Part 4: Active-set methods
for linearly constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to Ax > b
relR"

Part C course on continuoue optimization




LINEARLY CONSTRAINED MINIMIZATION

Vv

minimize f(x) subject to Ax
relR"

where the objective function f : IR" — IR

© assume that f € C! (sometimes C?) and Lipschitz
® often in practice this assumption violated, but not necessary
® important special cases:

o linear programming: f A v ,Q

o quadratic programming: f(z) = g'z + Lz’ Hx

Concentrate here on quadratic programming



QUADRATIC PROGRAMMING

QP: minimize g(z) = g’z + o' Hx subject to Ax >
reIR"

® H is n by n, real symmetric, g € IR"
ay b1

© A= : is m by n real, b =
A, B,
® in general, constraints may
o have upper bounds: b < Az < b
o include equalities: A°x = b°
o Involve simple bounds: ol <ax <t

o 1nclude network constraints . ..



PROBLEM TYPES

Convex problems

© H is positive semi-definite (z! Hz > 0 for all z)
® any local minimizer is global

© important special case: H = 0 <= linear programming

Strictly convex problems

© H is positive definite (z! Hz > 0 for all x # 0)

® unique minimizer (if any)



CONVEX EXAMPLE

min(z; — 1)% + (z2 — 0.5)*
subject to 1 + 19 <1
3r1+ 29 < 1.5
A&T va N 0

Contours of objective function



PROBLEM TYPES (II)

General (non-convex) problems

© H may be indefinite (z! Hz < 0 for some x)
® may be many local minimizers

® may have to be content with a local minimizer

® problem may be unbounded from below
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PROBLEM TYPES (III)

Small

® values/structure of matrix data H and A irrelevant
® currently min(m, n) = O(10%)
Large

® values/structure of matrix data H and A important
® currently min(m, n) > O(10°)
Huge

® factorizations involving H and A are unrealistic

® currently min(m, n) > O(10°)



WHY IS QP SO IMPORTANT?

© many applications

o portiolio analysis, structural analysis, VLSI design, discrete-time
stabilization, optimal and fuzzy control, finite impulse response
design, optimal power flow, economic dispatch . ..

o ~ 500 application papers
® prototypical nonlinear programming problem

® basic subproblem in constrained optimization:

minimize f(x) minimize [+ g’z + la' Hz
reIR" — reIR"
subject to c(x) > 0 subject to Az 4+ ¢ >0

—> SQP methods (= Course Part 7)



OPTIMALITY CONDITIONS

Recall: the importance of optimality conditions is:
® to be able to recognise a solution if found by accident or design

® to guide the development of algorithms



FIRST-ORDER OPTIMALITY

QP: minimize ¢(x) = g’z + Lol Hx subject to Az >b
reIR"

Any point x, that satisfies the conditions

Az, > b (primal feasibility)
Hr,+qg— Ay, =0 and vy, >0 (dual feasibility)
Az, — bl; - [y.]; =0 for all ¢ (complementary slackness)

for some vector of Lagrange multipliers y, is a
first-order critical (or Karush-Kuhn-Tucker) point

If |[Az, — 0], =0 <= |y]; > 0 for all i =
the solution is strictly complementary



SECOND-ORDER OPTIMALITY

@w”BWEBE@@AHVHQ%&LﬂW&ﬂm&mcgmodﬁoh&ww
reIR"

Let

als =0 for all ¢ such that alz, = [b], and [y,];, >0 and
>\\+ e

als >0 for all i such that alz, = [b], and [y.];

Any first-order critical point z, for which additionally

s'Hs > 0 (resp. > 0) for all s € N}

is a second-order (resp. strong second-order) critical point

Theorem 4.1: x, is a (an isolated) local minimizer of QP <=

T, is (strong) second-order critical



WEAK SECOND-ORDER OPTIMALITY

QP:  minimize ¢(x) = g’z + Lol Hx subject to Az >b
reIR"

Let
N = ﬁm als =0 forall 4 such that a'x, = E%

Any first-order critical point x, for which additionally
s'THs >0 forall se N

is a weak second-order critical point

Note that
® a weak second-order critical point may be a maximizer!

® checking for weak second-order criticality is easy (strong is hard)
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min 7% + x5 — 6,1,
subject to 1 + 19 <1
31+ 20 < 1.5
A&T&wv N 0

-0.5 0 0.5 1 1.5

Contours of objective function:
note that escaping from the origin may be difficult!



[ DUALITY

QP: minimize ¢(x) = g’z + Lol Hx subject to Az >b
reIR"

If QP is convex, any first-order critical point is a global minimizer

If H is strictly convex, the problem

maximize — g’ H g+ (AH g+ b)ly— Wyl AH 1Ay
yelR™, y=0

is known as the dual of QP
®© QP is the primal
® primal and dual have same KK'T' conditions
© if primal is feasible, optimal value of primal = optimal value dual

® can be generalized for simply convex case



ALGORITHMS

Essentially two classes of methods (slight simplification)
active set methods :

primal active set methods aim for dual feasibility while maintain-
ing primal feasibility and complementary slackness

dual active set methods aim for primal feasibility while maintaining

dual feasibility and complementary slackness

interior-point methods : aim for complementary slackness while
maintaining primal and dual feasibility (= Course Part 6)



EQUALITY CONSTRAINED QP

The basic subproblem in all of the methods we will consider is

EQP: minimize g’z + izl Hx subject to Az =0 «— N.B.

x€eIR"

Assume A is m by n, full-rank (preprocess if necessary)
® First-order optimality (Lagrange multipliers y)

H AT T —q
A 0 —q 0

® Second-order necessary optimality:
s''Hs > 0 for all s for which As = 0

® Second-order sufficient optimality:
sl Hs > 0 for all s # 0 for which As =0



EQUALITY CONSTRAINED QP (1)

EQP: minimize ¢(z) = g’z + ol Hx subject to Az =0
reIR"

Four possibilities:
. H AY x —q
(1) = (%)
A 0 0
and H is second-order sufficient = unique minimizer x

(ii) (%) holds, H is second-order necessary, but 3s such that Hs = 0
and As = 0 = family of weak minimizers x + as for any o € IR

(iii) ds for which As =0, Hs =0 and g's < 0 =
¢(-) unbounded along direction of linear infinite descent s

(iv) Is for which As =0 and s’ Hs < 0 =
q(+) unbounded along direction of negative curvature s



CLASSIFICATION OF EQP METHODS

Aim to solve
H A" T —q
A 0 —y 0

Three basic approaches:
full-space approach
range-space approach
null-space approach

For each of these can use
direct (factorization) method

iterative (conjugate-gradient) method



FULL-SPACE/KKT/AUGMENTED SYSTEM APPROACH

H AT T —q
A 0 — 0
® KKT matrix
H A"
A 0

is symmetric, indefinite = use Bunch-Parlett type factorization
o K =PLBL'P!

o P permutation, L unit lower-triangular

o B block diagonal with 1x1 and 2x2 blocks

®© LAPACK for small problems, MA27 /MA57 for large ones

N.AYH

© Theorem 4.2: H is second-order sufficient <=
K non-singular and has precisely m negative eigenvalues



RANGE-SPACE APPROACH

H AT T —q

= ()

A 0 Y 0
For non-singular H
® eliminate x using first block of (%) =

AH'ATy = AH Yg followed by Hx = —g + Aly
o strictly convex case = H and AH 'A! positive definite =
Cholesky factorization

© Theorem 4.3: H is second-order sufficient <=
H and AH ' A" have same number of negative eigenvalues

o AH A" usually dense = factorization only for small m



NULL-SPACE APPROACH
T
M\ \w I&w B om ()

© let n by n —m S be a basis for null-space of A = AS =0
® second block (%) = x = Sxy

® premultiply first block () by ST =

S"HSzs=—S8"g
© Theorem 4.4: H is second-order sufficient <=-
STHS is positive definite = Cholesky factorization

o STHS usually dense = factorization only for small n — m



NULL-SPACE BASIS

Require n by n — m null-space basis S for A = AS =0
Non-orthogonal basis: let A =(A4; Ay)P

® P permutation, A; non-singular

— S =P7 J»wiw

® generally suitable for large problems. Best A7
Orthogonal basis: let A= (L 0)Q

Q1

© L non-singular (e.g., triangular), Q = orthonormal

Q2
= §=0;

® more stable but ... generally unsuitable for large problems



| ITERATIVE METHODS FOR SYMMETRIC
LINEAR SYSTEMS

Bx =10
Best methods are based on finding solutions from the Krylov space
K={" Br’ B(Br'),..} (r’ = b — Ba")
B indefinite: use MINRES method
B positive definite: use conjugate gradient method

® usually satisfactory to find approximation rather than

exact solution
® usually try to precondition system, i.e., solve
C'Bx=C""
where C7'B ~ I _



| ITERATIVE RANGE-SPACE APPROACH

AH ATy = AH g followed by Hx = —g + Aly
For strictly convex case = H and AH 'A” positive definite
H~! available: ( directly or via factors),
use conjugate gradients to solve AH ATy = AH g
©® matrix vector product AH 'ATv = (A (H(A"v)))
® preconditioning? Need to approximate (likely dense) AH 1 A?

H~! not available: use composite conjugate gradient method
(Urzawa’s method) iterating both on solutions to

AH ATy = AH 'g and Hzx=—g+ Aly

at the same time (may not converge)



| ITERATIVE NULL-SPACE APPROACH

STHSzy = —5Tg followed by z = Szy
® use conjugate gradient method

o matrix vector product ST HSvy = (ST (H(Svy)))
o preconditioning? Need to approximate (likely dense) ST H.S

o if we encounter sy such that st (STHS)s, < 0 = s = Nsy
is a direction of negative curvature since As = 0 and s’ Hs < 0

o Advantage: Az™™ = _



| ITERATIVE FULL-SPACE APPROACH

(55) (%)= ()

® use MINRES with the preconditioner

M 0
0 AN1AT
where M and N ~ H.

o Disadvantage: Az #£ ()

® use conjugate gradients with the preconditioner

M AT
A 0
where M ~ H.

o Advantage: Ax™™ = ()



ACTIVE SET ALGORITHMS

QP:  minimize q(z) = g’z + o' Hx subject to Az > b
2
reIR"

The active set A(x) at x is
A(x) = {i | aj x = [b;}
If x, solves QP, we have

arg min q(x) subject to Ax > b
= argminq(x) subject to alz = [b]; for all i € A(x,)

A working set W(x) at x is a subset of the active set for which
the vectors {a;}, i« € W(x) are linearly independent



BASICS OF ACTIVE SET ALGORITHMS

Basic idea: Pick a subset Wy, of {1,...,m} and find
Tpp1 = argmin ¢(z) subject to a; & = [b], for all i € W),

If ;11 does not solve QP, adjust W, to form W1 and repeat

Important issues are:
® how do we know it 2,1 solves QP 7

® if x4.1 does not solve QP, how do we pick the next
working set Wy.q 7

Notation: rows of A; are those of A indexed by Wi
components of by, are those of b indexed by W,



PRIMAL ACTIVE SET ALGORITHMS
Important feature: ensure all iterates are feasible, i.e., Axy > b

— \5.&\& = @w and \w\amﬁil = @w
—> Tj+1 = X + Sp, Where

sp= arg min EQP,

= arg min q(z; + s) subject to Ags =0

equality constrained problem

Need an initial feasible point



PRIMAL ACTIVE SET ALGORITHMS
— ADDING CONSTRAINTS

s = argming(xy + s) subject to Aps =0

What if ;. + s 1s not feasible?

® a currently inactive constraint j must become active at xj + au.sy
for some o < 1 — pick the smallest such ay,

® move instead to .1 = T} + ags; and set Wi 1 = Wi + ,Cw



PRIMAL ACTIVE SET ALGORITHMS
— DELETING CONSTRAINTS

What it xp,1 = x) + s} is feasible 7 =
Tpp1 = argmin ¢(z) subject to aj x = [b], for all i € W),

—> d Lagrange multipliers y;1 such that

H bw Lk+1 _ | 9
A 0 —Yk+1 by,
Three possibilities:
© q(zry1) = —00 (not strictly-convex case only)

® Ype1 > 0 = x4 is a first-order critical point of QP

© |yri1]i < 0 for some ¢ => q(x) may be improved by considering

W1 = Wi \ {j}, where j is the i-th member of W



ACTIVE-SET APPROACH

0.
0
L.
1.
2.

Starting point
Unconstrained minimizer
Encounter constraint A
Minimizer on constraint A
Encounter constraint B,
move off constraint A
Minimizer on constraint B

= required solution



LINEAR ALGEBRA

Need to solve a sequence of EQPs in which

A
either Wpi =Wir+{j} = A= @%

Since working sets change gradually, aim to update
factorizations rather than compute afresh



RANGE-SPACE APPROACH — MATRIX UPDATES

Need factors b\,ﬂihmi = \rﬂimemi given L, L1 = A, H 1Al

When A = Ab% v —

a;

A H AT A H lq.
—1 AT
}wim H}at — A@%mybm @%ESMV

L; 0
L —

Ll = }AQLQQ and A\ = /\@WmLﬁ — 7]

where

Essentially reverse this to remove a constraint



NULL-SPACE APPROACH — MATRIX UPDATES

Need factors Ay = (L1 0)Qksq given

A= (L 0)Qk = (Li 0) i
Q2
To add a constraint (to remove is similar)
Ay, Ly, 0
\» pu— p—
k+1 QW QW Hﬂ\a @W Ww @w
B Ly, 0 I 0 I 0 0
B @W I @W 2 0 U’ 0 U "
Ly 0 I 0
=\ arQr, o || |Low |
(Lis1 0) Qri1

o

where the Householder matrix U reduces Q)2 ya; to oe; = 0



| FULL-SPACE APPROACH — MATRIX UPDATES

Wi, becomes Wy = Ay, = A Ao v becomes A, = A

)=

Solving

(
(1)~

Ap

m \ww Sy . qy
Ap 0 —y )\ 0

([ H AT AT| AT 0 )

A, 0 0| 0 I
A, 0 0 0 0
/o 0 I oo\

(s
—Yc
—Yp

\ e/

Ac
Al




| FULL-SPACE APPROACH — MATRIX UPDATES (CONT.)

...can solve
poar\ o HALAL AT o) /s ()
A, 0 |7 | A4 0 0] 0 0 —Yc 0
Ap 0 0 0 I —yp | =1 O
Ay, 0 0 0 O —Ya 0
/o 0 I 0 o\rg\ ro\
using the factors of
H Al
K. = g
and the Schur complement
-1 \»H
. AEQQVAm mwv %m
= —
0 01 A
b0 0 I



| SCHUR COMPLEMENT UPDATING
® Major iteration starts with factorization of

H AT

NH
g A, 0

® As W, changes to Wy, factorization of

1 \wﬂ@
g A, 00 H Al %o
(= —
I A
0 0 0 0 7

is updated not recomputed

® Once dim Sy exceeds a given threshold, or it is cheaper to
factorize /use K, than maintain/use Kj and Sy, start the
next major iteration



PHASE-1

To find an initial feasible point xy such that Axy > b
® use traditional (simplex) phase-1, or
® let r = min(b — A%, 0), and solve (20, £0) = (Tguess> 1)]

minimize & subject to Ax +&r >0 and £ >0
xeIR", €IR

Alternatively, use a single-phase method

© Big-M: for some sufficiently large M

minimize q(x) + M& subject to Az +&r > b and £ >0
xeIR", (€IR

© 1QP (p > 0) — may be reformulated as a QP

minimize @A&v + b: B%A@ — Auz, ov:

x€IR"



CONVEX EXAMPLE

/ min(z; — 1)* + (29 — 0.5)*

)| / \ subject to 1 + 19 <1

3r1+x9 < 1.5
(x1,22) >0

0.5F

Iom | | |
-1 -05 0 05 1 1.5

Contours of penalty function g(z) + p|| max(b — Az, 0)|| (with p = 2)



NON-CONVEX EXAMPLE

15F
\ min —2(z1 — 0.25)% + 2(xs — 0.5)?
i \ - subject to x1 + x5 <1

/ 3rx1 + x9 < 1.5

(21, 29) >0
05F /

-0.5 L L
-1 -0.5 0 05 1 15

Contours of penalty function g(x) + p|| max(b — Az, 0)|| (with p = 3)



TERMINATION, DEGENERACY & ANTI-CYCLING

So long as ay. > 0, these methods are finite:
© finite number of steps to find an EQP with a feasible solution

® finite number of EQP with feasible solutions

If x, is degenerate (active constraints are dependent) it is possible that
oy = 0. If this happens infinitely often

© may make no progress (a cycle) = algorithm may stall

Various anti-cycling rules
© Wolfe’s and lexicographic perturbations
® least-index — Bland’s rule

® Fletcher’s robust method



NON-CONVEXITY

® causes little extra difficulty so long as suitable factorizations
are possible

® Inertia-controlling methods tolerate at most one negative
eigenvalue in the reduced Hessian. Idea is

1. start from working set on which problem is strictly convex
(e.g., a vertex)

2. if a negative eigenvalue appears, do not drop any further
constraints until 1. is restored

3. a direction of negative curvature is easy to obtain in 2.

® latest methods are not inertia controlling = more flexible



COMPLEXITY

® When the problem is convex, there are algorithms that will
solve QP in a polynomial number of iterations
o some interior-point algorithms are polynomial
o no known polynomial active-set algorithm
© When the problem is non-convex, it is unlikely that there are
polynomial algorithms
o problem is NP complete

o even verifying that a proposed solution is locally optimal is

NP hard



NON-QUADRATIC OBJECTIVE

When f(x) is non quadratic
© H = H} changes
® active-set subproblem
Tip1 ~ argmin f(x) subject to al x = [b], for all i € W,

o iteration now required but each step satisfies Aps =0
—> linear algebra as before

o usually solve subproblem inaccurately
> when to stop?
> which Lagrange multipliers in this case?

> need to avoid zig-zagging in which working sets repeat



