equality constrained optimization Part 7: SQP methods for

Nick Gould (RAL)

minimize f(x) subject to c(x) = 0

Part C course on continuoue optimization

OPTIMALITY AND NEWTON'S METHOD

1st order optimality:

$$g(x,y) \equiv g(x) - A^T(x)y = 0$$
 and $c(x) = 0$

nonlinear system (linear in y)

use Newton's method to find a correction (s, w) to (x, y)

$$\left(\begin{array}{cc} H(x,y) & -A^T(x) \\ A(x) & 0 \end{array} \right) \left(\begin{array}{c} s \\ w \end{array} \right) = - \left(\begin{array}{c} g(x,y) \\ c(x) \end{array} \right)$$

EQUALITY CONSTRAINED MINIMIZATION

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and the **constraints** $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ $(m \le n)$

- assume that $f, c \in C^1$ (sometimes C^2) and Lipschitz
- often in practice this assumption violated, but not necessary
- \odot easily generalized to inequality constraints . . . but may be better to use interior-point methods for these

ALTERNATIVE FORMULATIONS

unsymmetric:

$$\left(\begin{array}{cc} H(x,y) & -A^T(x) \\ A(x) & 0 \end{array}\right) \left(\begin{array}{c} s \\ w \end{array}\right) = - \left(\begin{array}{c} g(x,y) \\ c(x) \end{array}\right)$$

or symmetric:

$$\begin{pmatrix} H(x,y) & A^T(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -w \end{pmatrix} = - \begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

or (with
$$y^+ = y + w$$
) unsymmetric:
$$\begin{pmatrix} H(x,y) & A^T(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$
or $(with y^+ = y + w)$ unsymmetric:
$$\begin{pmatrix} H(x,y) & -A^T(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ y^+ \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

or symmetric:

$$\left(\begin{array}{cc} H(x,y) & A^T(x) \\ A(x) & 0 \end{array}\right) \left(\begin{array}{c} s \\ -y^+ \end{array}\right) = - \left(\begin{array}{c} g(x) \\ c(x) \end{array}\right)$$

DETAILS

 \odot Often approximate with symmetric $B\approx H(x,y)\Longrightarrow \text{ e.g.}$

$$\left(\begin{array}{cc} B & A^T(x) \\ A(x) & 0 \end{array}\right) \left(\begin{array}{c} s \\ -y^+ \end{array}\right) = - \left(\begin{array}{c} g(x) \\ c(x) \end{array}\right)$$

o solve system using

$$\diamond$$
 unsymmetric (LU) factorization of $\left(\begin{array}{cc} B & -A^T(x) \\ A(x) & 0 \end{array} \right)$

• symmetric (indefinite) factorization of
$$\begin{pmatrix} B & A^T(x) \\ A(x) & 0 \end{pmatrix}$$
• symmetric factorizations of B and the Schur Complement $A(x)B^{-1}A^T(x)$

- \diamond iterative method (GMRES(k), MINRES, CG within $\mathcal{N}(A),\ldots)$

SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or **recursive** quadratic programming (RQP) or successive quadratic programming

Given
$$(x_0, y_0)$$
, set $k = 0$

Until "convergence" iterate:

Compute a suitable symmetric B_k using (x_k, y_k)

$$s_k = \arg\min_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$

along with associated Lagrange multiplier estimates y_{k+1} Set $x_{k+1} = x_k + s_k$ and increase k by 1

AN ALTERNATIVE INTERPRETATION

 $\mathbf{QP}:$ minimize $g(x)^Ts+\frac{1}{2}s^TBs$ subject to A(x)s=-c(x) $_{s\in\mathbb{R}^n}$

 \odot QP = quadratic program

 \circ first-order model of constraints c(x+s)

second-order model of objective f(x+s) ... but B includes curvature of constraints

solution to QP satisfies

$$\left(\begin{array}{cc} B & A^T(x) \\ A(x) & 0 \end{array}\right) \left(\begin{array}{c} s \\ -y^+ \end{array}\right) = - \left(\begin{array}{c} g(x) \\ c(x) \end{array}\right)$$

ADVANTAGES

- \circ simple
- \diamond quadratically convergent with $B_k = H(x_k, y_k)$
- \diamond superlinearly convergent with good $B_k \approx H(x_k, y_k)$
- \triangleright don't actually need $B_k \longrightarrow H(x_k, y_k)$

PROBLEMS WITH PURE SQP

- how to choose B_k ?
- \odot what if \mathbf{QP}_k is unbounded from below? and when?
- \odot how do we globalize this iteration?

QP SUB-PROBLEM

minimize $g^T s + \frac{1}{2} s B s$ subject to A s = -c $s \in \mathbb{R}^n$

- need constraints to be consistent
- \diamond OK if A is full rank
- \odot need B to be positive (semi-) definite when As=0

 N^TBN positive (semi-) definite where the columns of Nform a basis for null(A)

$$\left(egin{array}{cc} B & A^T \ A & 0 \end{array}
ight)$$

(is non-singular and) has m —ve eigenvalues

SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} ||c(x)||_2^2$$

multiplier estimates for the problem (s_k, y_{k+1}) are the SQP search direction and its associated Lagrange **Theorem 7.1.** Suppose that B_k is positive definite, and that

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ c(x) = 0$$

direction for the quadratic penalty function $\Phi(x, \mu_k)$ at x_k whenever at x_k . Then if x_k is not a first-order critical point, s_k is a descent

$$\mu_k \le \frac{\|c(x_k)\|_2}{\|y_{k+1}\|_2}$$

LINESEARCH SQP METHODS

$$s_k = \underset{s \in \mathbbms}{\arg \min} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$

Basic idea:

- \circ Pick $x_{k+1} = x_k + \alpha_k s_k$, where
- $\diamond \alpha_k$ is chosen so that

$$\Phi(x_k + \alpha_k s_k, p_k) "<" \Phi(x_k, p_k)$$

- $\diamond \ \Phi(x,p)$ is a "suitable" merit function
- p_k are parameters
- \odot vital that s_k is a descent direction for $\Phi(x, p_k)$ at x_k
- \odot normally require that B_k is positive definite

PROOF OF THEOREM 7.1

SQP direction s_k and associated multiplier estimates y_{k+1} satisfy

$$B_k s_k - A_k^T y_{k+1} = -g_k$$

(1)

$$s_k = -c_k$$
.

$$A_k s_k = -c_k.$$

$$(1) + (2) \Longrightarrow s_k^T g_k = -s_k^T B_k s_k + s_k^T A_k^T y_{k+1} = -s_k^T B_k s_k - c_k^T y_{k+1}$$

$$(2)$$

$$\implies \frac{1}{\mu_k} s_k^T A_k^T c_k = -\frac{\|c_k\|_2^2}{\mu_k}.$$

 $(2) \Longrightarrow \frac{1}{\mu_k} s_k^T A_k^T c_k = -\frac{\|c_k\|_2^2}{\mu_k}. \tag{4}$ $(3) + (4), \text{ the positive definiteness of } B_k, \text{ the Cauchy-Schwarz inequality, the required bound on } \mu_k, \text{ and } s_k \neq 0 \text{ if } x_k \text{ is not critical} \Longrightarrow$

$$\begin{split} s_k^T \nabla_x \Phi(x_k) &= \ s_k^T \bigg(g_k + \frac{1}{\mu_k} A_k^T c_k \bigg) = - s_k^T B_k s_k - c_k^T y_{k+1} - \frac{\|c_k\|_2^2}{\mu_k} \\ &< - \|c_k\|_2 \bigg(\frac{\|c_k\|_2}{\mu_k} - \|y_{k+1}\|_2 \bigg) \leq 0 \end{split}$$

NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

$$\Phi(x,\rho) = f(x) + \rho \|c(x)\|$$

for any norm $\|\cdot\|$ and scalar $\rho > 0$.

Theorem 7.2. Suppose that $f, c \in C^2$, and that x_* is an isolated local minimizer of f(x) subject to c(x) = 0, with corresponding Lagrange multipliers y_* . Then x_* is also an isolated local minimizer of $\Phi(x, \rho)$ provided that

$$\rho > \|y_*\|_{D},$$

where the **dual norm**

 $||y||_D = \sup_{x \neq 0} \frac{y^T x}{||x||}.$

PROOF OF THEOREM 7.3

Taylor's theorem applied to f and $c + (2) \Longrightarrow$ (for small α)

$$\begin{split} \Phi(x_k + \alpha s_k, \rho_k) - \Phi(x_k, \rho_k) &= \alpha s_k^T g_k + \rho_k \left(\|c_k + \alpha A_k s_k\| - \|c_k\| \right) + O(\alpha^2) \\ &= \alpha s_k^T g_k + \rho_k \left(\|(1 - \alpha) c_k\| - \|c_k\| \right) + O(\alpha^2) \\ &= \alpha \left(s_k^T g_k - \rho_k \|c_k\| \right) + O\left(\alpha^2\right) \end{split}$$

+ (3), the positive definiteness of B_k , the Hölder inequality, and $s_k \neq 0$ if x_k is not critical \Longrightarrow

$$\begin{split} \Phi(x_k + \alpha s_k, \rho_k) - \Phi(x_k, \rho_k) &= -\alpha \left(s_k^T B_k s_k + c_k^T y_{k+1} + \rho_k \|c_k\| \right) + O(\alpha^2) \\ &< -\alpha \left(-\|c_k\| \|y_{k+1}\|_D + \rho_k \|c_k\| \right) + O(\alpha^2) \\ &= -\alpha \|c_k\| \left(\rho_k - \|y_{k+1}\|_D \right) + O(\alpha^2) < 0 \end{split}$$

because of the required bound on ρ_k , for sufficiently small α . Hence sufficiently small steps along s_k from non-critical x_k reduce $\Phi(x, \rho_k)$.

SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

$$\Phi(x,\rho) = f(x) + \rho \|c(x)\|$$

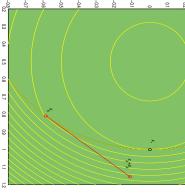
for any norm $\|\cdot\|$ (with dual norm $\|\cdot\|_D$) and scalar $\rho > 0$.

Theorem 7.3. Suppose that B_k is positive definite, and that (s_k, y_{k+1}) are the SQP search direction and its associated Lagrange multiplier estimates for the problem

minimize
$$f(x)$$
 subject to $c(x) = 0$

at x_k . Then if x_k is not a first-order critical point, s_k is a descent direction for the non-differentiable penalty function $\Phi(x, \rho_k)$ at x_k whenever $\rho_k \ge \|y_{k+1}\|_D$

THE MARATOS EFFECT



 $\ell_1 \ \, \text{non-differentiable exact} \\ \text{penalty function } (\rho=1); \\ f(x) = 2(x_1^2 + x_2^2 - 1) - x_1 \\ \text{and } c(x) = x_1^2 + x_2^2 - 1 \\ \text{solution: } x_* = (1,0), \, y_* = \frac{3}{2}$

Maratos effect: merit function may prevent acceptance of the SQP step arbitrarily close to $x_* \Longrightarrow$ slow convergence

AVOIDING THE MARATOS EFFECT

not adequately represented by linearization in the SQP model: The Maratos effect occurs because the curvature of the constraints is

$$c(x_k + s_k) = O(||s_k||^2)$$

need to correct for this curvature

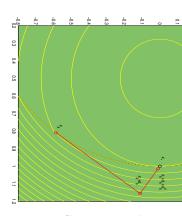
use a **second-order correction** from $x_k + s_k$:

$$c(x_k + s_k + s_k^{\text{C}}) = o(||s_k||^2)$$

also do not want to destroy potential for fast convergence \Longrightarrow

$$s_k^{\scriptscriptstyle \mathrm{C}} = o(s_k)$$

2ND-ORDER CORRECTIONS IN ACTION



 $f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$ and $c(x) = x_1^2 + x_2^2 - 1$ ℓ_1 non-differentiable exact penalty function ($\rho = 1$):

and
$$c(x) = x_1^2 + x_2^2 - 1$$

solution: $x_* = (1, 0), y_* =$

and
$$c(x) - x_1 + x_2 - x_1$$

solution: $x_* = (1, 0), y_* = \frac{3}{2}$

o (very) fast convergence

o
$$x_k + s_k + s_k^c$$
 reduces $\Phi \Longrightarrow$ global convergence

POPULAR 2ND-ORDER CORRECTIONS

 \odot minimum norm solution to $c(x_k+s_k)+A(x_k+s_k)s_k^{\scriptscriptstyle \rm C}=0$

$$\begin{pmatrix} I & A^{T}(x_k + s_k) \\ A(x_k + s_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^{C} \\ -y_{k+1}^{C} \end{pmatrix} = - \begin{pmatrix} 0 \\ c(x_k + s_k) \end{pmatrix}$$

 \odot minimum norm solution to $c(x_k+s_k)+A(x_k)s_k^{\scriptscriptstyle \rm C}=0$

$$\begin{pmatrix} I & A^T(x_k) \\ A(x_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^c \\ -y_{k+1}^c \end{pmatrix} = - \begin{pmatrix} 0 \\ c(x_k + s_k) \end{pmatrix}$$

 \odot another SQP step from $x_k + s_k$

$$\begin{pmatrix} H(x_k + s_k, y_k^+) & A^T(x_k + s_k) \\ A(x_k + s_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^c \\ -y_{k+1}^c \end{pmatrix} = -\begin{pmatrix} g(x_k + s_k) \\ c(x_k + s_k) \end{pmatrix}$$

⊙ etc., etc.

TRUST-REGION SQP METHODS

Obvious trust-region approach:

$$s_k = \arg\min_{s \in \mathbbmss{R}^n} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$ and $\|s\| \leq \Delta_k$

 \odot do not require that B_k be positive definite

$$\implies$$
 can use $B_k = H(x_k, y_k)$

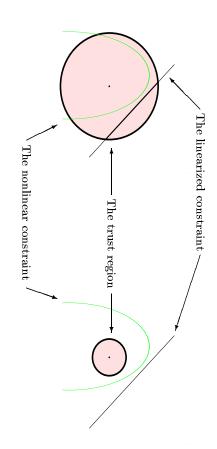
o if $\Delta_k < \Delta^{\text{CRIT}}$ where

$$\Delta^{\text{carr}} \stackrel{\text{def}}{=} \min ||s|| \text{ subject to } A_k s = -c_k$$

⇒ no solution to trust-region subproblem

need to consider alternatives \implies simple trust-region approach to SQP is flawed if $c_k \neq 0 \implies$

INFEASIBILITY OF THE SQP STEP



THE $S\ell_pQP$ METHOD

Try to minimize the ℓ_{p} -(exact) penalty function

$$\Phi(x, \rho) = f(x) + \rho ||c(x)||_p$$

for sufficiently large $\rho>0$ and some ℓ_p norm (1 $\leq p \leq \infty),$ using a trust-region approach

Suitable model problem: $\ell_{\mathbf{p}}\mathbf{Q}\mathbf{P}$

minimize
$$(f_k+)$$
 $g_k^T s + \frac{1}{2} s^T B_k s + \rho ||c_k + A_k s||_p$ subject to $||s|| \leq \Delta_k$

- $\odot\,$ model problem always consistent
- \odot when ρ and Δ_k are large enough, model minimizer = SQP direction
- \odot when the norms are polyhedral (e.g., ℓ_1 or ℓ_∞ norms), $\ell_{\bf p} QP$ is equivalent to a quadratic program ...

ALTERNATIVES

- \odot the $\mathrm{S}\ell_{\mathbf{p}}\mathrm{QP}$ method of Fletcher
- $\odot\,$ composite step SQP methods
- constraint relaxation (Vardi)
- constraint reduction (Byrd-Omojokun)
- constraint lumping (Celis-Dennis-Tapia)
- \odot the filter-SQP approach of Fletcher and Leyffer

THE ℓ_1 QP SUBPROBLEM

 $\ell_1 \mathrm{QP}$ model problem with an ℓ_∞ trust region

minimize
$$g_k^T s + \frac{1}{2} s^T B_k s + \rho \|c_k + A_k s\|_1$$
 subject to $\|s\|_{\infty} \leq \Delta_k$

But

$$c_k + A_k s = u - v$$
, where $(u, v) \ge 0$

 $\implies \ell_1 \mathbb{QP}$ equivalent to quadratic program (\mathbb{QP}):

- \odot good methods for solving QP
- \odot can exploit structure of u and v variables

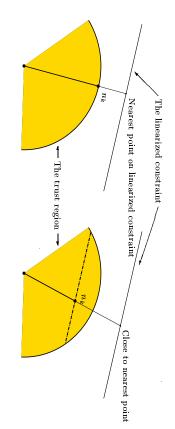
PRACTICAL S ℓ_1 QP METHODS

 \odot Cauchy point requires solution to $\ell_1 \text{LP}$ model:

minimize
$$g_k^T s + \rho \|c_k + A_k s\|_1$$
 subject to $\|s\|_{\infty} \leq \Delta_k$

- \odot approximate solutions to both $\ell_1 \mathrm{LP}$ and $\ell_1 \mathrm{QP}$ subproblems suffice
- \odot need to adjust ρ as method progresses
- $\odot\,$ easy to generalize to inequality constraints
- $\odot\,$ globally convergent, but needs second-order correction for fast asymptotic convergence
- \circ if c(x) = 0 are inconsistent, converges to (locally) least value of infeasibility ||c(x)||

NORMAL AND TANGENTIAL STEPS



Points on dotted line are all potential tangential steps

COMPOSITE-STEP METHODS

Aim: find composite step

$$s_k = n_k + t_k$$

wnere

the **normal step** n_k moves towards feasibility of the linearized constraints (within the trust region)

$$||A_k n_k + c_k|| < ||c_k||$$

(model objective may get worse)

the tangential step t_k reduces the model objective function (within the trust-region) without sacrificing feasibility obtained from n_k

$$A_k(n_k + t_k) = A_k n_k \implies A_k t_k = 0$$

CONSTRAINT RELAXATION — VARDI

normal step: relax

$$A_k s = -c_k$$
 and $||s|| \le \Delta_k$

to

$$A_k n = -\sigma_k c_k$$
 and $||n|| \le \Delta_k$

where $\sigma_k \in [0, 1]$ is small enough so that there is a feasible n_k

tangential step:

(approximate) arg min
$$(g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t$$

subject to $A_k t = 0$ and $||n_k + t|| \le \Delta_k$

Snags:

- \circ choice of σ_k
- o incompatible constraints

CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace

$$A_k s = -c_k \text{ and } ||s|| \le \Delta_k$$

by

approximately minimize $||A_k n + c_k||$ subject to $||n|| \leq \Delta_k$

tangential step: as in Vardi

- use conjugate gradients to solve both subproblems
- ⇒ Cauchy points in both cases
- \odot globally convergent using ℓ_2 merit function
- $\odot\,$ basis of successful KNITRO package

FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

- \odot trust-region and linearized constraints compatible if c_k is small enough so long as c(x)=0 is compatible
- ⇒ if trust-region subproblem incompatible, simply move closer to constraints
- \odot merit functions depend on arbitrary parameters
- ⇒ use a different mechanism to measure progress

Let
$$\theta = ||c(x)||$$

A **filter** is a set of pairs $\{(\theta_k, f_k)\}$ such that no member dominates another, i.e., it does not happen that

$$\theta_i$$
 "<" θ_j and f_i "<" f_j

for any pair of filter points $i \neq j$

CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace

$$A_k s = -c_k$$
 and $||s|| \le \Delta_k$

bу

$$||A_k n + c_k|| \le \sigma_k \text{ and } ||n|| \le \Delta_k$$

where $\sigma_k \in [0, ||c_k||]$ is large enough so that there is a feasible n_k

tangential step:

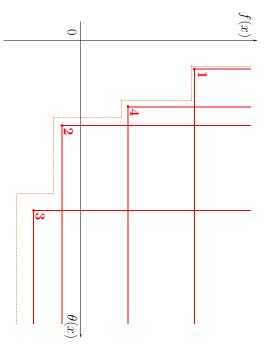
(approximate) arg min
$$(g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t$$

subject to
$$||A_k t + A_k n_k + c_k|| \le \sigma_k$$
 and $||t + n_k|| \le \Delta_k$

Snags:

- \circ choice of σ_k
- $\odot\,$ tangential subproblem is (NP?) hard

A FILTER WITH FOUR ENTRIES



BASIC FILTER METHOD

 $_{\odot}$ if possible find

$$s_k = \arg\min_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$ and $\|s\| \le \Delta_k$

otherwise, find s_k :

$$\theta(x_k + s_k)$$
"<" θ_i for all $i \le k$

- o if x_k+s_k is "acceptable" for the filter, set $x_{k+1}=x_k+s_k$ and possibly increase Δ_k and "prune" filter
- \odot otherwise reduce Δ_k and try again

In practice, far more complicated than this!