EQUALITY CONSTRAINED MINIMIZATION

Part 7: SQP methods for minimize f(z) subject to c(x) =0
z€IR”
equality constrained optimization where the objective function f : IR R

and the constraints ¢ : IR" — IR™ (m < n)

Nick Gould (RAL)

© assume that f, ¢ € C! (sometimes C?) and Lipschitz

minimize  f(x) subject to c¢(x) =0 ® often in practice this assumption violated, but not necessary
zeIR"
® easily generalized to inequality constraints ...but may be

better to use interior-point methods for these

Part C course on continuoue optimization
OPTIMALITY AND NEWTON’S METHOD ALTERNATIVE FORMULATIONS
S tric:
1st order optimality: HHSYIIIELHe
T .WNAH“@V |\w~,ﬁ.\ﬁv S . QAH“QV
g(z,y) =g(x) — A" (x)y =0 and c(z) =0 Az) 0 w !~ o(z)

or symmetric:

nonlinear system (linear in y)

Alz) 0 —w c(x)
=
use Newton’s method to find a correction (s, w) to (z,y) or (with ™ = y + w) unsymmetric:
= H(z,y) —AT(z) s g(x)
H(z,y) —A'(x) s\ _ _(9zy) Az) 0 vt )T\ e
Alx) 0 w c(z)

or symmetric:

H(z,y) AT(x)\ [ s %:sV



DETAILS

® Often approximate with symmetric B ~ H(x,y) = e.g.

B Al(z) s g(x)
A(z) 0 —y* c(x)

© solve system using

AT

o unsymmetric (LU) factorization of \AN v \wo (z)
T

o symmetric (indefinite) factorization of ,\»Nn v A o@v

o symmetric factorizations of B and the
Schur Complement A(z)B~1AT(x)

o iterative method (GMRES(k), MINRES, CG within N'(4),...)

SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming
or recursive quadratic programming (RQP)

Given (zo, yo), set k=0
Until “convergence” iterate:
Compute a suitable symmetric By using (xy, yi)
Find
s, = arg min gi s + s’ B.s subject to Aps = —cy,
seIR”
along with associated Lagrange multiplier estimates y;.1
Set xj41 = ) + s and increase k by 1

AN ALTERNATIVE INTERPRETATION

QP : minimize g(x)"s + 1s” Bs subject to A(z)s = —c(x)
selR”

® QP = quadratic program
® first-order model of constraints c(x + )

® second-order model of objective f(x + s) ... but
B includes curvature of constraints

solution to QP satisfies

B Al() s\ __ (9
Alz) 0 —yt ) c(x)
ADVANTAGES
© simple
© fast

o quadratically convergent with By, = H (zy, yi)
o superlinearly convergent with good By ~ H(z, y)
> don’t actually need By, — H(z, yx)

PROBLEMS WITH PURE SQP

® how to choose B}?
© what if QP is unbounded from below? and when?

© how do we globalize this iteration?



QP SUB-PROBLEM

minimize ¢'s 4 1sBs subject to As = —c
%mﬁ‘:

® need constraints to be consistent
o OK if A is full rank

© need B to be positive (semi-) definite when As = 0
—

NTBN positive (semi-) definite where the columns of N
form a basis for null(A)
—

B AT
A0

(is non-singular and) has m —ve eigenvalues

SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

Bz, ) = flz) + %__%,V__W

Theorem 7.1. Suppose that Bj is positive definite, and that
(Sk, Yrt1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(z) subject to c(x) =0
z€IR"
at xp. Then if xy is not a first-order critical point, s is a descent
direction for the quadratic penalty function ®(z, uy) at x whenever

leze)l2

1T
llyerall2

LINESEARCH SQP METHODS
S = arg min ,Sw,w + w%ﬂm»m subject to Aps = —c¢p
seIR"

Basic idea:
o Pick 11 =z + agsy, where

o @, is chosen so that

D(xp + agsy, pr) ‘<" P(xy, pr)

o O(x,p) is a “suitable” merit function

° py are parameters
© vital that sy is a descent direction for ®(z, py) at xy

© normally require that By, is positive definite

PROOF OF THEOREM 7.1
SQP direction sy and associated multiplier estimates y;.; satisfy

Bysy, — .\»M"Sﬂt = —Gk (1)
and
pP——— (2)
(1) + (2) = sigy = —si Bysy + 51 ALyper = =51 Bysy — Ly
, (3)
@) = Lorare, = Nl (4)
Hk ek

(3) 4 (4), the positive definiteness of By, the Cauchy-Schwarz inequal-
ity, the required bound on py, and sy # 0 if xy is not critical =
Lo llegl3
sV, ®(z,) = st{ g, + N}A e )| =—sIBs, — Ly, — o

ey
\Hw 2 — __nSi:_w <0

< =l



NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

Oz, p) = flx) + plle()|

for any norm || - || and scalar p > 0.

Theorem 7.2. Suppose that f,c € C?, and that x, is an isolated
local minimizer of f(x) subject to ¢(z) = 0, with corresponding
Lagrange multipliers 3. Then x, is also an isolated local minimizer
of ®(z, p) provided that
p > lly:llp,

where the dual norm T,

lyllp = sup .

w20 ||zl

PROOF OF THEOREM 7.3
Taylor’s theorem applied to f and ¢ + (2) = (for small «)

(), + sy, pp) — Py, p) = asfg, + o (leg + aApsil = llell) + O(a?)
asi g, + o (11— a)eg]l = llegll) + O(a?)

o Amwm» - Pn__ﬁn__v + 0 AQMV

+ (3), the positive definiteness of By, the Holder inequality, and s; # 0

if xy is not critical =

O(z), + asy, p) — Pz, pp) = — ?memw + Y + Pﬂ__mw__v +0(a?)
-« AI__DO___S?I__\U + PA__SA__V +0(a?)
= —allel APA - __.Sat__uv +0(a?) <0

because of the required bound on py, for sufficiently small a. Hence

A

sufficiently small steps along s, from non-critical xj, reduce ®(z, p,,).

SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

Oz, p) = f(x) + plle(@)]]

for any norm || - || (with dual norm || - || p) and scalar p > 0.

Theorem 7.3. Suppose that Bj is positive definite, and that
(Sk, Yr+1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(x) subject to ¢(z) =0
z€R"

at xp. Then if xy is not a first-order critical point, s is a descent
direction for the non-differentiable penalty function ®(x, pi) at zy
whenever py. > [[ye+1llp

THE MARATOS EFFECT

/1 non-differentiable exact
penalty function (p = 1):
fl@)=2@i+25— 1) —x
and c(z) =23 + 23 -1
solution: z, = (1,0), y. = 3

05

Maratos effect: merit function may prevent acceptance of the
SQP step arbitrarily close to z, = slow convergence



AVOIDING THE MARATOS EFFECT
The Maratos effect occurs because the curvature of the constraints is
not adequately represented by linearization in the SQP model:

c(ax + si) = O(llse]l?)

= need to correct for this curvature
= use a second-order correction from x; + s;:

c(ay + si+ s5) = o([[se]]?)
also do not want to destroy potential for fast convergence =

sj. = o(sk)

2ND-ORDER CORRECTIONS IN ACTION

/1 non-differentiable exact
penalty function (p = 1):
flz) =2t + 25— 1) —
and c(z) =23 + 23— 1
solution: z, = (1,0), y. = 3

© (very) fast convergence

© z;, + 55, + 8§ reduces ® = global convergence

POPULAR 2ND-ORDER CORRECTIONS

© minimum norm solution to ¢(zy, + si) + A(xy, + sp)sj =0

I AT (z), + si) s, 0

Az, + si) 0 Y1 ek + si)
© minimum norm solution to ¢(xy + si) + A(xg)s; =0

I \»HA&.\AV %m 0
A(zg) 0 —Yi c(xy + si)

© another SQP step from x + s;

H(zy + s, y) AT (z), + sp) s, [ 9@kt se)
Az + si) 0 —Yii c(zy + sg)
o ete., etc.

TRUST-REGION SQP METHODS

Obvious trust-region approach:

s, = arg min gi s + 15T Bys subject to Aps = —c¢;, and ||s|| < Ay
seR”

© do not require that By be positive definite
= can use By = H(xg, yr)

o if A < AT where

A in Is|| subject to Ags = —cy,

= no solution to trust-region subproblem
= simple trust-region approach to SQP is flawed if ¢ # 0 =
need to consider alternatives



INFEASIBILITY OF THE SQP STEP

\ The linearized constraint /

The trust region |v/

The nonlinear constraint

\

THE S/,QP METHOD

Try to minimize the ¢,-(exact) penalty function

Oz, p) = f(x) + plle@)ll

for sufficiently large p > 0 and some ¢, norm (1 < p < o), using a
trust-region approach

Suitable model problem: ¢,QP

minimize (fr+) gi s + 1s* Bys + pller + Aps||, subject to [|s| < Ay
selR"

® model problem always consistent
® when p and Ay, are large enough, model minimizer = SQP direction

© when the norms are polyhedral (e.g., ¢; or ls norms), {,QP is
equivalent to a quadratic program . ..

ALTERNATIVES

© the SC,QP method of Fletcher

® composite step SQP methods
o constraint relaxation (Vardi)
o constraint reduction (Byrd-Omojokun)
o constraint lumping (Celis—Dennis-Tapia)

® the filter-SQP approach of Fletcher and Leyffer

THE ¢(;QP SUBPROBLEM

£1QP model problem with an £, trust region

minimize gi s + s” Bys + pllcx + Ags|[1 subject to ||s]|lee < Ak
selR"

But

¢+ Ags = u—v, where (u,v) >0
= (1QP equivalent to quadratic program (QP):

minimize  g/'s + is” Bys + plefu + eTv)
s€IR", u,velR™
subject to  Aps —u+v=—c¢
u>0 v>0
and —Are <s < Age

® good methods for solving QP

© can exploit structure of u and v variables



PRACTICAL S/;QP METHODS

® Cauchy point requires solution to £1LP model:

minimize g;'s + pllex + Ags|li subject to |s]le < Ay
s€IR"

® approximate solutions to both ¢;LLP and ¢;QP subproblems suffice
® need to adjust p as method progresses
© easy to generalize to inequality constraints

© globally convergent, but needs second-order correction for fast
asymptotic convergence

o if ¢(z) = 0 are inconsistent, converges to (locally) least value
of infeasibility ||c(x)]]

NORMAL AND TANGENTIAL STEPS

\ The linearized constraint /

Nearest point on linearized constraint

Close to nearest point

<— The trust region —

Points on dotted line are all potential tangential steps

COMPOSITE-STEP METHODS

Aim: find composite step
S = ny + tg,
where

the normal step n; moves towards feasibility of the linearized
constraints (within the trust region)

([ Awre + crll < llexll
(model objective may get worse)

the tangential step t;, reduces the model objective function (within
the trust-region) without sacrificing feasibility obtained from ny

Ap(ng + SL = Ay = Aty =0

CONSTRAINT RELAXATION — VARDI

normal step: relax
Aps = —¢i and ||s]| < Ay
to
Agn = —opep and ||n]] < Ay

where oy, € [0, 1] is small enough so that there is a feasible ny,

tangential step:

(approximate) arg min (gy + Byng) 't + 5t7 Bt
NmH—‘ﬂ\;
subject to  Axt =0 and |ng +t]| < Ay

Snags:

® choice of o},

© incompatible constraints



CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace
Aps = —cp and ||s|| < Ay
by

approximately minimize [|Agn + ci|| subject to ||n| < A

tangential step: as in Vardi

® use conjugate gradients to solve both subproblems
= (Cauchy points in both cases

© globally convergent using ¢, merit function

© basis of successful KNITRO package

FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

® trust-region and linearized constraints compatible if ¢j is small
enough so long as c¢(z) = 0 is compatible
= if trust-region subproblem incompatible, simply move closer to
constraints

® merit functions depend on arbitrary parameters
= use a different mechanism to measure progress

Let 6 = ||c(x)]]

A filter is a set of pairs {(6, fr)} such that no member dominates
another, i.e., it does not happen that

%N ﬁAi %.m @5& .\.N ﬁAi e\,w

for any pair of filter points ¢ # j

CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace
Ars = —c and ||s|| < Ay

by
|Akn + ¢l < o and ||n|| < Ay

where oy, € [0, ||ci||] is large enough so that there is a feasible ny,
tangential step:

(approximate) arg min  (gg + Bgng)'t + 37 Bt
teR”
subject to || Agt + Apng + k|| < oy and ||t +ngl] < A

Snags:
® choice of oy,

® tangential subproblem is (NP?) hard

A FILTER WITH FOUR ENTRIES

f(x)




BASIC FILTER METHOD

o if possible find

s, = arg min g s + 1s” Bys subject to Aps = —¢, and ||s|| < A
selR"

otherwise, find sy;:

Oz + s)“<”0; forall i <k

O]

if 1, + s is “acceptable” for the filter, set x4 = x), + 55,
and possibly increase Ay and “prune” filter

® otherwise reduce Ay, and try again

In practice, far more complicated than this!



