Part 7: SQP methods for
equality constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to c(z) =0
reIR"

Part C course on continuoue optimization




EQUALITY CONSTRAINED MINIMIZATION

minimize f(z) subject to c(x) =0
r€IR"

where the objective function f : IR" — IR
and the constraints ¢ : [R" — IR™ (m < n)

© assume that f, ¢ € C' (sometimes C*) and Lipschitz
® often in practice this assumption violated, but not necessary

® easily generalized to inequality constraints ... but may be
better to use interior-point methods for these



OPTIMALITY AND NEWTON’S METHOD

1st order optimality:
g(z,y) = g(x) = A'(x)y =0 and c(z) =0

nonlinear system (linear in )
—
use Newton’s method to find a correction (s, w) to (x,y)
—
H(xz,y) —A"(x) \ [ s g(z,y)
A(x) 0 w c(x)



ALTERNATIVE FORMULATIONS

unsymimetric:

H(z,y) —A"(x) | [ s g(z,y)
A(x) 0 w c(x)

or symmetric:

A(x) 0 —w c(x)
or (with y* = y + w) unsymmetric:

H(z,y) —A'(z) s g(z)
A@) 0 y* c(z)

or m%BBQEQ

H(z,y) AT(z) \ [ s %u@vv



DETAILS

® Often approximate with symmetric B ~ H(x,y) = e.g.

B Al(z) S g(x)
Alz) 0 —y" c(x)

® solve system using

AT
o unsymmetric (LU) factorization of B A% (z)
A(x) 0
T
o symmetric (indefinite) factorization of B A (z)
Alz) 0

o symmetric factorizations of B and the

Schur Complement A(z)B~ 1A (z)
o iterative method (GMRES(k), MINRES, CG within N'(A),...)



AN ALTERNATIVE INTERPRETATION

QP : minimize g(x)'s + 1s' Bs subject to A(z)s = —c(x)
sc€IR"
© QP = quadratic program

® first-order model of constraints c(x + $)

® second-order model of objective f(x + s) ...but
B includes curvature of constraints

solution to QP satisfies

B Al(z) S g(x)
Alz) 0 —y™ c(x)



SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming
or recursive quadratic programming (RQP)

Given (xg,yo), set k =0
Until “convergence” iterate:

Compute a suitable symmetric By using (g, yx)
Find

S = arg min Q\wm + Wmﬂmwm subject to Ars = —c¢;
seIR"

along with associated Lagrange multiplier estimates vy,
Set 3.1 = x; + s, and increase k by 1




ADVANTAGES

© simple
© fast

o quadratically convergent with By = H (xy, yx)
o superlinearly convergent with good By ~ H (zy, yi)

> don’t actually need By — H (xy, yi)

PROBLEMS WITH PURE SQP

® how to choose B}.7
© what if QP, is unbounded from below?” and when?

® how do we globalize this iteration?



QP SUB-PROBLEM

minimize ¢'s + 1sBs subject to As = —c
seIR"

® need constraints to be consistent
o OK if A is full rank

® need B to be positive (semi-) definite when As = (
<

NTBN positive (semi-) definite where the columns of N
form a basis for null(A)
—

B Al
A0

(is non-singular and) has m —ve eigenvalues



LINESEARCH SQP METHODS

Sp = arg min m\wm + Wmﬂm\% subject to Ars = —c;,
seIR"

Basic idea:
© Pick zp11 = x1 + ay.sp, where
o o 18 chosen so that
(xy + agsk, pr) < O(xk, pr)
o ®(x,p) is a “suitable” merit function
o pj are parameters
® vital that s;. is a descent direction for ®(x, py) at zy

® normally require that By is positive definite



SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

B(a, ) = flz) + %__%V,_w

Theorem 7.1. Suppose that B is positive definite, and that
(Sg, yra1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(z) subject to c(x) =0
reIR"

at x;. Then it x; is not a first-order critical point, sj is a descent
direction for the quadratic penalty function ®(x, uy) at x whenever

lezi)ll2

o <
__SiH:w




PROOF OF THEOREM 7.1
SQP direction s; and associated multiplier estimates .1 satisty

By.s;, — ,\:\m Yp+1 = — 9k (1)
and
Aps = —cp. (2)
(1) +(2) = @?SA = — S5k m\%\& + m»bw@»i = — 5k m\%\ﬂ - @A@wt

(3)

2 — —slAl¢c, = 4

) — st afe, ~ -1 4

(3) + (4), the positive definiteness of By, the Cauchy-Schwarz inequal-

ity, the required bound on uy, and s # 0 if x; is not critical =

e 3
293

1 ells

1
mwﬂw@@i = mm g+ ﬁ\»w@m = — Sk m\%\a — @A Y1 —
el
873

—|lcz [ —yriallz | <0



NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

O(z, p) = flx) + plle(z)]

for any norm || - || and scalar p > 0.

Theorem 7.2. Suppose that f,c € C?, and that z, is an isolated
local minimizer of f(x) subject to c¢(x) = 0, with corresponding
Lagrange multipliers y,. Then x, is also an isolated local minimizer
of ®(x, p) provided that

p > lysllp,

where the dual norm -
YT
lyllp = sup 7—.
40 || 7|




SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

Oz, p) = flx) + plle(z)]

for any norm || - || (with dual norm || - ||p) and scalar p > 0.

Theorem 7.3. Suppose that B is positive definite, and that
(Sg, yra1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(x) subject to c(z) =0
reIR"

at x. Then it x;. is not a first-order critical point, sj is a descent
direction for the non-differentiable penalty function ®(x, pi) at xj
whenever py > [|yp+1/[p




PROOF OF THEOREM 7.3
Taylor’s theorem applied to f and ¢ + (2) = (for small «)

Oy, + asy, pr.) — Py, pp) = aspgy + py (I, + adysi ]l = llell) +O0(a?)
= as,g; + p, (|1 = el = [lell) + O(a?)
— o (510, — pelleg]) + 0 (02)

+ (3), the positive definiteness of By, the Holder inequality, and s; # 0

if x;. is not critical =

Pl + asy, p) = Py, pr) = = (5p Brsy + ity + pellell) + Ola?)
—a (= lleylypallp + prllell) +O(a?)

—al|c;| Abw — __Sui:@v +0(a®) <0

because of the required bound on p;, for sufficiently small . Hence

A\

sufficiently small steps along sj from non-critical zj reduce ®(z, p,.).



THE MARATOS EFFECT

/1 non-differentiable exact
penalty function (p = 1):
flx) =2z +25—1) — 2
and c(z) = 2] + 23 — 1

solution: x, = (1,0), y, = 3

Maratos effect: merit function may prevent acceptance of the

SQP step arbitrarily close to z, = slow convergence



AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is
not adequately represented by linearization in the SQP model:

c(xr + sk) = O(||se]]?)

— need to correct for this curvature
— use a second-order correction from z; + Si:

ey, + s+ s3) = ol[[sk[l”)
also do not want to destroy potential for fast convergence =—

sy = olsk)



POPULAR 2ND-ORDER CORRECTIONS

© minimum norm solution to c(zy + si) + A(xp + si)s) =0

I A (zy + sp) Ch 0
Az + si) 0 — Yy c(xy + si)

© minimum norm solution to c(xy + si) + A(x)si =0

I Al(x) sy, 0
Alzg) 0 ~Yir1 c(@p + i)

® another SQP step from x; + s

H(xp + sk, ) Al (g + sp) ! g(zy + sp)
Az + si) 0 —Ypq c(xy + si)

® etc., etc.



2ND-ORDER CORRECTIONS IN ACTION

/1 non-differentiable exact
penalty function (p = 1):
flx) =2z +25—1) — 2
and c(z) = 2] + 23 — 1

solution: x, = (1,0), y, = 3

© (very) fast convergence

© x, + s, + s; reduces & = global convergence



TRUST-REGION SQP METHODS

Obvious trust-region approach:

s, = arg min g; s + is' B,.s subject to Aps = —¢;, and ||s| < A
se€IR"

® do not require that B} be positive definite
—> can use By, = H(xy, yi)

o 1if Ap < AT where

AT E iy |s|| subject to Aps = —cx

—> no solution to trust-region subproblem
—> simple trust-region approach to SQP is flawed if ¢; # 0 =
need to consider alternatives



INFEASIBILITY OF THE SQP STEP

\ The linearized oobmﬁwmﬁbd

<+— The trust region |v/

\ /

The nonlinear constraint



ALTERNATIVES

® the SL,QP method of Fletcher
® composite step SQP methods

o constraint relaxation (Vardi)
o constraint reduction (Byrd-Omojokun)

o constraint lumping (Celis-Dennis-Tapia)

® the filter-SQP approach of Fletcher and Leyfter



THE S(,QP METHOD

Try to minimize the £,-(exact) penalty function

Oz, p) = flx) + pllefz)ll,

for sufficiently large p > 0 and some ¢, norm (1 < p < 00), using a
trust-region approach

Suitable model problem: ¢,QP

minimize (fi+) g5+ s’ By.s + pller + Aps||, subject to ||s]| < Ay
scIR"

® model problem always consistent
® when p and Aj are large enough, model minimizer = SQP direction

® when the norms are polyhedral (e.g., ¢; or ¢o norms), {,QP is
equivalent to a quadratic program ...



THE (QP SUBPROBLEM

¢1QP model problem with an /., trust region

minimize gj s + s’ Bys + pllcr + Ags||li subject to ||s|lee < A
seIR”

But

cr + Ars = u — v, where (u,v) >0
—> (1 QP equivalent to quadratic program (QP):

minimize  ¢i s+ is' B.s + p(el u + e'v)
s€IR", u,veIR™
subject to Aps —u+v=—cy,
u>0, v>0
and —Ape <s < Age
® good methods for solving QP

® can exploit structure of u and v variables



PRACTICAL S/;QP METHODS

® Cauchy point requires solution to £;LP model:

minimize g} s+ pllcp + Aps||i subject to [|s]|s0 < Ay
scIR"

® approximate solutions to both ¢;LP and ¢;QP subproblems suffice
® need to adjust p as method progresses
© easy to generalize to inequality constraints

® globally convergent, but needs second-order correction for fast
asymptotic convergence

© if ¢(x) = 0 are inconsistent, converges to (locally) least value
of infeasibility ||c(z)|



COMPOSITE-STEP METHODS

Aim: find composite step
S = ny + 1
where

the normal step n; moves towards feasibility of the linearized
constraints (within the trust region)

[ Awrr + cil| < [lexl
(model objective may get worse)

the tangential step t; reduces the model objective function (within
the trust-region) without sacrificing feasibility obtained from ny,

\KAG\:& -+ ﬁ,ﬂv = A — At =0



NORMAL AND TANGENTIAL STEPS

\ The linearized constraint /

Nearest point on linearized constraint

Close to nearest point

e~
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-~
-~
-~
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~
O,

~<— The trust region —

Points on dotted line are all potential tangential steps



CONSTRAINT RELAXATION — VARDI

normal step: relax
Ags = —¢i, and ||s|| < Ay
to
Agn = —oper, and ||n|| < Ay

where o € |0, 1] is small enough so that there is a feasible ny

tangential step:

(approximate) arg min  (gx + Byng)' t + 3t! Bt
teIR"
subject to  Axt =0 and |[|ng +t|| < Ay

Snags:
® choice of oy,

® incompatible constraints



CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace
Aps = —¢ and ||s|| < Ay
by

approximately minimize ||Agn + cx|| subject to ||n| < Ay

tangential step: as in Vardi

® use conjugate gradients to solve both subproblems
—> (Cauchy points in both cases

© globally convergent using £ merit function

® basis of successtul KNITRO package



CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace
Aps = —cp and ||s|| < Ag

by
|Agn + ci|| < o and ||n|| < Ay
where g, € [0, ||cx||] is large enough so that there is a feasible ny

tangential step:

(approximate) arg min (gx + Brng)'t + 5! Bt
telR”
subject to  ||Axt + Agng + cxl] < op and ||t + ngl| < Ay

Snags:
® choice of oy

® tangential subproblem is (NP?) hard



FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

® trust-region and linearized constraints compatible if c¢; is small
enough so long as ¢(z) = 0 is compatible
—> if trust-region subproblem incompatible, simply move closer to
constraints

® merit functions depend on arbitrary parameters
—> use a different mechanism to measure progress

Let 6 = ||c(x)||

A filter is a set of pairs {(0g, fr)} such that no member dominates
another, i.e., it does not happen that

%&ﬁﬁAi%.& @bg .\w@.ﬁAi «Nﬁh

for any pair of filter points ¢ # j



A FILTER WITH FOUR ENTRIES

f(z)




BASIC FILTER METHOD

® if possible find

s, = arg min g s + 1s' B,s subject to Aps = —¢;. and ||s]| < Ay,
scIR"

otherwise, find s;:

O(xy + sp)“<’0; forall i <k

© if x4 s is “acceptable” for the filter, set 1 = 21 + sp
and possibly increase Ay and “prune” filter

© otherwise reduce Ay and try again

In practice, far more complicated than this!



