for linearly constrained optimization Part 4: Active-set methods

Nick Gould (RAL)

 $\label{eq:force_eq} \underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \ \text{subject to} \ Ax \geq b$

Part C course on continuoue optimization

QUADRATIC PROGRAMMING

QP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to $Ax \ge b$ $x \in \mathbb{R}^n$

○
$$H$$
 is n by n , real symmetric, $g \in \mathbb{R}^n$
○ $A = \begin{pmatrix} a_1^T \\ \vdots \\ a_m^T \end{pmatrix}$ is m by n real, $b = \begin{pmatrix} [b]_1 \\ \vdots \\ [b]_m \end{pmatrix}$
○ in general, constraints may

- \diamond have upper bounds: $b^l \leq Ax \leq b^u$
- \diamond include equalities: $A^e x = b^e$
- \diamond involve simple bounds: $x^l \leq x \leq x^u$
- include network constraints . . .

LINEARLY CONSTRAINED MINIMIZATION

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ Ax \left\{ \geq \atop = \right\} b$$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

- \odot assume that $f\in C^1$ (sometimes $C^2)$ and Lipschitz
- \odot often in practice this assumption violated, but not necessary
- o important special cases:
- $\ \, \diamond \ \, \textbf{linear programming:} \, \, f(x) = g^T x$
- \diamond quadratic programming: $f(x) = g^T x + \frac{1}{2} x^T H x$

Concentrate here on quadratic programming

PROBLEM TYPES

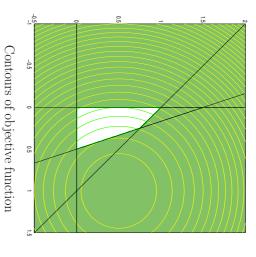
Convex problems

- o H is positive semi-definite $(x^THx \geq 0 \text{ for all } x)$
- $\odot\,$ any local minimizer is global
- \odot important special case: $H = 0 \iff$ linear programming

Strictly convex problems

- \odot H is positive definite $(x^T H x > 0 \text{ for all } x \neq 0)$
- o unique minimizer (if any)

CONVEX EXAMPLE

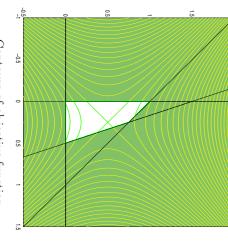


$$\min(x_1 - 1)^2 + (x_2 - 0.5)^2$$
subject to $x_1 + x_2 \le 1$

$$3x_1 + x_2 \le 1.5$$

$$(x_1, x_2) \ge 0$$

NON-CONVEX EXAMPLE



$$\min -2(x_1 - 0.25)^2 + 2(x_2 - 0.5)^2$$

$$\text{subject to } x_1 + x_2 \le 1$$

$$3x_1 + x_2 \le 1.5$$

$$(x_1, x_2) \ge 0$$

PROBLEM TYPES (II)

General (non-convex) problems

- \odot H may be indefinite $(x^T H x < 0 \text{ for some } x)$
- \odot may be many local minimizers
- \odot may have to be content with a local minimizer
- \odot problem may be unbounded from below

PROBLEM TYPES (III)

Small

- \odot values/structure of matrix data H and A irrelevant
- currently $\min(m, n) = O(10^2)$

_

Large

- \odot values/structure of matrix data H and A important
- currently $\min(m, n) \ge O(10^3)$

nuge

- \odot factorizations involving H and A are unrealistic
- currently $\min(m, n) \ge O(10^5)$

WHY IS QP SO IMPORTANT?

- many applications
- portfolio analysis, structural analysis, VLSI design, discrete-time stabilization, optimal and fuzzy control, finite impulse response design, optimal power flow, economic dispatch . . .
- $\diamond \sim 500$ application papers
- o prototypical nonlinear programming problem
- \odot basic subproblem in constrained optimization:

$$\begin{array}{ccc} \text{minimize} & f(x) & \text{minimize} & f + g^T x + \frac{1}{2} x^T H x \\ x \in \mathbb{R}^n & \Longrightarrow & x \in \mathbb{R}^n \\ \text{subject to} & c(x) \geq 0 & \text{subject to} & Ax + c \geq 0 \end{array}$$

 \implies SQP methods (\implies Course Part 7)

FIRST-ORDER OPTIMALITY

QP: minimize
$$q(x) = g^T x + \frac{1}{2} x^T H x$$
 subject to $Ax \ge b$ $x \in \mathbb{R}^n$

Any point x_* that satisfies the conditions

$$Ax_* \geq b \qquad \qquad \text{(primal feasibility)} \\ Hx_* + g - A^Ty_* = 0 \quad \text{and} \quad y_* \geq 0 \quad \text{(dual feasibility)} \\ [Ax_* - b]_i \cdot [y_*]_i = 0 \quad \text{for all} \quad i \qquad \text{(complementary slackness)}$$

for some vector of **Lagrange multipliers** y_* is a first-order critical (or Karush-Kuhn-Tucker) point

If
$$[Ax_* - b]_i = 0 \iff [y_*]_i > 0$$
 for all $i \implies$ the solution is **strictly complementary**

OPTIMALITY CONDITIONS

Recall: the importance of optimality conditions is:

- o to be able to recognise a solution if found by accident or design
- \odot to guide the development of algorithms

SECOND-ORDER OPTIMALITY

QP: minimize
$$q(x) = g^T x + \frac{1}{2} x^T H x$$
 subject to $Ax \ge b$ $x \in \mathbb{R}^n$

Let

$$\mathcal{N}_{+} = \left\{ s \; \middle| \; \begin{aligned} a_{i}^{T}s &= 0 \; \text{ for all } \; i \; \text{ such that } \; a_{i}^{T}x_{*} = [b]_{i} \; \text{ and } \; [y_{*}]_{i} > 0 \; \text{ and} \\ a_{i}^{T}s &\geq 0 \; \text{ for all } \; i \; \text{ such that } \; a_{i}^{T}x_{*} = [b]_{i} \; \text{ and } \; [y_{*}]_{i} = 0 \end{aligned} \right\}$$

Any first-order critical point x_* for which additionally

$$s^T H s \ge 0 \text{ (resp. } > 0) \text{ for all } s \in \mathcal{N}_+$$

is a **second-order** (resp. **strong second-order**) critical point

Theorem 4.1: x_* is a (an isolated) local minimizer of QP \iff x_* is (strong) second-order critical

WEAK SECOND-ORDER OPTIMALITY

QP: minimize
$$q(x) = g^T x + \frac{1}{2} x^T H x$$
 subject to $Ax \ge b$

Let

$$\mathcal{N} = \left\{ s \ | \ a_i^T s = 0 \ \text{for all} \ i \ \text{such that} \ a_i^T x_* = [b]_i \right\}$$

Any first-order critical point x_* for which additionally

$$s^T H s \ge 0$$
 for all $s \in \mathcal{N}$

is a weak second-order critical point

Note that

- a weak second-order critical point may be a maximizer!
- \odot checking for weak second-order criticality is easy (strong is hard)

DUALITY

QP: minimize
$$q(x) = g^T x + \frac{1}{2} x^T H x$$
 subject to $Ax \ge b$ $x \in \mathbb{R}^n$

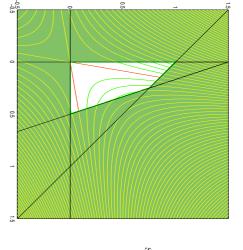
If QP is convex, any first-order critical point is a global minimizer

If H is strictly convex, the problem

is known as the **dual** of QP

- QP is the **primal**
- primal and dual have same KKT conditions
- \odot if primal is feasible, optimal value of primal = optimal value dual
- o can be generalized for simply convex case

NON-CONVEX EXAMPLE



 $\min x_1^2 + x_2^2 - 6x_1x_2$ subject to $x_1 + x_2 \le 1$ $3x_1 + x_2 \le 1.5$ $(x_1, x_2) \ge 0$

Contours of objective function:

note that escaping from the origin may be difficult!

ALGORITHMS

Essentially two classes of methods (slight simplification)

active set methods:

primal active set methods aim for dual feasibility while maintaining primal feasibility and complementary slackness

dual active set methods aim for primal feasibility while maintaining dual feasibility and complementary slackness

interior-point methods: aim for complementary slackness while maintaining primal and dual feasibility (\Longrightarrow Course Part 6)

EQUALITY CONSTRAINED QP

The basic subproblem in all of the methods we will consider is

EQP: minimize
$$g^T x + \frac{1}{2} x^T H x$$
 subject to $Ax = 0 \longleftarrow [N.B.]$ $x \in \mathbb{R}^n$

Assume A is m by n, full-rank (preprocess if necessary)

 \odot First-order optimality (Lagrange multipliers y)

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$

- Second-order necessary optimality:
- $s^T H s \ge 0$ for all s for which As = 0
- \odot Second-order sufficient optimality: $s^T H s > 0$ for all $s \neq 0$ for which As = 0

CLASSIFICATION OF EQP METHODS

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$

Three basic approaches:

full-space approach

range-space approach

null-space approach

For each of these can use

direct (factorization) method

iterative (conjugate-gradient) method

EQUALITY CONSTRAINED QP (II)

EQP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to Ax = 0 $x \in \mathbb{R}^n$

Four possibilities:

(i)
$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$
 and H is second-order sufficient \Longrightarrow **unique** minimizer x

- (ii) (*) holds, H is second-order necessary, but $\exists s$ such that Hs = 0and $As = 0 \Longrightarrow$ family of **weak** minimizers $x + \alpha s$ for any $\alpha \in \mathbb{R}$
- (iii) $\exists s \text{ for which } As = 0, Hs = 0 \text{ and } g^T s < 0 \Longrightarrow$ $q(\cdot)$ unbounded along direction of linear infinite descent s
- (iv) $\exists s \text{ for which } As = 0 \text{ and } s^T H s < 0 \Longrightarrow$ $q(\cdot)$ unbounded along direction of negative curvature s

FULL-SPACE/KKT/AUGMENTED SYSTEM APPROACH

$$\left(\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right) \left(\begin{array}{c} x \\ -y \end{array}\right) = \left(\begin{array}{c} -g \\ 0 \end{array}\right)$$

KKT matrix

$$K = \left(\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right)$$

is symmetric, indefinite \Longrightarrow use Bunch-Parlett type factorization

- $\diamond~P$ permutation, L unit lower-triangular
- $\diamond~B$ block diagonal with 1x1 and 2x2 blocks
- LAPACK for small problems, MA27/MA57 for large ones
- **Theorem 4.2**: H is second-order sufficient \iff K non-singular and has precisely m negative eigenvalues

RANGE-SPACE APPROACH

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$
 (*) For **non-singular** H

 \odot eliminate x using first block of $(*) \Longrightarrow$

$$AH^{-1}A^Ty = AH^{-1}g$$
 followed by $Hx = -g + A^Ty$

- \odot strictly convex case \Longrightarrow H and $AH^{-1}A^T$ positive definite \Longrightarrow Cholesky factorization
- Theorem 4.3: H is second-order sufficient \iff ${\cal H}$ and $A{\cal H}^{-1}A^T$ have same number of negative eigenvalues
- \odot $AH^{-1}A^T$ usually dense \Longrightarrow factorization only for small m

NULL-SPACE BASIS

Require n by n-m null-space basis S for $A \Longrightarrow AS = 0$

Non-orthogonal basis: let $A = (A_1 \ A_2)P$

 \odot P permutation, A_1 non-singular

$$\implies S = P^T \left(\begin{array}{c} -A_1^{-1} A_2 \\ I \end{array} \right)$$

 $_{\odot}$ generally suitable for large problems. Best A_1 ?

Orthogonal basis: let $A = (L \ 0)Q$

o L non-singular (e.g., triangular), $Q = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}$ orthonormal

$$\implies S = Q_2^T$$

 \odot more stable but . . . generally unsuitable for large problems

NULL-SPACE APPROACH

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix} \tag{*}$$

- o let n by n-m S be a **basis** for null-space of $A \Longrightarrow AS = 0$
- \odot second block (*) $\Longrightarrow x = Sx_N$
- o premultiply first block (*) by $S^T \Longrightarrow$

$$S^T H S x_S = -S^T g$$

- \circ Theorem 4.4: H is second-order sufficient \iff S^THS is positive definite \Longrightarrow Cholesky factorization
- \odot S^THS usually dense \Longrightarrow factorization only for small n-m

LINEAR SYSTEMS ITERATIVE METHODS FOR SYMMETRIC

$$x = b$$

Best methods are based on finding solutions from the Krylov space

$$\mathcal{K} = \{r^0, Br^0, B(Br^0), \dots\}$$
 $(r^0 = b - Bx^0)$

B indefinite: use MINRES method

B positive definite: use conjugate gradient method

- usually satisfactory to find approximation rather than
- usually try to **precondition** system, i.e., solve

$$C^{-1}Bx = C^{-1}b$$

where $C^{-1}B \approx I$

ITERATIVE RANGE-SPACE APPROACH

$$AH^{-1}A^Ty = AH^{-1}g$$
 followed by $Hx = -g + A^Ty$

For strictly convex case $\Longrightarrow H$ and $AH^{-1}A^T$ positive definite

- H^{-1} available: (directly or via factors), use conjugate gradients to solve $AH^{-1}A^Ty=AH^{-1}g$
- $_{\odot}$ matrix vector product $AH^{-1}A^{T}v=\left(A\left(H^{-1}(A^{T}v)\right) \right)$
- $_{\odot}$ preconditioning? Need to approximate (likely dense) $AH^{-1}A^{T}$

 H^{-1} not available: use composite conjugate gradient method (Urzawa's method) iterating both on solutions to

$$AH^{-1}A^{T}y = AH^{-1}g$$
 and $Hx = -g + A^{T}y$

at the same time (may not converge)

ITERATIVE FULL-SPACE APPROACH

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$

 \odot use MINRES with the preconditioner

$$\begin{pmatrix} M & 0 \\ 0 & AN^{-1}A^T \end{pmatrix}$$

where M and $N \approx H$.

- ⋄ **Disadvantage**: $Ax^{approx} \neq 0$
- use conjugate gradients with the preconditioner

$$\left(egin{array}{cc} M & A^T \ A & 0 \end{array}
ight)$$

A working set $\mathcal{W}(x)$ at x is a subset of the active set for which

 $\arg\min q(x) \text{ subject to } Ax \geq b$ $\equiv \arg\min q(x) \text{ subject to } a_i^T x = [b]_i \text{ for all } i \in \mathcal{A}(x_*)$

If x_* solves QP, we have

The **active set** A(x) at x is

 $\mathcal{A}(x) = \{i \mid a_i^T x = [b]_i\}$

QP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to $Ax \ge b$

ACTIVE SET ALGORITHMS

the vectors $\{a_i\}$, $i \in \mathcal{W}(x)$ are linearly independent

where $M \approx H$.

 \diamond Advantage: $Ax^{\text{approx}} = 0$

ITERATIVE NULL-SPACE APPROACH

$$S^T H S x_N = -S^T g$$
 followed by $x = S x_N$

- \odot use conjugate gradient method
- \diamond matrix vector product $S^T H S v_N = \left(S^T \left(H(S v_N)\right)\right)$
- preconditioning? Need to approximate (likely dense) $S^T H S$
- if we encounter s_N such that $s_N^T(S^THS)s_N < 0 \Longrightarrow s = Ns_N$ is a direction of negative curvature since As = 0 and $s^T H s < 0$
- \diamond Advantage: $Ax^{approx} = 0$

BASICS OF ACTIVE SET ALGORITHMS

Basic idea: Pick a subset W_k of $\{1,\ldots,m\}$ and find

$$x_{k+1} = \arg\min q(x)$$
 subject to $a_i^T x = [b]_i$ for all $i \in \mathcal{W}_k$

If x_{k+1} does not solve QP, adjust \mathcal{W}_k to form \mathcal{W}_{k+1} and repeat

Important issues are:

- \circ how do we know if x_{k+1} solves QP?
- \odot if x_{k+1} does not solve QP, how do we pick the next working set \mathcal{W}_{k+1} ?

Notation: rows of A_k are those of A indexed by \mathcal{W}_k components of b_k are those of b indexed by \mathcal{W}_k

PRIMAL ACTIVE SET ALGORITHMS — ADDING CONSTRAINTS

$$s_k = \arg\min q(x_k + s)$$
 subject to $A_k s = 0$

What if $x_k + s_k$ is not feasible?

- \odot a currently inactive constraint j must become active at $x_k + \alpha_k s_k$ for some $\alpha_k < 1$ pick the smallest such α_k
- \odot move instead to $x_{k+1} = x_k + \alpha_k s_k$ and set $\mathcal{W}_{k+1} = \mathcal{W}_k + \{j\}$

PRIMAL ACTIVE SET ALGORITHMS

Important feature: ensure all iterates are feasible, i.e., $Ax_k \geq b$

If
$$\mathcal{W}_k \subseteq \mathcal{A}(x_k)$$
 $\Longrightarrow A_k x_k = b_k \text{ and } A_k x_{k+1} = b_k$
 $\Longrightarrow x_{k+1} = x_k + s_k, \text{ where}$
 $s_k = \arg\min \mathsf{FQP}_k$
 $= \arg\min q(x_k + s) \text{ subject to } A_k s = 0$
equality constrained problem

Need an initial feasible point x_0

PRIMAL ACTIVE SET ALGORITHMS — DELETING CONSTRAINTS

What if $x_{k+1} = x_k + s_k$ is feasible? \Longrightarrow

$$x_{k+1} = \arg\min q(x)$$
 subject to $a_i^T x = [b]_i$ for all $i \in \mathcal{W}_k$

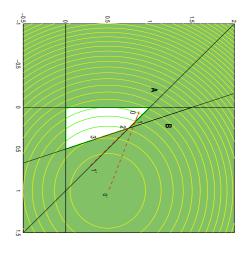
 \implies 3 Lagrange multipliers y_{k+1} such that

$$\begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \begin{pmatrix} x_{k+1} \\ -y_{k+1} \end{pmatrix} = \begin{pmatrix} -g \\ b_k \end{pmatrix}$$

Three possibilities:

- $oldsymbol{q}(x_{k+1}) = -\infty$ (not strictly-convex case only)
- $y_{k+1} \ge 0 \Longrightarrow x_{k+1}$ is a first-order critical point of QP
- \circ $[y_{k+1}]_i < 0$ for some $i \Longrightarrow q(x)$ may be improved by considering $\mathcal{W}_{k+1} = \mathcal{W}_k \setminus \{j\}$, where j is the i-th member of \mathcal{W}_k

ACTIVE-SET APPROACH



- 0. Starting point
- 0'. Unconstrained minimizer
- 1. Encounter constraint A
- 1'. Minimizer on constraint A
- 2. Encounter constraint B, move off constraint A
- Minimizer on constraint Brequired solution

RANGE-SPACE APPROACH — MATRIX UPDATES

Need factors
$$L_{k+1}L_{k+1}^T=A_{k+1}H^{-1}A_{k+1}^T$$
 given $L_kL_k^T=A_kH^{-1}A_k^T$

When
$$A_{k+1} = \begin{pmatrix} A_k \\ a_j^T \end{pmatrix} \Longrightarrow$$

$$A_{k+1}H^{-1}A_{k+1}^T = \begin{pmatrix} A_k H^{-1}A_k^T & A_k H^{-1}a_j \\ a_j^T H^{-1}A_k^T & a_j^T H^{-1}a_j \end{pmatrix}$$

$$L_{k+1} = \begin{pmatrix} L_k & 0 \\ l^T & \lambda \end{pmatrix}$$

where

$$L_k l = A_k H^{-1} a_j \ \text{ and } \ \lambda = \sqrt{a_j^T H^{-1} a_j - l^T l}$$

Essentially reverse this to remove a constraint

LINEAR ALGEBRA

Need to solve a sequence of $\mathsf{EQP}_k\mathbf{s}$ in which

either
$$\mathcal{W}_{k+1} = \mathcal{W}_k + \{j\} \implies A_{k+1} = \begin{pmatrix} A_k \\ a_j^T \end{pmatrix}$$

or $\mathcal{W}_{k+1} = \mathcal{W}_k \setminus \{j\} \implies A_k = \begin{pmatrix} A_{k+1} \\ a_j^T \end{pmatrix}$

Since working sets change gradually, aim to **update** factorizations rather than compute afresh

NULL-SPACE APPROACH — MATRIX UPDATES

Need factors $A_{k+1} = (L_{k+1} \ 0)Q_{k+1}$ given

$$A_k = (L_k \quad 0)Q_k = (L_k \quad 0) \begin{pmatrix} Q_{1\,k} \\ Q_{2\,k} \end{pmatrix}$$

To add a constraint (to remove is similar)

$$A_{k+1} = \begin{pmatrix} A_k \\ a_j^T \end{pmatrix} = \begin{pmatrix} L_k & 0 \\ a_j^T Q_{1k}^T & a_j^T Q_{2k}^T \end{pmatrix} Q_k$$

$$= \begin{pmatrix} L_k & 0 \\ a_j^T Q_{1k}^T & a_j^T Q_{2k}^T \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & U^T \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & U \end{pmatrix} Q_k$$

$$= \begin{bmatrix} \begin{pmatrix} L_k & 0 \\ a_j^T Q_{1k}^T & \sigma e_1^T \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} I & 0 \\ 0 & U \end{pmatrix} Q_k \end{bmatrix}$$

$$(L_{k+1} & 0) \begin{pmatrix} I & 0 \\ 0 & U \end{pmatrix} Q_k$$

where the Householder matrix U reduces $Q_{2k}a_j$ to $\sigma e_1 = \begin{pmatrix} \sigma \\ 0 \end{pmatrix}$

FULL-SPACE APPROACH — MATRIX UPDATES

$$\mathcal{W}_k$$
 becomes $\mathcal{W}_\ell \Longrightarrow A_k = \begin{pmatrix} A_C \\ A_D \end{pmatrix}$ becomes $A_\ell = \begin{pmatrix} A_C \\ A_A \end{pmatrix}$

Solving

$$\left(egin{array}{cc} H & A_\ell^T \ A_\ell & 0 \end{array} \right) \left(egin{array}{c} s_\ell \ -y_\ell \end{array} \right) = \left(egin{array}{c} g_\ell \ 0 \end{array} \right) \Longrightarrow$$

$$\begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \longleftarrow \begin{pmatrix} H & A_C^T & A_D^T \\ A_C & 0 & 0 & 0 & 0 \\ A_D & 0 & 0 & 0 & I \\ A_A & 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & 0 \end{pmatrix} \begin{pmatrix} s_\ell \\ -y_C \\ 0 \\ -y_B \\ 0 \\ 0 \end{pmatrix};$$

$$y_\ell = \begin{pmatrix} y_C \\ y_A \end{pmatrix}$$

SCHUR COMPLEMENT UPDATING

 \odot Major iteration starts with factorization of

$$K_k = \left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight)$$

 \odot As \mathcal{W}_k changes to \mathcal{W}_ℓ , factorization of

$$S_{\ell} = - \left(egin{array}{ccc} A_A & 0 & 0 \\ 0 & 0 & I \end{array}
ight) \left(egin{array}{ccc} H & A_k^T \\ A_k & 0 \end{array}
ight)^{-1} \left(egin{array}{ccc} A_A^T & 0 \\ 0 & 0 \\ 0 & I \end{array}
ight)$$

is **updated** not recomputed

 \odot Once dim S_{ℓ} exceeds a given threshold, or it is cheaper to factorize/use K_{ℓ} than maintain/use K_k and S_{ℓ} , start the next major iteration

[FULL-SPACE APPROACH — MATRIX UPDATES (CONT.)

 \dots can solve

$$\begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \longleftarrow \begin{pmatrix} H & A_C^T & A_D^I & A_A^T & 0 \\ A_C & 0 & 0 & 0 & 0 \\ A_D & 0 & 0 & 0 & I \\ A_A & 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & 0 \end{pmatrix} \begin{pmatrix} s_\ell \\ -y_C \\ 0 \\ -y_A \\ 0 \end{pmatrix} = \begin{pmatrix} g_\ell \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

using the factors of

$$K_k = \left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight)$$

and the Schur complement

$$S_{\ell} = - \begin{pmatrix} A_A & 0 & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix}^{-1} \begin{pmatrix} A_A^T & 0 \\ 0 & 0 \\ 0 & I \end{pmatrix}$$

:

PHASE-1

To find an initial feasible point x_0 such that $Ax_0 \geq b$

 \odot use traditional (simplex) phase-1, or

let
$$r=\min(b-Ax_{\rm guess},0)$$
, and solve
$$[(x_0,\xi_0)=(x_{\rm guess},1)]$$

$$\underset{x\in\mathbb{R}^n,\,\xi\in\mathbb{R}}{\text{minimize}}\ \xi\ \text{subject to}\ Ax+\xi r\geq b\ \text{and}\ \xi\geq 0$$

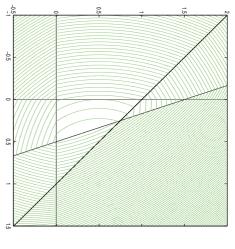
Alternatively, use a single-phase method

 \odot Big-M: for some sufficiently large M

minimize
$$q(x) + M\xi$$
 subject to $Ax + \xi r \ge b$ and $\xi \ge 0$ $x \in \mathbb{R}^n, \xi \in \mathbb{R}$

o $\ell_1 \text{QP }(\rho > 0)$ — may be reformulated as a QP

CONVEX EXAMPLE



$$\min(x_1 - 1)^2 + (x_2 - 0.5)^2$$
subject to $x_1 + x_2 \le 1$

$$3x_1 + x_2 \le 1.5$$

$$(x_1, x_2) \ge 0$$

Contours of penalty function $q(x) + \rho \| \max(b - Ax, 0) \|$ (with $\rho = 2$)

TERMINATION, DEGENERACY & ANTI-CYCLING

So long as $\alpha_k > 0$, these methods are finite:

- \odot finite number of steps to find an EQP with a feasible solution
- \odot finite number of EQP with feasible solutions

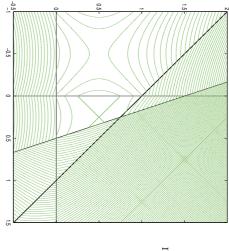
If x_k is degenerate (active constraints are dependent) it is possible that $\alpha_k = 0$. If this happens infinitely often

 \odot may make no progress (a cycle) \Longrightarrow algorithm may stall

Various anti-cycling rules

- Wolfe's and lexicographic perturbations
- ⊙ least-index Bland's rule
- Fletcher's robust method

NON-CONVEX EXAMPLE



 $\min -2(x_1 - 0.25)^2 + 2(x_2 - 0.5)^2$ subject to $x_1 + x_2 \le 1$ $3x_1 + x_2 \le 1.5$ $(x_1, x_2) \ge 0$

Contours of penalty function $q(x) + \rho \| \max(b - Ax, 0) \|$ (with $\rho = 3$)

NON-CONVEXITY

- $\odot\,$ causes little extra difficulty so long as suitable factorizations are possible
- Inertia-controlling methods tolerate at most one negative eigenvalue in the reduced Hessian. Idea is
- 1. start from working set on which problem is strictly convex (e.g., a vertex)
- 2. if a negative eigenvalue appears, do not drop any further constraints until 1. is restored
- 3. a direction of negative curvature is easy to obtain in 2.
- \odot latest methods are not inertia controlling \Longrightarrow more flexible

COMPLEXITY

- \odot When the problem is convex, there are algorithms that will solve QP in a polynomial number of iterations
- $\diamond\,$ some interior-point algorithms are polynomial
- $\diamond\,$ no known polynomial active-set algorithm
- \odot When the problem is non-convex, it is unlikely that there are polynomial algorithms
- \diamond problem is NP complete
- \diamond even verifying that a proposed solution is locally optimal is NP hard

NON-QUADRATIC OBJECTIVE

When f(x) is non quadratic

- $\odot H = H_k$ changes
- \circ active-set subproblem

$$x_{k+1} \approx \arg\min f(x)$$
 subject to $a_i^T x = [b]_i$ for all $i \in \mathcal{W}_k$

- \diamond iteration now required but each step satisfies $A_k s = 0$ \Longrightarrow linear algebra as before
- usually solve subproblem inaccurately
- ▶ when to stop?
- which Lagrange multipliers in this case?
- $\,\triangleright\,$ need to avoid zig-zagging in which working sets repeat