Part 5: Penalty and augmented Lagrangian
methods for equality constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to c(x) =0
relR"

Part C course on continuoue optimization




CONSTRAINED MINIMIZATION

Vv

minimize f(xz) subject to c¢(x) 0
r€IR"

where the objective function f : IR" — IR
and the constraints ¢ : IR" — IR

® assume that f, ¢ € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary



CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
® minimize the objective function f(x)

® satisfy the constraints

Overcome this by minimizing a composite merit function ®(x,p)
for which

® p are parameters

® (some) minimizers of ®(x, p) wrt x approach those of f(x) subject
to the constraints as p approaches some set P

® only uses unconstrained minimization methods



AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(x) =0
r€IR"

Merit function (quadratic penalty function):

1
O, p) = flz) + ﬁ__%qi_w
® required solution as p approaches {0} from above

® may have other useless stationary points



CONTOURS OF THE PENALTY FUNCTION
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CONTOURS OF THE PENALTY FUNCTION (cont.)
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BASIC QUADRATIC PENALTY FUNCTION
ALGORITHM

Given pg > 0, set k =0
Until “convergence” iterate:

Starting from 7, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xj of ®(x, u)

Compute 1 > 0 smaller than py such
that limy_ ..o 1 = 0 and increase k by 1

® often choose jugy1 = 0.1 or even py.q = i

® might choose x;, =



MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that f, ¢ € C?, that

def C\T
MSAM|A\AVU
27z

that
:4&@@&? \&\Av:w < €k,

where €, converges to zero as k — 00, and that x; converges to
x, for which A(z,) is full rank. Then z, satisfies the first-order
necessary optimality conditions for the problem

minimize f(z) subject to c(x) =0
relR"

and {y;} converge to the associated Lagrange multipliers y,.




PROOF OF THEOREM 5.1

Generalized inv. AT (x) = o A\Z A (2 vv -

A(z) bounded near .

Define ()
Qmm C\ T Q@w
he =m0 and y. = A" (z.)g(z.). (1)
Inner-iteration termination rule
lg(zi) — A (@r)yrll < e (2)

IA™ (z)g(xy) = yilly = || AT () (9(2) = AT (z0)y) |,
< 2| AT (@) || oex
lyr, — vl < AT (2 g(,) — AT (2 )g(2))]l2 +
[A™(z)g(z)) — yplls
— {y1} — .. Continuity of gradients + (2) =

g(z.) = AN (z.)y. = 0.

(1) implies c(xy) = —pgyr + continuity of constraints = ¢(x,) = 0.
—> (T, ys) satisfies the first-order optimality conditions.



ALGORITHMS TO MINIMIZE ®(x, )

Can use
® linesearch methods

o might use specialized linesearch to cope with large quadratic
term ||c(x)]|3/24

® trust-region methods

o (ideally) need to “shape” trust region to cope with contours of
the ||c(x)]|3/2u term



DERIVATIVES OF THE QUADRATIC PENALTY
FUNCTION

o Vu&(z, 1) = glz,y(2))
© Vi ®(x, 1) = H(x,y(x)) + W\»ﬂ@v&ﬁ&v

L4
where

© Lagrange multiplier estimates:

o g(x,y(zx)) = glx) — AT(2)y(x): gradient of the Lagrangian

o H(z,y(x)) = M@@ ): Lagrangian Hessian



GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

?? @gi wéisv mng?%vv

LIMITING DERIVATIVES OF &
For small p: roughly

V. ®(x, 1) = g(z) — A (2)y(x)

\ 7

moderate
Vi ®(x, 1) = W\Gf @A&vwl_lwkwﬂ@vm@w ~ Wxﬁ@v\ﬁ&v

~

moderate large



POTENTIAL DIFFICULTY

Il1l-conditioning of the Hessian of the penalty function:
roughly speaking (non-degenerate case)

© m eigenvalues ~ \; |AT (z)A(z)] /

© n —m eigenvalues = \; [ ST (z)H (2, y.)S ()]
where S(x) orthogonal basis for null-space of A(x)

—> condition number of V., ®(xk, ur) = O(1/ )
—> may not be able to find minimizer easily



THE ILL-CONDITIONING IS BENIGN

Newton system:

(Hia,pta)) + AT @A) ) 5 = = (gta) +

Define auxiliary variables

1
w = . (A(z)s + c(x))
—
Hy@) 7@ (s [ o)
A(x) —ul w c(x)

® essentially independent of p for small 4 = no inherent ill-conditioning
® thus can solve Newton equations accurately

® more sophisticated analysis = original system OK



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(z) subject to c(x) =0
r€IR"

are:
glz) — Al(x)y =0  dual feasibility

c(x) =0 primal feasibility

Consider the “perturbed” problem

glz) — Al (x)y =0 dual feasibility
c(x)+py =0 perturbed primal feasibility

where p > 0



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
glax) — Al (z)y =0 and c(z) +py =0
as 0 < pu—0

® nonlinear system = use Newton’s method

Newton correction A x, 1) satisfies
H(z,y) — g(z) — A'(z)y
A(z) c(x) + py

Eliminate w =

Am@ y) + p\m v A 7) + w\%@%vv

c.f. Newton method for quadratic penalty function minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:

?? y(2)) + tﬁ%@ & = —gla,y(x)

(4

Primal-dual:

where

What is the difference?

® freedom to choose y in H(z,y) for primal-dual ... vital



ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(x) subject to c(z) =0
relR"

Merit function (augmented Lagrangian function):

1
O, u, 1) = flz) —u'c(z) + ﬁ__o@:_w
where u and @ are auxiliary parameters

T'wo interpretations —

® shifted quadratic penalty function

® convexification of the Lagrangian function

Aim: adjust 4 and u to encourage convergence



DERIVATIVES OF THE AUGMENTED LAGRANGIAN
FUNCTION

o Vo ®(z,u, p) = g(z, y*(z))

© Vi ®(r,u, 1) = H(z,y (z)) + w\»ﬂ@v\ﬁ&v
where

® First-order Lagrange multiplier estimates:

e — o C&)
y'(r) = .

o glz,y(z)) = g(x) — Al (2)y"(x): gradient of the Lagrangian

o H(x,y"(x)) = M y; (x ): Lagrangian Hessian



AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that f, ¢ € C?, that

def
yr = ug — c(xg) /o,

for given {uy}, that

|V ®(r, wg, pr)||l2 < e,
where €, converges to zero as k — oo, and that x; converges to
x, for which A(x,) is full rank. Then {yx} converge to some v, for
which g(x,) = Al (x,)ys.
If additionally either pj converges to zero for bounded wuj or wuy
converges to y, for bounded ui, x, and y, satisfy the first-order
necessary optimality conditions for the problem

minimize f(z) subject to c(x) =0
r€IR"




PROOF OF THEOREM 5.2

Convergence of y;. to v dof At (z,)g(x,) for which g(z,) = AL (z.)y.

is exactly as for Theorem 5.1.

Definition of vy, =

le(@i)l] = pellwr — vell < pellye — vl + ponljue — v

—> ¢(x,) = 0 from assumptions.
—> (T, ys) satisfies the first-order optimality conditions.



CONTOURS OF THE AUGMENTED LAGRANGIAN
FUNCTION
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CONTOURS OF THE AUGMENTED LAGRANGIAN
FUNCTION (cont.)
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CONVERGENCE OF AUGMENTED LAGRANGIAN
METHODS

® convergence guaranteed if uy fixed and p — 0
—> 1y — yx and c(xp) — 0

® check if ||c(x)|| < np where {nx} — 0
o if s0, set up11 = yp and pgy1 = py
o if not, set ugy1 = uy and pgq < Tg for some 7 € (0, 1)

® reasonable: n = tm.Io.S where 7 iterations since uy last changed

® under such rules, can ensure pu; eventually unchanged under
modest assumptions and (fast) linear convergence

® need also to ensure iy, is sufficiently large that V., P (xy, ug, py) is
positive (semi-)definite



BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given po > 0 and ug, set k =0
Until “convergence” iterate:
Starting from 3, use an unconstrained minimization
algorithm to find an “approximate” minimizer xj of
O (x, ug, p) for which ||V, P(xk, ur, pr)|| < €k
If [[elzp)|| < mi, set ups1 = yr and pgyr = g
Otherwise set ur1 = up and ppiq < Ty
Set suitable €1 and n;,1 and increase k by 1

® often choose 7 = min(0.1, \/puz)

® might choose x;,, =

11 .. ) )
® reasonable: €, = t,wmj where 7 iterations since puy last changed



