methods for equality constrained optimization Part 5: Penalty and augmented Lagrangian

Nick Gould (RAL)

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$

Part C course on continuoue optimization

CONSTRAINED MINIMIZATION

minimize
$$f(x)$$
 subject to $c(x) \begin{cases} \geq \\ = \end{cases} 0$

where the objective function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and the constraints $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

- \circ assume that $f, c \in C^1$ (sometimes C^2) and Lipschitz
- often in practice this assumption violated, but not necessary

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- \circ minimize the objective function f(x)
- o satisfy the constraints

for which Overcome this by minimizing a composite **merit function** $\Phi(x,p)$

- \circ p are parameters
- \circ (some) minimizers of $\Phi(x,p)$ wrt x approach those of f(x) subject to the constraints as p approaches some set \mathcal{P}
- only uses **unconstrained** minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

Merit function (quadratic penalty function):

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

- \circ required solution as μ approaches $\{0\}$ from above
- o may have other useless stationary points

CONTOURS OF THE PENALTY FUNCTION

CONTOURS OF THE PENALTY FUNCTION (cont.)

BASIC QUADRATIC PENALTY FUNCTION ALGORITHM

Given $\mu_0 > 0$, set k = 0Until "convergence" iterate: Starting from x_k^s , use an unconstrained minimization algorithm to find an "approximate" minimizer x_k of $\Phi(x, \mu_k)$ Compute $\mu_{k+1} > 0$ smaller than μ_k such that $\lim_{k\to\infty} \mu_{k+1} = 0$ and increase k by 1

- o often choose $\mu_{k+1} = 0.1 \mu_k$ or even $\mu_{k+1} = \mu_k^2$
- o might choose $x_{k+1}^{s} = x_k$

MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that $f, c \in \mathbb{C}^2$, that

$$y_k \stackrel{\text{def}}{=} -\frac{c(x_k)}{u_k},$$

tnat

$$\|\nabla_x \Phi(x_k, \mu_k)\|_2 \le \epsilon_k,$$

necessary optimality conditions for the problem x_* for which $A(x_*)$ is full rank. Then x_* satisfies the first-order where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

and $\{y_k\}$ converge to the associated Lagrange multipliers y_* .

PROOF OF THEOREM 5.1

Generalized inv. $A^+(x) \stackrel{\text{def}}{=} (A(x)A^T(x))^{-1} A(x)$ bounded near x_* .

$$y_k \stackrel{\mathrm{def}}{=} - \frac{c(x_k)}{\mu_k}$$
 and $y_* \stackrel{\mathrm{def}}{=} A^+(x_*)g(x_*).$

Inner-iteration termination rule
$$||g(x_k) - A^T(x_k)y_k|| \le \epsilon_k$$

$$||g(x_k) - A^T(x_k)y_k|| \le \epsilon_k$$

$$\Rightarrow ||A^+(x_k)g(x_k) - y_k||_2 = ||A^+(x_k)(g(x_k) - A^T(x_k)y_k)||_2$$

$$\le 2||A^+(x_k)||_2 \epsilon_k$$

$$\Rightarrow ||y_k - y_*||_2 \le ||A^+(x_*)g(x_*) - A^+(x_k)g(x_k)||_2 + ||A^+(x_k)g(x_k) - y_k||_2$$

$$\Rightarrow \{y_k\} \longrightarrow y_*. \text{ Continuity of gradients} + (2) \Longrightarrow g(x_*) - A^T(x_*)y_* = 0.$$

$$(1)$$

(1) implies $c(x_k) = -\mu_k y_k + \text{continuity of constraints} \implies c(x_*) = 0$. $\implies (x_*, y_*)$ satisfies the first-order optimality conditions

ALGORITHMS TO MINIMIZE $\Phi(x,\mu)$

Can use

- linesearch methods
- might use specialized linesearch to cope with large quadratic term $||c(x)||_2^2/2\mu$
- trust-region methods
- \diamond (ideally) need to "shape" trust region to cope with contours of the $||c(x)||_2^2/2\mu$ term

FUNCTION DERIVATIVES OF THE QUADRATIC PENALTY

$$\circ \ \nabla_{xx}\Phi(x,\mu) = H(x,y(x)) + \frac{1}{\mu}A^T(x)A(x)$$

where

• Lagrange multiplier estimates:

$$y(x) = -\frac{c(x)}{\mu}$$

 $g(x,y(x))=g(x)-A^T(x)y(x)$: gradient of the Lagrangian

$$\odot~H(x,y(x))=H(x)-\sum_{i=1}^{m}y_{i}(x)H_{i}(x)$$
: Lagrangian Hessian

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

$$\left(H(x,y(x)) + \frac{1}{\mu}A^T(x)A(x)\right)s = -g(x,y(x))$$

LIMITING DERIVATIVES OF Φ

For small μ : roughly

$$\nabla_{x}\Phi(x,\mu) = g(x) - A^{T}(x)y(x)$$

$$\text{moderate}$$

$$\nabla_{xx}\Phi(x,\mu) = H(x,y(x)) + \frac{1}{\mu}A^{T}(x)A(x) \approx \frac{1}{\mu}A^{T}(x)A(x)$$

$$\text{moderate}$$

$$\text{large}$$

POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

- \odot m eigenvalues $\approx \lambda_i \left[A^T(x) A(x) \right] / \mu_k$
- o n-m eigenvalues $\approx \lambda_i \left[S^T(x) H(x_*, y_*) S(x) \right]$

where S(x) orthogonal basis for null-space of A(x)

 \Rightarrow condition number of $\nabla_{xx}\Phi(x_k,\mu_k) = O(1/\mu_k)$

⇒ may not be able to find minimizer easily

THE ILL-CONDITIONING IS BENIGN

Newton system:

$$\left(H(x, y(x)) + \frac{1}{\mu} A^T(x) A(x) \right) s = -\left(g(x) + \frac{1}{\mu} A^T(x) c(x) \right)$$

Define auxiliary variables

$$w = \frac{1}{\mu} \left(A(x)s + c(x) \right)$$

$$\left(\begin{array}{cc} H(x,y(x)) & A^T(x) \\ A(x) & -\mu I \end{array} \right) \left(\begin{array}{c} s \\ w \end{array} \right) = - \left(\begin{array}{c} g(x) \\ c(x) \end{array} \right)$$

- \circ essentially independent of μ for small $\mu \Longrightarrow \mathbf{no}$ inherent ill-conditioning
- o thus can solve Newton equations accurately
- more sophisticated analysis \Longrightarrow original system OK

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

are:

$$g(x) - A^{T}(x)y = 0$$
 dual feasibility $c(x) = 0$ primal feasibility

Consider the "perturbed" problem

$$g(x) - A^{T}(x)y = 0$$
 dual feasibility $c(x) + \mu y = 0$ **perturbed** primal feasibility

where $\mu > 0$

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$g(x) - A^{T}(x)y = 0$$
 and $c(x) + \mu y = 0$

as $0 < \mu \rightarrow 0$

 \circ nonlinear system \Longrightarrow use Newton's method

Newton correction (s, v) to (x, y) satisfies

$$\begin{pmatrix} H(x,y) & -A^T(x) \\ A(x) & \mu I \end{pmatrix} \begin{pmatrix} s \\ v \end{pmatrix} = - \begin{pmatrix} g(x) - A^T(x)y \\ c(x) + \mu y \end{pmatrix}$$

Eliminate $w \Longrightarrow$

$$\left(H(x,y) + \frac{1}{\mu}A^T(x)A(x)\right)s = -\left(g(x) + \frac{1}{\mu}A^T(x)c(x)\right)$$

c.f. Newton method for quadratic penalty function minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$\left(H(x,y(x)) + \frac{1}{\mu}A^T(x)A(x)\right)s^{\mathrm{P}} = -g(x,y(x))$$

Primal-dual:

$$\left(H(x,y) + \frac{1}{\mu}A^T(x)A(x)\right)s^{\text{pd}} = -g(x,y(x))$$

where

$$y(x) = -\frac{c(x)}{\mu}$$

What is the difference?

 \circ freedom to choose y in H(x,y) for primal-dual ... vital

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

Merit function (augmented Lagrangian function):

$$\Phi(x,u,\mu) = f(x) - u^T c(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

where u and μ are auxiliary parameters

Two interpretations —

- o shifted quadratic penalty function
- \odot convexification of the Lagrangian function

Aim: adjust μ and u to encourage convergence

FUNCTION DERIVATIVES OF THE AUGMENTED LAGRANGIAN

where

• First-order Lagrange multiplier estimates:

$$y^{\mathrm{F}}(x) = u - \frac{c(x)}{\mu}$$

o $g(x, y^{\mathrm{F}}(x)) = g(x) - A^{T}(x)y^{\mathrm{F}}(x)$: gradient of the Lagrangian

$$\odot H(x, y^{\mathrm{F}}(x)) = H(x) - \sum_{i=1}^{m} y_i^{\mathrm{F}}(x) H_i(x)$$
: Lagrangian Hessian

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that $f, c \in \mathbb{C}^2$, that

$$y_k \stackrel{\text{def}}{=} u_k - c(x_k)/\mu_k,$$

for given $\{u_k\}$, that

$$\|\nabla_x \Phi(x_k, u_k, \mu_k)\|_2 \le \epsilon_k,$$

which $g(x_*) = A^T(x_*)y_*$. x_* for which $A(x_*)$ is full rank. Then $\{y_k\}$ converge to some y_* for where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to

converges to y_* for bounded μ_k , x_* and y_* satisfy the first-order necessary optimality conditions for the problem If additionally either μ_k converges to zero for bounded u_k or u_k

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

PROOF OF THEOREM 5.2

is exactly as for Theorem 5.1. Convergence of y_k to $y_* \stackrel{\text{def}}{=} A^+(x_*)g(x_*)$ for which $g(x_*) = A^T(x_*)y_*$

Definition of $y_k \Longrightarrow$

$$||c(x_k)|| = \mu_k ||u_k - y_k|| \le \mu_k ||y_k - y_*|| + \mu_k ||u_k - y_*||$$

 $\implies c(x_*) = 0$ from assumptions.

 $\implies (x_*, y_*)$ satisfies the first-order optimality conditions

FUNCTION CONTOURS OF THE AUGMENTED LAGRANGIAN

Augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ with fixed $\mu = 1$

FUNCTION (cont.) CONTOURS OF THE AUGMENTED LAGRANGIAN

Augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ with fixed $\mu = 1$

METHODS CONVERGENCE OF AUGMENTED LAGRANGIAN

- \circ convergence guaranteed if u_k fixed and $\mu \longrightarrow 0$
- $\implies y_k \longrightarrow y_* \text{ and } c(x_k) \longrightarrow 0$
- check if $||c(x_k)|| \le \eta_k$ where $\{\eta_k\} \longrightarrow 0$
- if so, set $u_{k+1} = y_k$ and $\mu_{k+1} = \mu_k$
- \diamond if not, set $u_{k+1} = u_k$ and $\mu_{k+1} \leq \tau \mu_k$ for some $\tau \in (0,1)$
- o reasonable: $\eta_k = \mu_k^{0.1+0.9j}$ where j iterations since μ_k last changed
- \circ under such rules, can ensure μ_k eventually unchanged under modest assumptions and (fast) linear convergence
- o need also to ensure μ_k is sufficiently large that $\nabla_{xx}\Phi(x_k,u_k,\mu_k)$ is positive (semi-)definite

BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given $\mu_0 > 0$ and u_0 , set k = 0

Until "convergence" iterate:

Set suitable ϵ_{k+1} and η_{k+1} and increase k by 1 Starting from x_k^s , use an unconstrained minimization If $||c(x_k)|| \le \eta_k$, set $u_{k+1} = y_k$ and $\mu_{k+1} = \mu_k$ Otherwise set $u_{k+1} = u_k$ and $\mu_{k+1} \le \tau \mu_k$ $\Phi(x, u_k, \mu_k)$ for which $\|\nabla_x \Phi(x_k, u_k, \mu_k)\| \le \epsilon_k$ algorithm to find an "approximate" minimizer x_k of

- \circ often choose $\tau = \min(0.1, \sqrt{\mu_k})$
- \circ might choose $x_{k+1}^{s} = x_k$
- o reasonable: $\epsilon_k = \mu_k^{j+1}$ where j iterations since μ_k last changed