Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization

Nick Gould (RAL)

$$\label{eq:force_force} \underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \ \text{subject to} \ c(x) = 0$$

Part C course on continuoue optimization

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- $_{\odot}$ minimize the objective function f(x)
- satisfy the constraints

Overcome this by minimizing a composite **merit function** $\Phi(x,p)$ for which

- \circ p are parameters
- \odot (some) minimizers of $\Phi(x,p)$ wrt x approach those of f(x) subject to the constraints as p approaches some set \mathcal{P}
- o only uses **unconstrained** minimization methods

CONSTRAINED MINIMIZATION

minimize
$$f(x)$$
 subject to $c(x) \begin{cases} \geq \\ = \end{cases} 0$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and the **constraints** $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

- \circ assume that $f, c \in C^1$ (sometimes C^2) and Lipschitz
- \odot often in practice this assumption violated, but not necessary

AN EXAMPLE FOR EQUALITY CONSTRAINTS

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ c(x) = 0$$

Merit function (quadratic penalty function):

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

- \odot required solution as μ approaches $\{0\}$ from above
- may have other useless stationary points

CONTOURS OF THE PENALTY FUNCTION

Quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

BASIC QUADRATIC PENALTY FUNCTION ALGORITHM

Given $\mu_0 > 0$, set k = 0Until "convergence" iterate: Starting from x_k^s , use an unconstrained minimization algorithm to find an "approximate" minimizer x_k of $\Phi(x, \mu_k)$ Compute $\mu_{k+1} > 0$ smaller than μ_k such that $\lim_{k\to\infty} \mu_{k+1} = 0$ and increase k by 1

o often choose $\mu_{k+1} = 0.1\mu_k$ or even $\mu_{k+1} = \mu_k^2$

 \odot might choose $x_{k+1}^{s} = x_{k}$

CONTOURS OF THE PENALTY FUNCTION (cont.)

Quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that $f, c \in C^2$, that

$$y_k \stackrel{\text{def}}{=} -\frac{c(x_k)}{\mu_k},$$

that

$$\|\nabla_x \Phi(x_k, \mu_k)\|_2 \le \epsilon_k,$$

where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to x_* for which $A(x_*)$ is full rank. Then x_* satisfies the first-order necessary optimality conditions for the problem

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

and $\{y_k\}$ converge to the associated Lagrange multipliers y_* .

PROOF OF THEOREM 5.1

Generalized inv. $A^+(x) \stackrel{\text{def}}{=} (A(x)A^T(x))^{-1}A(x)$ bounded near x_* .

Define
$$y_k \stackrel{\text{def}}{=} -\frac{c(x_k)}{\mu_k} \text{ and } y_* \stackrel{\text{def}}{=} A^+(x_*)g(x_*). \tag{1}$$
 Inner-iteration termination rule

$$||g(x_k) - A^T(x_k)y_k|| \le \epsilon_k \tag{2}$$

$$\implies \|A^{+}(x_{k})g(x_{k}) - y_{k}\|_{2} = \|A^{+}(x_{k}) (g(x_{k}) - A^{T}(x_{k})y_{k})\|_{2}$$

$$\leq 2\|A^{+}(x_{*})\|_{2}\epsilon_{k}$$

$$\implies \|y_{k} - y_{*}\|_{2} \leq \|A^{+}(x_{*})g(x_{*}) - A^{+}(x_{k})g(x_{k})\|_{2} +$$

$$\|A^{+}(x_{k})g(x_{k}) - y_{k}\|_{2}$$

$$\implies \{y_{k}\} \longrightarrow y_{*}. \text{ Continuity of gradients} + (2) \implies$$

$$\Rightarrow ||y_k - y_*||_2 \le ||A^+(x_*)g(x_*) - A^+(x_k)g(x_k)||_2 + ||A^+(x_*)g(x_*) - y_*||_2$$

$$\Rightarrow \{y_k\} \longrightarrow y_*$$
. Continuity of gradients $+(2) \Longrightarrow$

$$g(x_*) - A^T(x_*)y_* = 0.$$

(1) implies $c(x_k) = -\mu_k y_k + \text{continuity of constraints} \implies c(x_*) = 0$. $\implies (x_*, y_*)$ satisfies the first-order optimality conditions

DERIVATIVES OF THE QUADRATIC PENALTY

$$\nabla_x \Phi(x,\mu) = g(x,y(x))$$

• Lagrange multiplier estimates: $\binom{c}{c} = \frac{c}{c}$

$$y(x) = -\frac{c(x)}{\mu}$$

 $\circ \ g(x,y(x)) = g(x) - A^T(x)y(x)$: gradient of the Lagrangian

$$\odot\ H(x,y(x))=H(x)-\sum_{i=1}y_i(x)H_i(x)$$
: Lagrangian Hessian

ALGORITHMS TO MINIMIZE $\Phi(x,\mu)$

- linesearch methods
- might use specialized linesearch to cope with large quadratic term $||c(x)||_2^2/2\mu$
- \circ trust-region methods
- (ideally) need to "shape" trust region to cope with contours of the $||c(x)||_2^2/2\mu$ term

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

$$\left(H(x,y(x))+\frac{1}{\mu}A^T(x)A(x)\right)s=-g(x,y(x))$$

LIMITING DERIVATIVES OF Φ For small μ : roughly

$$\nabla_x \Phi(x,\mu) = g(x) - A^T(x)y(x)$$

$$\text{moderate}$$

$$\nabla_{xx} \Phi(x,\mu) = H(x,y(x)) + \frac{1}{\mu} A^T(x)A(x) \approx \frac{1}{\mu} A^T(x)A(x)$$

$$\text{moderate}$$

$$\text{large}$$

POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

- \odot m eigenvalues $\approx \lambda_i \left[A^T(x) A(x) \right] / \mu_k$
- $oldsymbol{n} m$ eigenvalues $\approx \lambda_i \left[S^T(x) H(x_*, y_*) S(x) \right]$

where S(x) orthogonal basis for null-space of A(x)

 \implies condition number of $\nabla_{xx}\Phi(x_k,\mu_k) = O(1/\mu_k)$ ⇒ may not be able to find minimizer easily

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ c(x) = 0$$

$$g(x) - A^T(x)y = 0$$
 dual feasibility $c(x) = 0$ primal feasibility

Consider the "perturbed" problem

$$g(x) - A^T(x)y = 0$$
 dual feasibility $c(x) + \mu y = 0$ **perturbed** primal feasibility

THE ILL-CONDITIONING IS BENIGN

$$\left(H(x,y(x)) + \frac{1}{\mu}A^T(x)A(x)\right)s = -\left(g(x) + \frac{1}{\mu}A^T(x)c(x)\right)$$

Define auxiliary variables

$$w = \frac{1}{\mu} \left(A(x)s + c(x) \right)$$

$$\begin{pmatrix} H(x, y(x)) & A^T(x) \\ A(x) & -\mu I \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

- \odot essentially independent of μ for small $\mu \Longrightarrow \mathbf{no}$ inherent ill-conditioning
- \odot thus can solve Newton equations accurately
- \circ more sophisticated analysis \Longrightarrow original system OK

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$g(x) - A^T(x)y = 0 \text{ and } c(x) + \mu y = 0$$

$$\downarrow 0$$

 \odot nonlinear system \Longrightarrow use Newton's method

Newton correction (s, v) to (x, y) satisfies

$$\left(\begin{array}{cc} H(x,y) & -A^T(x) \\ A(x) & \mu I \end{array}\right) \left(\begin{array}{c} s \\ v \end{array}\right) = - \left(\begin{array}{c} g(x) - A^T(x)y \\ c(x) + \mu y \end{array}\right)$$

Eliminate
$$w \Longrightarrow \left(H(x,y) + \frac{1}{\mu}A^T(x)A(x)\right)s = -\left(g(x) + \frac{1}{\mu}A^T(x)c(x)\right)$$

c.f. Newton method for quadratic penalty function minimization

PRIMAL VS. PRIMAL-DUAL

$$\left(H(x,y(x)) + \frac{1}{\mu}A^T(x)A(x)\right)s^{\mathsf{P}} = -g(x,y(x))$$

Primal-dual:

$$\left(H(x,y) + \frac{1}{\mu}A^T(x)A(x)\right)s^{\mathrm{pd}} = -g(x,y(x))$$

$$y(x) = -\frac{c(x)}{\mu}$$

What is the difference?

 \circ freedom to choose y in H(x,y) for primal-dual ... vital

FUNCTION DERIVATIVES OF THE AUGMENTED LAGRANGIAN

$$\nabla_x \Phi(x, u, \mu) = g(x, y^{\mathrm{F}}(x))$$

$$\odot \ \nabla_x \Phi(x,u,\mu) = g(x,y^{\mathrm{F}}(x))$$

$$\odot \ \nabla_{xx} \Phi(x,u,\mu) = H(x,y^{\mathrm{F}}(x)) + \frac{1}{\mu} A^T(x) A(x)$$

o First-order Lagrange multiplier estimates:

$$y^{\mathrm{F}}(x) = u - \frac{c(x)}{\mu}$$

o $g(x,y^{\scriptscriptstyle{\mathrm{F}}}(x))=g(x)-A^T(x)y^{\scriptscriptstyle{\mathrm{F}}}(x)$: gradient of the Lagrangian

o
$$H(x,y^{\mathrm{F}}(x))=H(x)-\sum_{i=1}^{n}y_{i}^{\mathrm{F}}(x)H_{i}(x)$$
: Lagrangian Hessian

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

Merit function (augmented Lagrangian function)

$$\Phi(x,u,\mu) = f(x) - u^T c(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

where u and μ are auxiliary **parameters**

Two interpretations —

- shifted quadratic penalty function
- o convexification of the Lagrangian function

Aim: adjust μ and u to encourage convergence

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that $f, c \in \mathbb{C}^2$, that $y_k \stackrel{\text{def}}{=} u_k - c(x_k)/\mu_k$,

$$u_k \stackrel{\text{def}}{=} u_k - c(x_k)/\mu_k,$$

for given $\{u_k\}$, that

$$\|\nabla_x \Phi(x_k, u_k, \mu_k)\|_2 \le \epsilon_k$$

which $g(x_*) = A^T(x_*)y_*$. x_* for which $A(x_*)$ is full rank. Then $\{y_k\}$ converge to some y_* for where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to

necessary optimality conditions for the problem If additionally either μ_k converges to zero for bounded u_k or u_k converges to y_* for bounded μ_k , x_* and y_* satisfy the first-order

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

PROOF OF THEOREM 5.2

Convergence of y_k to $y_* \stackrel{\text{def}}{=} A^+(x_*)g(x_*)$ for which $g(x_*) = A^T(x_*)y_*$ is exactly as for Theorem 5.1.

Definition of $y_k \Longrightarrow$

$$||c(x_k)|| = \mu_k ||u_k - y_k|| \le \mu_k ||y_k - y_*|| + \mu_k ||u_k - y_*||$$

 $\implies c(x_*) = 0$ from assumptions.

 $\implies (x_*, y_*)$ satisfies the first-order optimality conditions.

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION (cont.)

Augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ with fixed $\mu = 1$

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION

Augmented Lagrangian function for min $x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ with fixed $\mu = 1$

CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS

- \odot convergence guaranteed if u_k fixed and $\mu \longrightarrow 0$ $\Longrightarrow y_k \longrightarrow y_*$ and $c(x_k) \longrightarrow 0$
- \circ check if $||c(x_k)|| \leq \eta_k$ where $\{\eta_k\} \longrightarrow 0$
- $\text{ if so, set } u_{k+1} = y_k \text{ and } \mu_{k+1} = \mu_k$
- \diamond if not, set $u_{k+1} = u_k$ and $\mu_{k+1} \leq \tau \mu_k$ for some $\tau \in (0,1)$
- \odot reasonable: $\eta_k = \mu_k^{0.1 + 0.9j}$ where j iterations since μ_k last changed
- \odot under such rules, can ensure μ_k eventually unchanged under modest assumptions and (fast) linear convergence
- o need also to ensure μ_k is sufficiently large that $\nabla_{xx}\Phi(x_k,u_k,\mu_k)$ is positive (semi-)definite

BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given $\mu_0 > 0$ and u_0 , set k = 0Until "convergence" iterate: Starting from x_k^s , use an unconstrained minimization algorithm to find an "approximate" minimizer x_k of $\Phi(x, u_k, \mu_k)$ for which $\|\nabla_x \Phi(x_k, u_k, \mu_k)\| \le \epsilon_k$ If $\|c(x_k)\| \le \eta_k$, set $u_{k+1} = y_k$ and $\mu_{k+1} = \mu_k$ Otherwise set u_{k+1} and η_{k+1} and increase k by 1

- \odot often choose $\tau = \min(0.1, \sqrt{\mu_k})$
- \circ might choose $x_{k+1}^s = x_k$
- \odot reasonable: $\epsilon_k = \mu_k^{j+1}$ where j iterations since μ_k last changed