Part 5: Penalty and augmented Lagrangian
methods for equality constrained optimization

Nick Gould (RAL)

minimize  f(z) subject to c(z) =0
zelR"

Part C course on continuoue optimization

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
© minimize the objective function f(z)

© satisfy the constraints

Overcome this by minimizing a composite merit function &(z,p)
for which

© p are parameters

© (some) minimizers of ®(x, p) wrt & approach those of f(x) subject
to the constraints as p approaches some set P

® only uses unconstrained minimization methods

CONSTRAINED MINIMIZATION

\%

minimize f(z) subject to c(xz) 4 — 0
z€IR"

where the objective function f : IR" — IR
and the constraints ¢ : IR" — IR™

© assume that f, ¢ € C* (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(x) =0
z€lR"

Merit function (quadratic penalty function):
®(xz, 1) = f(z) + o—lle(@)|3

© required solution as p approaches {0} from above

® may have other useless stationary points



CONTOURS OF THE PENALTY FUNCTION

=100 =1

Quadratic penalty function for min 22 + 23 subject to 1 + 23 = 1

BASIC QUADRATIC PENALTY FUNCTION
ALGORITHM

Given pg > 0, set k=0

Until “convergence” iterate:
Starting from «j,, use an unconstrained
minimization algorithm to find an

)

“approximate” minimizer xy of ®(z, py)
Compute pg.1 > 0 smaller than gy, such

that limg_,o ptx+1 = 0 and increase k by 1

© often choose juy1 = 0.1py, or even i1 = fi}

© might choose zj ;= x;,

CONTOURS OF THE PENALTY FUNCTION (cont.)

w=0.1 u=0.01

uadratic penalty function for min 22 + 2% subject to x; + 23 = 1
y 1 2 Sub) 2

MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that f, ¢ € C?, that

def C(Tf
Yk M - A v“
Mok

that

V@@, ) ||2 < e,
where €, converges to zero as k — oo, and that x; converges to
x4 for which A(zx,) is full rank. Then w, satisfies the first-order
necessary optimality conditions for the problem

minimize f(z) subject to ¢(x) =0
zeR"

and {y;} converge to the associated Lagrange multipliers y..




PROOF OF THEOREM 5.1
Generalized inv. A%(x) o A\»@vkﬂ@va A(z) bounded near .
Define

def C\Tk def
=0y A gl )
Inner-iteration termination rule
lg(ar) — AT (zr)yrll < ex (2)

= A (@pg(@) = yelly = [|AT () (9(2) — AT (@r)y) [
< 20| AT () o6
=l = wllo < 1A (2)g(2,) — AT (2)g(x)
[A™ (z)g(z)) — vl
= {yr} — y.. Continuity of gradients + (2) =
g(z.) — Al(w.)y. = 0.

(1) implies c(zg) = —pryx + continuity of constraints = ¢(z.) = 0.
= (., ) satisfies the first-order optimality conditions.

|y +

DERIVATIVES OF THE QUADRATIC PENALTY
FUNCTION

o V,0(x, 1) = g(z,y(v))

o V(e ) = Hiz, y(x)) + wiis
where

©® Lagrange multiplier estimates:

o g(z,y(z)) = g(x) — AT (x)y(z): gradient of the Lagrangian
© H(z,y(r)) = H(x)— MFA&VFA@ Lagrangian Hessian
i=1

ALGORITHMS TO MINIMIZE &(x, i)

Can use
® linesearch methods

o might use specialized linesearch to cope with large quadratic
13/2u

® trust-region methods

term ||c(z)

o (ideally) need to “shape” trust region to cope with contours of
the ||c(z)||3/2u term

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

??%vv + w%@}sv mug?%x

LIMITING DERIVATIVES OF &
For small p: roughly

Vod(z, 1) = glz) — AT (x)y(x)

moderate

Vo®(z, ) = Hz,y(x)) + WE@EHV ~ WE@EHV

moderate large




POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

© m cigenvalues ~ \; [AT(z)A(z)] /1w

© n—m eigenvalues ~ \; [ST(z)H (z,y.)S(2)]
where S(z) orthogonal basis for null-space of A(x)

= condition number of V., ®(xy, up) = O(1/ )
=> may not be able to find minimizer easily

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for
minimize f(x) subject to ¢(z) =0
z€R"

are:
g(z) — AT(z)y =0  dual feasibility
c(z)=0 primal feasibility

Consider the “perturbed” problem

g(x) — AT(x)y =0 dual feasibility
e(z)+py =0 perturbed primal feasibility
where p > 0

THE ILL-CONDITIONING IS BENIGN

Newton system:

(#0900 + 2 A7 @)A@) ) 5= = (960) 4 24T 0)clo) )

Define auxiliary variables

1
w = m (A(z)s + c(x))
_—
H(z,y(x)) ANx) \ (s ) _ (gl
A(x) —ul w c(x)

® essentially independent of p for small 4 = no inherent ill-conditioning
® thus can solve Newton equations accurately

© more sophisticated analysis = original system OK

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
g(a) = AT(a)y = 0 and clz) +py =0
as0<pu—0

© nonlinear system = use Newton’s method

Newton correction A x,y) satisfies
H(z,y) — glx) — AT(z)y
Alz) c(x) + py

Eliminate w =

Am@ D+ a7 v A (x ?Kﬁ%gv

I

c.f. Newton method for quadratic penalty function minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:

Am@é@5+w%@§@¢%l|aﬁsgv

Primal-dual:

where

What is the difference?

© freedom to choose y in H(z,y) for primal-dual ... vital

DERIVATIVES OF THE AUGMENTED LAGRANGIAN
FUNCTION

o V. @(z,u, 1) = g(x,y" ()
eﬁhﬁssnmﬁxgrwaﬁzg
where

© First-order Lagrange multiplier estimates:

PR C))
y'(z) = .

o g(z,y"(z)) = g(x) — AT(2)y*(z): gradient of the Lagrangian

m
© H(x,y"(x)) = H(zx) — M@Navm%i Lagrangian Hessian
i=1

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(z) =0
z€R"
Merit function (augmented Lagrangian function):
1
Oz, u, 1) = flw) = ule(z) + 5-[le(@)|3

2p
where u and p are auxiliary parameters

Two interpretations —

® shifted quadratic penalty function

® convexification of the Lagrangian function

Aim: adjust g and u to encourage convergence

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that f, ¢ € C?, that
def

Yr = wp — c(k)/ i

for given {uy}, that

IVa®(@p, ur, pu)||2 < e,
where € converges to zero as k — oo, and that x; converges to
x4 for which A(x,) is full rank. Then ﬁci converge to some y, for
which g(z.) = AT (2,)y..
If additionally either py converges to zero for bounded wuy or wy
converges to y, for bounded py, x. and y, satisfy the first-order
necessary optimality conditions for the problem

minimize f(x) subject to ¢(z) =0
r€IR"




PROOF OF THEOREM 5.2 CONTOURS OF THE AUGMENTED LAGRANGIAN

Convergence of y to y. o A*(x,)g(x,) for which g(x,) = AT (z.)y. FUNCTION
is exactly as for Theorem 5.1. — R
N
Definition of y, = 09 N o , ///M
lleC@ill = prllur = yill < pullyn — yell + gl — ] . .

= ¢(x,) = 0 from assumptions. 06 0s
= (&, yx) satisfies the first-order optimality conditions. s 1 osf
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Augmented Lagrangian function for min 2% + 2 subject to z; + 23 = 1 with fixed p = 1

CONTOURS OF THE AUGMENTED LAGRANGIAN CONVERGENCE OF AUGMENTED LAGRANGIAN
FUNCTION (cont.) METHODS
GM ,/;M/ \ ewr NN N © convergence guaranteed if uy fixed and gy — 0
o N / = yr — s and c(zr) — 0
07 { ot ] © check if ||e(xy)]] < nr where {ny} — 0
) / 1 om‘/, | <© Hm SO, set, Uk+1 = Yk @BQ Mrt1 = Mk
D.A // o if not, set ugy1 = uy and pyrq < Ty for some 7 € (0,1)
\\ )
03 // © reasonable: n = tm.io@ where 7 iterations since py last changed

© under such rules, can ensure pu;, eventually unchanged under
modest assumptions and (fast) linear convergence
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w = 0.99 u=y, =1 © need also to ensure py, is sufficiently large that V@ (zg, ug, pr) is

P . . . ositive (semi-)definite
Augmented Lagrangian function for min 22 + 23 subject to 1 + 23 = 1 with fixed p = 1 P ( )



BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given pg > 0 and ug, set k=0
Until “convergence” iterate:

Starting from «j, use an unconstrained minimization
algorithm to find an “approximate” minimizer x of
O(x, ug, ) for which ||V, @(zk, ug, wi)|| < ek

If |le(xr)|] < np, set up1 = yr and prrq1 = p,

Otherwise set w1 = uy and g < Tk

Set suitable €1 and 711 and increase k by 1

© often choose 7 = min(0.1, y/14x)

© might choose zj ;= x;,

® reasonable: €, = twi where j iterations since py, last changed



