+ a9 < 1.5
(21, 22) > 0 © values/structure of matrix data H and A important

© currently min(m, n) > O(10%)

Huge

© factorizations involving H and A are unrealistic

© currently min(m, n) > O(10°)

Contours of objective function



WHY IS QP SO IMPORTANT?

© many applications

o portfolio analysis, structural analysis, VLSI design, discrete-time
stabilization, optimal and fuzzy control, finite impulse response
design, optimal power flow, economic dispatch . ..

o ~ 500 application papers
© prototypical nonlinear programming problem

© basic subproblem in constrained optimization:

minimize  f(x) minimize f + g7z + 2T Ha
z€IR" — zelR"
subject to c(x) >0 subject to Az +¢ >0

= SQP methods (= Course Part 7)

FIRST-ORDER OPTIMALITY

QP:  minimize ¢(z) = ¢’z + 2T Hx subject to Ax >b
zeIR"

Any point x, that satisfies the conditions

Az, > b (primal feasibility)
Hr,+g— ATy, =0 and y. >0 (dual feasibility)
[Az, —b]; - [y.)i = 0 for all ¢ (complementary slackness)

for some vector of Lagrange multipliers y, is a
first-order critical (or Karush-Kuhn-Tucker) point

If [Az, — b, =0 <= [y.]; > 0 for all i =
the solution is strictly complementary

OPTIMALITY CONDITIONS

Recall: the importance of optimality conditions is:
® to be able to recognise a solution if found by accident or design

® to guide the development of algorithms

SECOND-ORDER OPTIMALITY

QP:  minimize ¢(z) = g"x + lo" Ha subject to Az > b
z€IR"

Let

T
a;

al's >0 for all i such that alz, = [b], and [y.]; =0

>\\+H S

Any first-order critical point z, for which additionally
sTHs >0 (resp. > 0) forall s € N

is a second-order (resp. strong second-order) critical point

Theorem 4.1: z, is a (an isolated) local minimizer of QP <=
T, is (strong) second-order critical

s=0 forall i such that alz, = [b], and [y.); > 0 and



WEAK SECOND-ORDER OPTIMALITY

QP:  minimize ¢(z) = g’z + lo" Ha subject to Az > b
z€IR"

Let
N ={s]als=0 forall i suchthat a/x, = [b];}

Any first-order critical point z, for which additionally
s'THs >0 forall se N

is a weak second-order critical point

Note that
® a weak second-order critical point may be a maximizer!

® checking for weak second-order criticality is easy (strong is hard)

[ DUALITY

QP:  minimize q(z) = g'x + T Hz subject to Az >b
zeIR"

If QP is convex, any first-order critical point is a global minimizer
If H is strictly convex, the problem

maximize — ig? H g+ (AH g+ b)Ty — iyt AH 1ATy
yER™, y=0
is known as the dual of QP

© QP is the primal
© primal and dual have same KKT conditions
® if primal is feasible, optimal value of primal = optimal value dual

® can be generalized for simply convex case

NON-CONVEX EXAMPLE

min 23 + 23 — 62,7,
subject to z1 + 29 < 1
3x1+ 19 <15
(x1,9) >0

Contours of objective function:

note that escaping from the origin may be difficult!

ALGORITHMS

Essentially two classes of methods (slight simplification)
active set methods :

primal active set methods aim for dual feasibility while maintain-
ing primal feasibility and complementary slackness

dual active set methods aim for primal feasibility while maintaining

dual feasibility and complementary slackness

interior-point methods : aim for complementary slackness while
maintaining primal and dual feasibility (= Course Part 6)



EQUALITY CONSTRAINED QP EQUALITY CONSTRAINED QP (II)

The basic subproblem in all of the methods we will consider is EQP:  minimize g(z) = g7 + 1 He subject to Az — 0

EQP: minimize g"x + la” Hz subject to Az =0 «— [N.B.] r€R"
2€IR" Four possibilities:
Assume A is m by n, full-rank (preprocess if necessary)
. H AT T —g
© First-order optimality (Lagrange multipliers y) (i) A 0 —y | 9 ()
H AT T —g and H is second-order sufficient = unique minimizer x

A0 Y 0 (ii) (%) holds, H is second-order necessary, but 3s such that Hs = 0

© Second-order necessary optimality: and As = 0 = family of weak minimizers x + as for any o € IR

sTHs > 0 for all s for which As =0 (iii) 3s for which As =0, Hs = 0 and g's < 0 =

o Second-order sufficient optimality: ¢(+) unbounded along direction of linear infinite descent s

sTHs > 0 for all s # 0 for which As =0 (iv) 3s for which As = 0 and s" Hs < 0 =
q(+) unbounded along direction of negative curvature s

CLASSIFICATION OF EQP METHODS FULL-SPACE/KKT/AUGMENTED SYSTEM APPROACH
Aim to solve
H AT v\ [ —g H AT N
A 0 -y Lo A0 -y ) \ 0
© KKT matrix
Three basic approaches: K H AT
L4 0

full-space approach
is symmetric, indefinite = use Bunch-Parlett type factorization

o K =PLBLTPT

o P permutation, L unit lower-triangular

range-space approach

null-space approach

For each of these can use o B block diagonal with 1x1 and 2x2 blocks
direct (factorization) method ® LAPACK for small problems, MA27 /MA57 for large ones
iterative (conjugate-gradient) method © Theorem 4.2: H is second-order sufficient <=

K non-singular and has precisely m negative eigenvalues



RANGE-SPACE APPROACH

H AT T —g

A0 —y 0
For non-singular H
© eliminate x using first block of (%) =

AH'ATy = AH g followed by Hx = —g+ Ay
o strictly convex case => H and AH 'AT positive definite =
Cholesky factorization

©® Theorem 4.3: H is second-order sufficient <=
H and AH'A” have same number of negative eigenvalues

© AH'AT usually dense = factorization only for small m

NULL-SPACE BASIS
Require n by n — m null-space basis S for A = AS =0
Non-orthogonal basis: let A = (A; Ag)P
® P permutation, A; non-singular
_ogopr A
1
® generally suitable for large problems. Best A;7?

Orthogonal basis: let A= (L 0)Q
@

© L non-singular (e.g., triangular), @ = orthonormal

Q>
= 5=0}

® more stable but ... generally unsuitable for large problems

NULL-SPACE APPROACH

T
MN \w I,\u@ - om ()
® let n by n —m S be a basis for null-space of A = AS =0
® second block (%) = x = Szy
© premultiply first block (x) by ST =
STHSzs=—5"g
© Theorem 4.4: H is second-order sufficient <=

STHS is positive definite = Cholesky factorization

© STHS usually dense = factorization only for small n — m

[ ITERATIVE METHODS FOR SYMMETRIC
LINEAR SYSTEMS

Bx=b
Best methods are based on finding solutions from the Krylov space
K={ B, B(Br),...} (r’=b— Ba")
B indefinite: use MINRES method
B positive definite: use conjugate gradient method

® usually satisfactory to find approximation rather than
exact solution

® usually try to precondition system, i.e., solve
C'Bx=C""b
where C7'B ~ [ ]



[ ITERATIVE RANGE-SPACE APPROACH

AH'ATy = AH g followed by Hz = —g+ Ay
For strictly convex case = H and AH'A” positive definite

H~! available: ( directly or via factors),
use conjugate gradients to solve AH 'ATy = AH g

© matrix vector product AH 'ATv = (A (H(ATv)))
 preconditioning? Need to approximate (likely dense) AH ~1AT

H~! not available: use composite conjugate gradient method
(Urzawa’s method) iterating both on solutions to

AH 'Aly = AH 'g and Hz=—g+ Aly

at the same time (may not converge) ]

[ ITERATIVE FULL-SPACE APPROACH

H AT z\ [ -9
A 0 —y 0
© use MINRES with the preconditioner
M 0
0 AN—'AT

where M and N ~ H.
o Disadvantage: Azx™™ £ ()
® use conjugate gradients with the preconditioner
M AT
A 0
where M ~ H.
o Advantage: Az* = () ]

[ ITERATIVE NULL-SPACE APPROACH

STHSzy = —STg followed by z = Sy
© use conjugate gradient method
o matrix vector product STHSvy = (ST (H(Svy)))
o preconditioning? Need to approximate (likely dense) STHS

o if we encounter sy such that sT(STHS)s, < 0 = s = Nsy
is a direction of negative curvature since As = 0 and s? Hs < 0

o Advantage: Ax™* =( ]

ACTIVE SET ALGORITHMS
QP:  minimize ¢(z) = ¢’z + 12T Hx subject to Ax >b
z€IR"
The active set A(x) at x is
Aw)=1i | oz = )
If x, solves QP, we have
argmin g(x) subject to Az >b
= argming(z) subject to alx = [b]; for all i € A(z.,)

A working set W(z) at x is a subset of the active set for which
the vectors {a;}, i € W(x) are linearly independent



BASICS OF ACTIVE SET ALGORITHMS
Basic idea: Pick a subset Wy of {1,...,m} and find
Tp1 = argmin g(z) subject to alx = [b]; for all i € W),

If 21,1 does not solve QP, adjust W;. to form W, 1 and repeat

Important issues are:
® how do we know if zj 1 solves QP 7
@ if x4 does not solve QP, how do we pick the next

working set W1 7

Notation: rows of Ay are those of A indexed by W
components of by are those of b indexed by W

PRIMAL ACTIVE SET ALGORITHMS
— ADDING CONSTRAINTS

s = argming(zy, + s) subject to Ags =0

What if x; + s is not feasible?

© a currently inactive constraint j must become active at xj + s
for some ay, < 1 — pick the smallest such oy

© move instead to Ty41 = o) + sk and set W1 = Wi + {j}

PRIMAL ACTIVE SET ALGORITHMS
Important feature: ensure all iterates are feasible, i.e., Ax; > b

— \waw = FA and \;&\ﬁl = gﬂ
= Xp41 = T} + Sk, where
sp= arg min EQP,,
= argmin g(xy + s) subject to Ags =0

equality constrained problem

Need an initial feasible point xg

PRIMAL ACTIVE SET ALGORITHMS
— DELETING CONSTRAINTS

What if 2,1 = x5 + s;. is feasible 7 =
Ty = argming(x) subject to alx = [b], for all i € W),

= 3 Lagrange multipliers yy+1 such that

H \»MJ L1 _ -9
Ar 0 —Yk+1 by,
Three possibilities:
© q(zp11) = —oo (not strictly-convex case only)

© Ypr1 > 0 = xp41 is a first-order critical point of QP

® [yra1)i < 0 for some ¢ => ¢(x) may be improved by considering
Wi = Wi\ {j}, where j is the i-th member of Wj,



ACTIVE-SET APPROACH LINEAR ALGEBRA

Need to solve a sequence of EQP,s in which

. ) A
either Wi = Wy + Cw = Api1= @%
J

. \»wi
or H\STL = S\w / ﬁ,;v S \ww = Qﬂ
J

0. Starting point

0". Unconstrained minimizer Since working sets change gradually, aim to update

1. Encounter constraint A factorizations rather than compute afresh

1. Minimizer on constraint A

2. Encounter constraint B,
move off constraint A

3. Minimizer on constraint B

= required solution

RANGE-SPACE APPROACH — MATRIX UPDATES NULL-SPACE APPROACH — MATRIX UPDATES
Need factors L, L], = A, H "A] | given L, L} = A H Al Need factors Ajy1 = (L1 0)Qps1 given
Q1k
A A= (L 0 =(L; 0
When \w\?l = Qu\m B k A k v@@ A k v @ww

j . o
To add a constraint (to remove is similar)

AH AT A H

At H AL = | F 0 g A= [ M) = Li 0
ay H AL afH M, =\ ar ) =\ arqr, arqr, |9
- Lo Ly 0 I 0 1o,
k = k
Ly = N ajQf al QF) 0our 0U
Ly 0 10
where = oTOT. gel 0U Qk
Lil = }L@La: and \ = @Wm\_@\. — 7 LN etk 7 /]
(Lg+1 0) Qi1
where the Householder matrix U reduces Qo Ka; to oey = g
Essentially reverse this to remove a constraint 0



[ FULL-SPACE APPROACH — MATRIX UPDATES

W, becomes Wy = A, = Ac
Ap
Solving
H bw Se
A 0 —y
H AT H AL AT
A0 )T | A 0 0
A, 0 0
Ay 0 0
0 0 I
Yo = ve
Ya

[ SCHUR COMPLEMENT UPDATING
© Major iteration starts with factorization of

H AT
0

K, =

becomes A, =

o O O O

Ay,

O O N O O

© As W changes to Wy, factorization of

Se=—

Ay 00
001

is updated not recomputed

® Once dim S exceeds a given threshold, or it is cheaper to
factorize/use K, than maintain/use Kj and Sy, start the

next major iteration

H AT

Ap 0

S

S¢
—Yec
—Yp
—Ya

Uyg

AT
0 0
0 I

o O o O

[ FULL-SPACE APPROACH — MATRIX UPDATES (CONT.)

...can solve

H AT H AL AT AT 0 St 9
A, 0 ] | A0 0] 0 0 —Ye 0
A, 0 0| 0 I —yp | =10
Ay 0 0 0 0 —Ya 0
0O 0 I 0 0 uy 0

using the factors of

and the Schur complement

1 T
g — A, 00 H AT A3 0
‘= 001

PHASE-1

To find an initial feasible point xy such that Azy > b
® use traditional (simplex) phase-1, or
:.Hov MOV = A.Hm:mmmv H_,z

minimize & subject to Az +&r >b and £ >0
z€IR", €IR

® let r = min(b — Az, 0), and solve

Alternatively, use a single-phase method
© Big-M: for some sufficiently large M

minimize ¢(z) + M subject to Az +&r>b and £ >0
z€IR", (€IR

© (1QP (p > 0) — may be reformulated as a QP

minimize g¢(x) + p|| max(b — Az, 0)|
r€R"



CONVEX EXAMPLE

min(z; — 1)? + (22 — 0.5)?
subject to x1 + x5 < 1
3x1+ a2 < 1.5
AHT.&.MV N 0

05 L L L
-1 -05 0 05 1 15

Contours of penalty function ¢(x) + p|| max(b — Az, 0)|| (with p = 2)

TERMINATION, DEGENERACY & ANTI-CYCLING

So long as oy, > 0, these methods are finite:
© finite number of steps to find an EQP with a feasible solution

© finite number of EQP with feasible solutions

If 2y, is degenerate (active constraints are dependent) it is possible that
oy, = 0. If this happens infinitely often

® may make no progress (a cycle) = algorithm may stall

Various anti-cycling rules
© Wolfe’s and lexicographic perturbations
® least-index — Bland’s rule

® Fletcher’s robust method

NON-CONVEX EXAMPLE

min —2(x1 — 0.25)2 4 2(x2 — 0.5)?
subject to 1 + x5 < 1
3x1+ 22 < 1.5
AHT.&.MV W 0

05 L L L
-1 -05 0 05 1 15

Contours of penalty function ¢(x) + p|| max(b — Az, 0)|| (with p = 3)

NON-CONVEXITY

© causes little extra difficulty so long as suitable factorizations

are possible

© Inertia-controlling methods tolerate at most one negative
eigenvalue in the reduced Hessian. Idea is

1. start from working set on which problem is strictly convex
(e.g., a vertex)

2. if a negative eigenvalue appears, do not drop any further
constraints until 1. is restored

3. a direction of negative curvature is easy to obtain in 2.

© latest methods are not inertia controlling = more flexible



COMPLEXITY NON-QUADRATIC OBJECTIVE

© When the problem is convex, there are algorithms that will When f(z) is non quadratic

solve QP in a polynomial number of iterations © H = H,, changes
o some interior-point algorithms are polynomial © active-set subproblem

o no known polynomial active-set algorithm
PO & Tpy1 ~ argmin f(z) subject to alx = [b]; for all i € W,
© When the problem is non-convex, it is unlikely that there are ) . . ]
. . o iteration now required but each step satisfies Aps =0
polynomial algorithms )
= linear algebra as before
° problem is NP complete o usually solve subproblem inaccurately

o even verifying that a proposed solution is locally optimal is

> when to stop?
NP hard

> which Lagrange multipliers in this case?

> need to avoid zig-zagging in which working sets repeat



