Part 5: Penalty and augmented Lagrangian
methods for equality constrained optimization

Nick Gould (RAL)

minimize  f(z) subject to ¢(x) =0
relR"

Part C course on continuoue optimization

CONSTRAINED MINIMIZATION

minimize f(x) subject to ¢(x)
relR"

v
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where the objective function f:IR" — IR
and the constraints ¢ : [R" — IR™

© assume that f, ¢ € C' (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary




CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
© minimize the objective function f(z)

© satisfy the constraints

Overcome this by minimizing a composite merit function &(z,p)
for which

© p are parameters

© (some) minimizers of ®(x, p) wrt & approach those of f(z) subject
to the constraints as p approaches some set P

© only uses unconstrained minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to ¢(x) =0
z€R"

Merit function (quadratic penalty function):

1
Oz, p) = flz) + EHC(SU)H%
© required solution as p approaches {0} from above

© may have other useless stationary points



CONTOURS OF THE PENALTY FUNCTION
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Quadratic penalty function for min 23 4+ 23 subject to z; + 23 = 1

CONTOURS OF THE PENALTY FUNCTION (cont.)
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Quadratic penalty function for min x3 + x3 subject to x1 + 23 = 1



BASIC QUADRATIC PENALTY FUNCTION
ALGORITHM

Given pg > 0, set k=0
Until “convergence” iterate:

Starting from x}, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xy of ®(z, uy)

Compute 1 > 0 smaller than . such
that limg_ .o pz+1 = 0 and increase k by 1

® often choose g1 = 0.1 or even gy, = p?

® might choose z} | = ;.

MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that f, ¢ € C?, that

def C(T
yk’é_ ( k)a
Mk

that
|V @ (g, o) ||2 < €,

where €, converges to zero as k — 0o, and that z; converges to
x, for which A(x,) is full rank. Then z, satisfies the first-order
necessary optimality conditions for the problem

minimize f(z) subject to c(z) =0
relR"

and {yx} converge to the associated Lagrange multipliers ..




PROOF OF THEOREM 5.1
Generalized inv. A™(x) o (A(x)AT(a:))_l A(x) bounded near w,.
Define

def  c(xg) def
o= - and y, = A" (z.)g(z.). (1)
[nner-iteration termination rule
lg(xr) — A" (ze)yrl < e (2)

= ||[A"(z)g(7) — yplla = HA+<95/<) (9($k> - AT(%)%) HQ
< 2|| AT (@) [|€n

= [l — vl < AT (w)g(,) — AT (2 )g()) ]l +

A (2)g(z;) — yllo
— {yr} — y.. Continuity of gradients + (2) =

g(w.) — Az, )ys = 0.

(1) implies ¢(x) = —pryx + continuity of constraints = ¢(z,) = 0.
—> (x4, ys) satisfies the first-order optimality conditions.

ALGORITHMS TO MINIMIZE ®(x, )

Can use
® linesearch methods

o might use specialized linesearch to cope with large quadratic
term [Je(z)13/2p

® trust-region methods

o (ideally) need to “shape” trust region to cope with contours of
the ||c(z)[[3/2p term



DERIVATIVES OF THE QUADRATIC PENALTY
FUNCTION

o V,®(x, 1) = g(x,y(x))
@vmwamzﬂuwu»+iﬂ@M@>
where

© Lagrange multiplier estimates:

o g(x,y(z)) = g(x) — Al (x)y(z): gradient of the Lagrangian
© H(z,y(x)) = H(x) — Z yi(x)H;(x): Lagrangian Hessian
i=1

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

(H@w@»+5ﬂ@mwos=—wamw>

LIMITING DERIVATIVES OF &
For small u: roughly

V. P(x, p) = glz) — Al (z)y()

A\ g

mod?rate .
Voulla ) = Hiz,y(@) + A7) Alw) =

o 4 7

Al (z) A(x)

==

moderate lz;r:ge



POTENTIAL DIFFICULTY

Il1l-conditioning of the Hessian of the penalty function:
roughly speaking (non-degenerate case)

© m eigenvalues &~ \; [AT(2)A(z)] /i

© n —m eigenvalues ~ \; [ST(z)H(z,,y.)S(x)]
where S(x) orthogonal basis for null-space of A(z)

= condition number of V., ®(zy, ux) = O(1/ 1)
—> may not be able to find minimizer easily

THE ILL-CONDITIONING IS BENIGN

Newton system:

(#epto) + LA @A) ) s = = (960 + AT 0)clo))

Define auxiliary variables

(A(z)s + c(x))

1
W= —
0

Hy@) 7@\ (s) (o
A(x) —ul w c(x)

© essentially independent of i for small 4 = no inherent ill-conditioning
® thus can solve Newton equations accurately

© more sophisticated analysis = original system OK



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(z) subject to c(z) =0
reIR"

are:
g(x) — AT(x)y =0  dual feasibility

c(x)=0 primal feasibility

Consider the “perturbed” problem

glx) — AT (z)y =0 dual feasibility
c(z)+py =0 perturbed primal feasibility
where p > 0

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
g(z) — AT(2)y =0 and c(x) + py =0
as0<pu—0

® nonlinear system = use Newton’s method

Newton correction ( (x,y) satisfies

(% )() ()

Eliminate w =

(H(x, y) + %AT(x)A(x)) s=— (g(:l:) + %A%)c(x))

c.f. Newton method for quadratic penalty function minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(H<x, () + iAT<x>A<x>) & = —gla,y(2))
Primal-dual:
(H<a:, y)+ 1AT<x>A<w>) ™ = —g(z,y(x)
L

where

What is the difference?

© freedom to choose y in H(x,y) for primal-dual ... vital

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(z) =0
zeIR"

Merit function (augmented Lagrangian function):

D, u, 1) = f(x) — uTe(x) + il\c(w)ll%

where v and p are auxiliary parameters

Two interpretations —

© shifted quadratic penalty function

® convexification of the Lagrangian function

Aim: adjust p© and w to encourage convergence



DERIVATIVES OF THE AUGMENTED LAGRANGIAN
FUNCTION

o V,(x,u,u) = g(z,y"(x))
o Varl(z,u, 1) = H(z, o (z)) + iAT<x>A<x>
where

© First-order Lagrange multiplier estimates:

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that f, ¢ € C?, that

def
Ye = up — clag)/

for given {uy}, that
V2@ (@k, we, ) |2 < €,

where €, converges to zero as k — 0o, and that z; converges to
x, for which A(z,) is full rank. Then {y;} converge to some y, for
which g(z.) = AT(2,)ys.

If additionally either pj converges to zero for bounded uy; or wuy
converges to y, for bounded puj, z, and y, satisty the first-order
necessary optimality conditions for the problem

minimize f(z) subject to c(z) =0
relR"




PROOF OF THEOREM 5.2

Convergence of yj to y. o At (z,)g(x,) for which g(z,) = AT (2,)y.
is exactly as for Theorem 5.1.

Definition of y;, =—

le@@ill = pelluwn = yill < pallyr = yall + pellur — oa|

—> ¢(z,) = 0 from assumptions.
—> (x4, ys) satisfies the first-order optimality conditions.

CONTOURS OF THE AUGMENTED LAGRANGIAN
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CONTOURS OF THE AUGMENTED LAGRANGIAN
FUNCTION (cont.)
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CONVERGENCE OF AUGMENTED LAGRANGIAN
METHODS

® convergence guaranteed if uy fixed and pp — 0
— yp — Yx and c(xg) — 0

© check if ||e(zy)|| < nr where {n} — 0
o if s0, set upy1 = yp and pg1 = py;

o if not, set ugy1 = ug and 41 < Ty for some 7 € (0, 1)

© reasonable: n; = ,ug'HO'gj where 7 iterations since py last changed

® under such rules, can ensure pu; eventually unchanged under
modest assumptions and (fast) linear convergence

© need also to ensure py, is sufficiently large that V. ®(xg, ug, px) is
positive (semi-)definite



BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given pg > 0 and ug, set k =0
Until “convergence” iterate:

Starting from ., use an unconstrained minimization
algorithm to find an “approximate” minimizer x of
Oz, ug, py) for which ||V P(xg, ug, )| < €k

If [e(xp)|| < mi, set upgy = i and gy = pup

Otherwise set up11 = up and pp; < Tk

Set suitable €;,1 and 1,1 and increase k£ by 1

© often choose 7 = min(0.1, \ /1)
® might choose z} | = ;.

1 .. . .
© reasonable: €, = ,w,7€+ where j iterations since puy last changed



