
RAL 95-026

On approximate-inverse preconditioners1

by

N. I. M. Gould and J. A. Scott

Abstract

We investigate the use of sparse approximate-inverse preconditioners for the iterative
solution of unsymmetric linear systems of equations. Such methods are of particular
interest because of the considerable scope for parallelization. We propose a number of
enhancements which may improve their performance. When run in a sequential environ-
ment, these methods can perform unfavourably when compared with other techniques.
However, they can be successful when other methods fail and simulations indicate that
they can be competitive when considered in a parallel environment.

1 Current reports available by anonymous ftp from joyous-gard.cc.rl.ac.uk (internet 130.246.9.91)
in the directory “pub/reports”.

Computing and Information Systems Department,
Atlas Centre, Rutherford Appleton Laboratory,
Oxfordshire OX11 0QX, England.

June 23, 1995.

1 INTRODUCTION 1

1 Introduction

Suppose that
�

is a real � by � unsymmetric matrix, whose columns are ��� , 1 �����	� .
We are principally concerned with the solution of large, sparse systems of linear equations��
���

(1.1)

using iterative techniques (see, for example, Dongarra, Duff, Sorensen and van der Vorst,
1991). Such methods invariably require one or more matrix-vector products per iteration;
convergence is normally accelerated using a preconditioner � , in which case the required
matrix-vector products involve

� � or � �
, not

�
.

The solution of such problems remains a considerable challenge, especially if we are
interested in robust methods for general problems. The difficulties are two-fold. Firstly,
the theory of iterative methods for (1.1) is, at best, incomplete. In particular, it is difficult
to be confident, when faced with a new problem, that a given algorithm will converge
in a reasonable time, if at all. Secondly, while it is recognized that preconditioning the
system often improves the convergence of a particular method, this is not always so. In
particular, a successful preconditioner for one class of problems may prove ineffective
on another class. Thus, it has long been recognized that the construction of successful
general purpose preconditioners is unlikely to be possible.

In this paper, we are interested in constructing approximations, � , to the inverse of�
for which � � � ����� is small — here and elsewhere � is the � by � identity matrix,��� is its � -th column, and � ��������

1
� � . So long as matrix-vector products involving �

are inexpensive, the matrix � may then be a suitable preconditioner. Notice that even if�
is singular, it may still be possible to choose a suitable preconditioner for a consistent

system (1.1) by approximately minimizing some norm of
� � �!� . There has been

a lot of interest, recently, in such preconditioners (see, Cosgrove, Diaz and Griewank,
1992, Kolotilina and Yeremin, 1993, Chow and Saad, 1994, Huckle and Grote, 1994,
de Doncker and Gupta, 1995, and Grote and Huckle, 1995, and the references contained
therein), and there is some evidence that they are effective in practice. However, we have
been somewhat surprised that there has been no proper assessment of their effectiveness
in comparison with other preconditioners, nor of the correctness of the assumptions on
which they are based.

A common assumption made in the construction of approximate inverses is that the
approximation should be sparse. This is later convenient from the point of forming matrix-
vector products, but such an assumption is at variance with the form of the true inverse
which is almost always dense (see, for instance, Duff, Erisman and Reid, 1986, Section
12.6). Nevertheless, for certain classes of problems (see, for instance, Demko, Moss and
Smith, 1984), the elements of the inverse decay rather rapidly to zero away from the
diagonal and thus may reasonably be approximated by zeros.

The paper is organized as follows. We describe the basis of sparse approximate-
inverse preconditioners in Section 2. As these methods heavily depend on our ability
to solve sequences of least-squares problems, we consider the generic over-determined
least-squares problem in Section 3. In Section 4, we examine the efficiencies which
are then possible when the data is sparse. We then compare sparse approximate-inverse
preconditioners with incomplete LU factorization (ILU) preconditioners in Section 5,
mention other alternatives in Section 6, and draw broad conclusions in Section 7.

2 SPARSE APPROXIMATE-INVERSE PRECONDITIONERS 2

2 Sparse approximate-inverse preconditioners

The methods proposed by Cosgrove et al. (1992) and Huckle and Grote (1994) impose
specified sparsity patterns on the approximate inverse. To be specific, let " def�$#

1 %'&'&(&'%)�+* ,
let , be a given set of index pairs -.�/%0��1 , with �/%0�324" , and let 576 to be the space of
all � by � matrices which have entries in the positions indexed by , . Similarly, define, � def�8# � : -0�/%0��192:,;* and let 5 �6 be the space of all � -vectors which have entries in the
positions indexed by ,�� . The entries in the approximate inverse � are calculated by
solving the problem

minimize<>=@?BA � � � ���C� 2DFE �G� � 1

minimizeH+IJ=@? IA � ��K �L� � �M� 2
2 % (2.1)

where
K � is the � -th column of � and where �9&+� D and �9&+� 2 are, respectively, the

Frobenius- and two-norms (see also Benson and Frederickson, 1982). Thus each of the
columns of � may be calculated independently, and, if required, in parallel, by solving
the least-squares problem

minimizeH+IJ=@? IA � ��K �L� � �M� 2
2 N (2.2)

The differences between the proposals of Cosgrove et al. (1992) and Huckle and Grote
(1994) are primarily concerned with the specification of , . The principal ingredients are
that

(a) the least-squares problems are cheap to solve so long as , is sparse,

(b) the residuals may be improved by enlarging , ,

(c) there are effective means of choosing how to enlarge , , and

(d) the process may be enhanced by updating rather than recomputing as , enlarges.

Our principal concern, in this paper, is in improving components (c) and (d).

3 The generic least-squares problem

Since we require that the � -th column
K � of the sparse approximate inverse � belongs to5 �6 , the only columns of

�
involved in the least squares problem (2.2) are those flagged by5 �6 . Thus in this section, we consider the generic over-determined least-squares problemO �

minimizeP �'Q P ��RS� 2
2 % (3.1)

where Q is a full-rank matrix of order � by T (�VU	T). In our case, the columns of Q are
those of

�
indexed by 5 �6 , R is � � and T ��W 5 �6 W .

There is further structure in our particular least-squares problem which should be
exploited. As we are assuming that

�
is sparse, in general its columns �X� have only a few

3 THE GENERIC LEAST-SQUARES PROBLEM 3

nonzeros. If we define the shadow of
�

from 5 �6 as the intersection of the row indices
of the columns �+� , �Y2�5 �6 , it is clear that, if

K �Z2�5 �6 , the nonzero components of the
residual

�[K �C� � � from (2.2) can only occur within the intersection of the shadow of
�

from 5 �6 and row � — the remaining rows may be disregarded. Thus, both the true row
and column dimensions of (2.2) are actually likely to be modest, especially when

W 5 �6 W is
small. This reduction in dimension is crucial to the effectiveness of the methods we shall
consider.

3.1 Solving least-squares problems

Let
P�\

denote the minimizer of (3.1) and let] \ denote the residual R^�_Q P`\
. Then

P`\
and] \ satisfy the augmented systema � QQ�b 0 c

a] \P \ c � a R
0 c N (3.2)

The solution to (3.2) may be formally expressed asa] \P \ c � a �ed`R-fQ b Qg1/h 1 Q b R c % (3.3)

where the projection matrix � d � �[��QV-iQ b QV1 h 1 Q b (3.4)

projects into the null-space of Q b . It then follows thatO � R b � 2d R � R b � d R N (3.5)

There are a variety of numerical methods for solving (3.1) (see, for instance, Lawson and
Hanson, 1974, or Björck, 1989). The most convenient in our case is to use a dense QR
factorization of Q . A QR factorization of Q is a decomposition of the formQ �kj aYl

0 c � -im n�1 aFl
0 c � m l % (3.6)

where
j

is orthogonal and

l
is upper-triangular. It then follows that� d � ����mYm b � n�n b (3.7)

If there are relatively few columns in Q , it is probably better to use the Gram-Schmidt
YR factorization Q � m l

suggested by (3.6), as then we only require the � by T portionm of
j

. An effective, stable scheme for computing this latter factorization, one column
at a time, is given by Daniel, Gragg, Kaufman and Stewart (1976). This then gives the
alternative representation O � �'n^boR�� 2

2 N (3.8)

3 THE GENERIC LEAST-SQUARES PROBLEM 4

3.2 Adding a column of data

The residual � ��K �p� � �q� 2 may be reduced by allowing extra nonzeros in a columnK � of the sparse approximate inverse � . The augmented � should then be a better
approximation to the true inverse. Of course, each extra nonzero introduced to

K �
increases the number of columns in the least-squares problem (2.2) by one and the shadow
of incoming columns may increase its true row dimension.

In this subsection we investigate how the solution to the least squares problem (3.1)
changes if we introduce an extra column r to the data — obviously, a candidate column r
will only make an impact if r intersects the shadow of the nonzeros of -iQ Rs1 . We denote
the solution to the resulting expanded problem as Out�v , whereO7twv � minimizePyxJz �'Q P�{�| r>��R�� 2

2 N (3.9)

Clearly, once we have decided which column to introduce, we could calculate the required
minimizer, residual, and residual sum-of-squares by recomputing the QR factorization of
the extended matrix -fQ ru1 . However, this is inefficient and it will normally be better
to update the existing QR or YR factorization to accommodate the extra column. Good
schemes to accomplish this have been proposed by Gill, Golub, Murray and Saunders
(1974), Lawson and Hanson (1974), and Daniel et al. (1976). Since we would like to
introduce nonzeros to

K � to reduce � ��K �}� � �~� 2 by as much as possible, it is of interest
to know a priori the effect of introducing a nonzero on the residual sum-of-squares.

Huckle and Grote (1994) propose the following approximation. They consider the
univariate minimization problem of calculatingO approxt�v �

minimizez � | r>��] \ � 2
2 N (3.10)

Thus O approxt�v indicates the gain to be made by keeping the existing components
P`\

fixed
and minimizing solely with respect to the new component

|
. We have the following result.

Lemma 3.1 The solution to the least-squares problem (3.10) isO approxt�v � O � -�r b] \ 1 2�)r`� 2
2

% (3.11)

and this solution satisfies the inequalityO twv � O approxt�v � O N (3.12)

Proof. The result follows by direct calculation, see Huckle and Grote (1994).
The basis of Huckle and Grote’s method is to find the smallest O approxt�v over all candidate

columns r , and to then introduce this column. There are many refinements possible which
we shall come to shortly, but Huckle and Grote indicate that such a method is effective in
practice in picking good columns to introduce.

We now return to the exact value, O7twv , of the expanded problem once column r has
been introduced. The following result shows that it may be beneficial to augment a given
sparsity pattern of � .

3 THE GENERIC LEAST-SQUARES PROBLEM 5

Lemma 3.2 The solution to the least-squares problem (3.9) isO twv � O � -�r b � d R�1 2�'� d ry� 2
2

� O � -�r b] \ 1 2�'� d r`� 2
2
N (3.13)

Proof. The result follows, by analogy with (3.3), by observing that the matrix�g� d v�� � �ed�� � d r~r b � d�'� d r`� 2
2

(3.14)

projects into the null-space of -fQ ru1 b . See also Cosgrove et al. (1992).
From Lemma 3.2, we see that it is possible to calculate the potential decrease in

the residual sum-of-squares following the introduction of an extra column of Q without
actually computing the corresponding residual. In particular, using the QR factors (3.6)
we have that O t�v � O � -�r b] \ 1 2�'n b r`� 2

2

� O � -�r b] \ 1 2�)r`� 2
2 �	�'m b r}� 2

2
N (3.15)

Thus to compute Out�v it suffices to know n^bur or m�b�r . However, the direct calculation of
these quantities for all candidate columns r is still potentially a considerable overhead.

Fortunately, there is a more efficient way of calculating the potential decrease. Suppose
that we already know �'� d r`� 2

2. Then we see from (3.13) that, once we have formed � d R ,Out�v may be calculated merely by forming a dot product with r — the relationship (3.3)
shows that � d R is readily available as] \ . Thus the dominant cost in computing Out�v
is in computing �'� d r}� 2

2. But, rather than computing this quantity directly, it is simple
to update its value following a change in Q . For suppose, we have augmented Q by
introducing the new column r new. Then, from (3.14),� � d v new

� � � d � � d r new r bnew � d�'� d r new � 2
2

N (3.16)

Thus, �'�g� d v new
� r}� 2

2

� r b �g� d v new
� r � �'�[d�r`� 2

2 � -�r b � d r new 1 2�'� d r new � 2
2
% (3.17)

and the value of �'� d ry� 2
2 following a change in Q may be updated rather than recomputed

provided the product � d r new is known. But, this latter term is available as a bi-product
of the update to the YR factorization of -fQ�r new 1 . For, we may write-fQ r new 1 � -fm �s1 a l]

0 � c ; (3.18)

In exact arithmetic, the new components � ,] and � satisfy] � m b r new %�� � �)r new ��mYm b r new � 2 and � � r new ��mYm�b7r new�)r new ��m�m b r new � 2
; (3.19)

the � ,] and � computed using the algorithm of Daniel et al. (1976) are good approxima-
tions to (3.19). But, then � d r new

� r new ��m_m b r new
� ��� (3.20)

4 PRACTICAL APPROXIMATE-INVERSE PRECONDITIONERS 6

and �'� d r new � 2
2
� � 2 (3.21)

are readily available. The cost of performing the update (3.17) is thus principally that of
performing the dot product between r and � d r new. As the latter is available, and as r is,
in our applications, sparse, this cost is moderate. Indeed, the cost is roughly equivalent to
that of computing the numerator r b] \ in (3.13).

As before, if there are a number of candidate columns r � which we might add to Q , a
good strategy is to add the column which maximizes the decrease in the residual sum-of-
squares. The above schemes allow us to calculate the decrease for each candidate column.
While such a scheme is perfectly feasible, it still involves an overhead compared to the
method of Huckle and Grote (1994). Huckle and Grote reject using the exact decreases
as they perceive this is expensive, but as we have shown, this is not the case. As we
shall indicate, the small overhead often pays handsome dividends in reducing the overall
number of columns required.

Lemma 3.2 also indicates that O approxt�v may be a bad approximation to Out�v if �'� d r}� is
small relative to �)ry� , that is if r is predominantly in the null-space of the columns of Q .

4 Practical approximate-inverse preconditioners

We now return to the calculation of sparse approximate-inverse preconditioners introduced
in Section 2.

4.1 The least-squares problem in hand

We have already shown that solving the least-squares problem (2.2) is equivalent to solving
a least-squares problem of the form (3.1). The structure of

�
has a significant impact on

the update of the YR factorization following the introduction of an additional component
in 5 �6 , and in the computation of the approximate or exact costs, (3.10) or (3.9). Clearly,
adding a column, � t , of

�
introduces an extra column to Q ; morever, Q has additional

rows corresponding to nonzeros in � t which do not lie in the shadow of
�

from 5 �6 . The
values of O approxt�� I or Out�� I need only be calculated for columns �X� which have nonzeros
in the shadow of

�
from 5 �6 , as all other columns offer no (local) improvement to the

residual.
An approximation to each column of the inverse may be calculated, independently, by

introducing nonzeros one-at-a-time. Each successive nonzero � � x � is chosen to minimizeO approxt��/� or Out��/� as appropriate, and the process is stopped when either� ��K �C� � �q����� (4.1)

or a predefined maximum limit, � max, on the number of allowed nonzeros in a column is
exceeded. Huckle and Grote (1994) suggest that an initial sparsity pattern , be given, but
we view this as unnecessary, preferring to start with , ���

and allowing each nonzero �
to enter on the basis of the size of O approxtw�f� or Out��/� . Of course, if we are solving a sequence
of closely related linear systems, it may be useful to use a previously successful sparsity
pattern to initialize the current calculation. However, as a large part of the cost of finding
a good pattern is in forming the YR factorization, the gain from such a strategy is not as
significant as it might first seem.

4 PRACTICAL APPROXIMATE-INVERSE PRECONDITIONERS 7

Huckle and Grote also propose a potentially useful saving by introducing more than
one nonzero at once. They chose nonzeros which give the smallest O approxt��J� ; it is just as
appropriate to choose those which minimize O7tw�/� . At most a user-specified number �
nonzeros may enter at any time, but those which enter are required to correspond to aO approxt��/� which is no larger than the mean such value. The reader should note, however,
that such a scheme may be far from optimal, as there is no guarantee that the value
of (3.1) following a multiple update is any smaller than that following a single update
corresponding to the smallest Out��/� .
4.2 Row-inverse methods

It may sometimes be preferable to compute an approximate-inverse preconditioner by
rows rather than by columns. For instance, in an extreme case, the true inverse might be
of the form ����������� �� �& &� �

�0������� N (4.2)

Here, the first column is completely dense while each of the remaining columns have
a single nonzero. Thus the computation of the approximate inverse will be completely
dominated by the cost of computing an approximation to the first column. If, on the other
hand, the inverse had been found by rows, each row of the inverse involves at most two
nonzeros which leads to a considerably better-balanced computation.

We may construct such an inverse by considering the alternative

minimize<�=�?�A �'� � ����� 2DVE �G� � 1

minimizeH+I�=@? IA � K b� � � � b� � 2
2 % (4.3)

to (2.1), where now 5 �6 is the space of all � -vectors which have entries in the positions
indexed by the set

� : - �~%)�f1¡2�,;* and
K b� are the rows of � . This is equivalent to

finding the matrix � b to

minimize<�=�? A � � b � b �:��� 2D % (4.4)

and thus all of the discussion in our preceeding sections is appropriate so long as one
replaces

�
and � by their transposes. We shall refer to a preconditioner chosen by (2.1)

as a right preconditioner, while that chosen by (4.3) is a left preconditioner.

4.3 Block methods

Matrices which arise in practice may often be reduced to block (upper) triangular form.
It is straightforward to derive approximate-inverse preconditioners which exploit this
structure.

4 PRACTICAL APPROXIMATE-INVERSE PRECONDITIONERS 8

Suppose that we can find permutation matrices � and
j

for which

� ��j¢� �������� �
11

�
12

...
�

1 £
0

�
22

...
�

2 £&(&'& &(&'& & &'&(&
0 0

...
� £¤£

� ������� N (4.5)

Such a permutation may be found, for instance, using Tarjan’s (1972) algorithm (see, Duff
et al., 1986, Chapter 6, for details). Then, letting ¯�� �

and

��	j

¯

, and partitioning

¯�� ����� ¯
1

¯
2&̄ £
�0���� and ¯

:� ����� ¯

1

¯

2&̄
 £
�0���� % (4.6)

we may solve the equation (1.1) by block back-substitution of the form

¯

 � �	� h 1�¥� ��

¯ � � £G� � � t 1

� � � ¯

 � �� for � � Tf%(&'&'&'% 1 N (4.7)

Now suppose that we find an approximation � �¥� to the inverse of each diagonal block,� h 1�¥� . Then we might instead choose to use the approximation

¯

 � � � �¥� �� ¯ � � £G� � � t 1

� � � ¯

 � �� for � � Ti%'&'&'&(% 1 N (4.8)

to (4.7). We thus propose using the matrix

�§¦ �kj �������� � h 1
11

�
12

...
�

1 £
0 � h 1

22
...

�
2 £&'&'& &'&'& & &'&'&

0 0
... � h 1£¨£

�0�������
h 1 � (4.9)

as a block preconditioner, where � h 1�¥� should be interpreted here as a generalized inverse
of � �¥� . A matrix-vector product �©¦ is formed via (4.8); the product � � �§b¦ P is
given by

¯� � � ��b�¥� �� ¯
P � � � h 1G� � 1

� b� � ¯� � �� for � � 1 %(&'&'&'%)Ti% (4.10)

where ¯
P � and ¯� � are the obvious partitions of the vectors ¯

P �	j b P and � � ��b ¯� .
Clearly, we are particularly interested in picking the approximate inverse of

� �¥� using
the techniques discussed thus far in this paper. The advantage of using the block form is
that each diagonal block may be significantly smaller that

�
, and thus one would expect

to find the required approximate inverses more cheaply. Furthermore, each block may
be processed independently. The disadvantage is that some of the parallelism in forming
matrix-vector products is lost.

5 NUMERICAL EXPERIMENTS 9

5 Numerical experiments

5.1 The test problems

In this section we present results for a range of problems arising from real scientific and
industrial applications. Our aim is to illustrate, and thus to get a better understanding of,
the practical behaviour of the methods we have considered in this paper. The test examples
are all taken either from the widely used Harwell-Boeing collection of sparse matrices
(Duff, Grimes and Lewis, 1992) or the recent collection of Davis (1994). The matrices in
both these collections are available via anonymous ftp.1 A brief description of each of the
test problems is given in Table 5.1. The problems which we have chosen from these test

Identifier n nz Description/discipline
ORSREG1 ª 2205 14133 Oil reservoir simulation. Jacobian matrix

21 � 21 � 5 grid
ORSIRR1 1030 6858 As ORSREG1 but unnecessary cells coalesced

to give a coarser mesh.
ORSIRR2 ª 886 5970 As ORSIRR1 but further coarsening of grid.
PORES2 ª 1224 9613 Reservoir simulation.
PORES3 532 3474 Reservoir simulation.
SHERMAN1 ª 1000 3750 Oil reservoir simulation.

10 � 10 � 10 grid.
SHERMAN2 1080 23094 Oil reservoir simulation.

6 � 6 � 5 grid.
SHERMAN3 5005 20033 Oil reservoir simulation.

35 � 11 � 13 grid.
SHERMAN4 ª 1104 3786 Oil reservoir simulation.

16 � 23 � 3 grid.
SHERMAN5 3312 20793 Oil reservoir simulation.

16 � 23 � 3 grid.
SAYLR4 ª 3564 22316 3D reservoir simulation.
RAEFSKY1 3242 294276 Incompressible flow in pressure driven pipe.
BP200 822 3802 Basis matrix from application of simplex

method to a linear programming problem.
WEST0497 497 1727 Modelling of chemical engineering plant.
GRE216A 216 876 Simulation studies in computer systems.
GRE512 512 2192 Simulation studies in computer systems.
GRE1107 1107 5664 Simulation studies in computer systems.
NNC261 261 1500 Nuclear reactor core modelling.

Table 5.1: The test problems (� �
order of matrix, �o« �

number of entries in matrix, ª
indicates a problem in the subset)

1ftp to 130.246.8.32 and the directory pub/harwell boeing for the Harwell-Boeing matrices, and to
ftp.cis.ufl.edu and the directory pub/umfpack/matrices for the Davis collection.

5 NUMERICAL EXPERIMENTS 10

sets were (with the exception of problem BP200) used by either Huckle and Grote (1994)
or Chow and Saad (1994). All our numerical experiments were performed on each of the
examples listed in Table 5.1. Since giving full results for each test problem would present
the reader with an indigestible amount of data, we feel it is more helpful to only give
comprehensive results for a subset of the main test set and, where appropriate, to augment
these with results for other matrices. The matrices in the selected subset are marked with
a ª in Table 5.1. The subset was chosen to represent different application areas and does
not include matrices for which our methods proved unsuitable (see Subsection 5.8).

The numerical experiments were performed on a SUN SPARCstation 10 using double
precision arithmetic, which gives roughly 16 decimal digits of accuracy. CPU timings
are all given in seconds. In all our reported experiments, preconditioning was on the
right except for problem PORES2 for which, following Huckle and Grote (1994), pre-
conditioning was on the left. The iterative methods employed during the experiments
were the Conjugate Gradient Squared Method (CGS), the restarted Generalized Minimum
Residual Method (GMRES(�), where � is the number of iterations between restarts), the
BiConjugate Gradient Method (BiCG), and the BiConjugate Gradient Stabilized Method
(BiCGSTAB). A description of these methods is given, for example, by Barrett, Berry,
Chan, Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine and van der Vorst (1994).
When using GMRES(�) we set � �

20 and 50 and present results for the value of � that
gave the most rapid convergence. The codes we used to implement the iterative methods
will be included in Release 12 of the Harwell Subroutine Library (1996) as routinesMI03,
MI04, MI05, and MI06, respectively. Each of these routines uses reverse communica-
tion so that every time a matrix-vector product

��

or a preconditioning operation �

is
required, control is returned to the user. This allows the user to take full advantage of the
sparsity and structure of

�
and � and of vectorisation or parallelism.

The stopping criterion used for the iterative methods was � � �[
 ��¬ 10 h 8 �B] 0 � N The
initial guess for the iterative solvers was always

0
�

0, ˜] 0
�] 0

�$
. These choices

were made to ensure consistency with the experiments performed by Huckle and Grote
(1994). If the right-hand side vector

was not supplied, a random vector was generated.

5.2 An implementation

The methods outlined in Sections 2–4 form the basis of a new code, MI12, in the
Harwell Subroutine Library (1996). This algorithm allows the columns of the sparse
approximate-inverse preconditioner, or its block form, to be formed independently. Op-
tions include the possibilities of using either the exact (3.9) or approximate (3.10) gains
to predict which entry to introduce next, the possibility of introducing more than one
entry at once into the inverse, and the ability to use the method in either single-block
or multiple-block mode. Additionally, the maximum number of nonzeros allowed in a
column of the approximate-inverse, and the required convergence tolerance � in (4.1) are
under the user’s control. All the numerical experiments reported in the following sections
were performed using MI12.

5.3 Approximate versus exact improvement

We first report the results of experiments to assess how well approximating the improve-
ment that is made by introducing an extra nonzero into a column of the approximate

5 NUMERICAL EXPERIMENTS 11

inverse performs in practice. In these experiments, except for problem SHERMAN2,
values for the stopping criteria � for the columns of the inverse and for the maximum
number � max of allowed nonzeros in a column of the inverse were taken from Huckle and
Grote (1994). For SHERMAN2, Huckle and Grote take � � 0 N 4 and � max

�
50, but with

these values they fail to achieve convergence to the requested accuracy when � is used
as preconditoner for the iterative solvers. We found it necessary to increase � max to 200
to get convergence for this problem.

In Table 5.2 the ratios of nonzeros ��«�-f�1/®@�o«�- � 1 and the CPU times (in seconds) for
computing � are presented using O �0¯f¯J°i±�²t�v , given by (3.10), and Out�v , defined by (3.9). A³

in Table 5.2 indicates that some of the columns of � did not satisfy the termination
test (4.1). Table 5.3 gives the number of iterations and time taken by the iterative schemes
to achieve convergence using the computed � as a preconditioner. Here, and elsewhere,´

indicates convergence was not attained in 1000 iterations.�o«�-f� 1/®���«�- � 1 CPU Time
Matrix � � max

O �µ¯i¯J°i±�²t�v Out�v O �0¯i¯/°µ±�²t�v Out�v
ORSREG1 0.4 50 0.681 0.648 15.84 15.94
ORSIRR2 0.36 50 0.846 0.661 4.78 4.24
PORES2 0.2 150 5.018

³
2.226 373.39 62.46

SHERMAN1 0.4 100 1.474
³

0.722 7.40 2.57
SHERMAN2 0.4 200 1.585

³
0.926 1112.39 318.27

SAYLR4 0.2 150 4.469
³

2.555
³

384.70 188.94
RAEFSKY1 0.3 50 0.087 0.084 665.45 1067.42

Table 5.2: Cost of computing the approximate-inverse preconditioner via O �µ¯i¯J°i±�²twv versusO t�v . ³ indicates that not all columns satisfy (4.1)

For some of the test problems (including ORSREG1 and ORSIRR2) we found there
was little to choose between using O �µ¯i¯J°i±�²t�v and Out�v but, in general, our experience was
that using O �µ¯i¯J°i±�²t�v was considerably more expensive than using O t�v , and it frequently led
to the matrix � having a greater number of nonzeros. For only one of the test problems,
RAEFSKY1, were significant savings made by using O �0¯f¯J°i±�²t�v . This matrix is more dense
that the other matrices we considered and the sparse approximate-inverse preconditioner
has far fewer entries than the original matrix. In this case, the overhead involved in
computing the exact decrease (3.9) for each candidate column is significantly more than
in using the approximation (3.10) of Huckle and Grote. For matrix SHERMAN3 with� � 0 N 2 and � H �f² � 100 (the values used by Huckle and Grote), MI12 failed to compute� and returned an error message that the matrix was so ill-conditioned that the sparse
approximate inverse was likely to be worthless. SHERMAN3 was omitted from the rest
of our experiments.

5.4 Multiple updates

As we discussed in Section 4.1, Huckle and Grote (1994) suggest that useful savings may be
achieved by introducing more than one new entry at once into a column of the approximate

5 NUMERICAL EXPERIMENTS 12

O �µ¯i¯J°i±�²twv Out�v
Matrix Method Iterations CPU Time Iterations CPU Time

ORSREG1 BiCG 84 3.48 86 3.64
CGS 49 2.09 48 2.00
BiCGSTAB 54 2.34 56 2.30
GMRES(20) 82 3.01 85 3.04

ORSIRR2 BiCG 69 1.21 69 1.13
CGS 47 0.83 40 0.68
BiCGSTAB 48 0.88 39 0.66
GMRES(20) 90 1.13 75 0.98

PORES2 BiCG 71 4.20 57 2.10
CGS 70 3.99 40 1.47
BiCGSTAB 48 2.74 44 1.60
GMRES(50) 239 9.71 114 3.05

SHERMAN1 BiCG 100 1.72 80 1.22
CGS 85 1.43 55 0.85
BiCGSTAB 71 1.22 51 0.75
GMRES(20) 203 4.23 113 1.45

SHERMAN2 BiCG 286 16.64 29 1.28
CGS

´
14 0.61

BiCGSTAB
´

10 0.44
GMRES(20)

´
16 0.48

SAYLR4 BiCG 108 13.58 110 10.33
CGS 83 10.70 96 9.32
BiCGSTAB 71 9.10 87 8.39
GMRES(50) 312 40.02 519 57.77

RAEFSKY1 BiCG 111 28.94 110 29.00
CGS 99 25.98 97 25.38
BiCGSTAB 86 22.64 86 22.64
GMRES(50) 438 82.51 376 70.07

Table 5.3: Convergence results for O �µ¯i¯J°i±�²twv versus Out�v . ´
indicates convergence was not

attained in 1000 iterations

5 NUMERICAL EXPERIMENTS 13

inverse. In particular, in their reported numerical results, they allow up to 5 entries to
be introduced simultaneously. We will denote by �¶ the sparse approximate-inverse
preconditioner computed by introducing a maximum of � entries at once. In Tables 5.4
and 5.5 we compare computing and using � 1 with � 5 (Out�v is used in these and all
subsequent numerical experiments). We found, in general, that � 5 had more nonzeros
than � 1 and took longer to compute. The quality of the resulting preconditioners when
used with the iterative solvers were comparable. The only exceptions to these general
findings were again for problem RAEFSKY1. For this problem, the CPU time for
computing � 5 was significantly less than for � 1.

�o«�-f�·1J®@��«�- � 1 CPU Time
Matrix � � max � � 1 � � 5 � � 1 � � 5
ORSREG1 0.4 50 0.648 0.817 15.94 18.00
ORSIRR2 0.36 50 0.661 0.750 4.24 4.35
PORES2 0.2 150 2.226 2.488 62.46 71.31
SHERMAN1 0.4 100 0.722 0.938 1.59 3.04
SHERMAN2 0.4 200 0.926 1.232 318.27 359.50
SAYLR4 0.2 150 2.555

³
3.740

³
188.94 193.69

RAEFSKY1 0.3 50 0.084 0.087 1067.42 796.07

Table 5.4: Cost of computing the approximate-inverse preconditioner ¸ 1 versus ¸ 5.³
indicates that not all columns satisfy (4.1)

5.5 The block method versus the single block method

In Tables 5.6 and 5.7 we give some results which compare treating the matrix as a single
block with using the block form discussed in Section 4.3. Test problems ORSREG1,
ORSIRR2, PORES2, and SAYLR4 were found to be irreducible and for these problems
the differences in the computed results for the two methods are caused by tie-breaking.
For problems SHERMAN1 and SHERMAN2 the block form (4.5) has one large block and
the remaining blocks are all of order 1. For such problems we found the two approaches
computed comparable preconditioners but there was a considerable time-saving in using
the block form. For test examples BP200 and WEST0497, the block form (4.5) had a
large number of blocks of order greater than 1 and for these examples using the block
form was not only much faster than treating the matrix as a single block but also gave a
much improved preconditioner. For example, for BP200, treating the matrix as a single
block the preconditioner took 27.54 seconds to compute while using the block form took
only 0.35 seconds. Moreover, when used with the iterative solvers, for this problem
the preconditioner computed using the single block method failed to give convergence
within the imposed limit of 1000 iterations while that computed using the block form gave
convergence in less than 30 iterations.

5 NUMERICAL EXPERIMENTS 14

� 1 � 5

Matrix Method Iterations CPU Time Iterations CPU Time

ORSREG1 BiCG 86 3.64 83 3.60
CGS 48 2.00 46 2.04
BiCGSTAB 56 2.30 53 2.39
GMRES(20) 85 3.04 82 3.18

ORSIRR2 BiCG 69 1.13 69 1.19
CGS 40 0.68 40 0.67
BiCGSTAB 39 0.66 40 0.70
GMRES(20) 75 0.98 75 0.98

PORES2 BiCG 57 2.10 64 2.56
CGS 40 1.47 41 1.62
BiCGSTAB 44 1.60 40 1.57
GMRES(50) 114 3.05 104 2.78

SHERMAN1 BiCG 80 1.22 77 1.21
CGS 55 0.85 54 0.83
BiCGSTAB 51 0.75 50 0.81
GMRES(50) 113 1.45 112 1.42

SHERMAN2 BiCG 29 1.26 29 1.41
CGS 14 0.61 13 0.64
BiCGSTAB 10 0.44 13 0.61
GMRES(20) 16 0.48 19 0.60

SAYLR4 BiCG 110 10.33 115 13.56
CGS 96 9.32 96 11.59
BiCGSTAB 87 8.39 95 11.44
GMRES(50) 519 57.77 529 64.17

RAEFSKY1 BiCG 110 29.00 110 29.88
CGS 97 25.38 110 29.18
BiCGSTAB 86 22.64 65 22.27
GMRES(50) 376 70.07 405 78.60

Table 5.5: Convergence results for ¸ 1 versus ¸ 5

5 NUMERICAL EXPERIMENTS 15

�o«�-f� 1/®���«�- � 1 CPU Time
Matrix � � max �@�0�º¹wT0» ¼BT�½¿¾BÀ �@�0�º¹wT0» ¼BT�½@¾BÀ
ORSREG1 0.4 50 0.648 0.648 15.94 16.64
ORSIRR2 0.36 50 0.662 0.662 4.24 4.25
PORES2 0.2 150 2.226 2.226 62.46 62.46
SHERMAN1 0.4 100 0.722 0.722 2.57 1.59
SHERMAN2 0.4 200 0.926 0.916 318.27 208.19
SAYLR4 0.2 150 2.556

³
2.556

³
188.94 186.21

BP200 0.4 50 2.459
³

1.133 27.54 0.35
WEST0497 0.4 100 2.577

³
1.260 19.66 1.36

Table 5.6: Cost of computing the approximate-inverse preconditioner treating the matrix
as a single block versus using the block form.

³
indicates that not all columns satisfy

(4.1)

5.6 ILU(0) versus sparse approximate-inverse reconditioners

A class of preconditioners which is frequently used when solving sparse unsymmetric
linear systems are those based on incomplete LU factorizations of the matrix

�
. We

now present some results which compare our proposed sparse approximate-inverse pre-
conditioner with an incomplete LU factorization preconditioner. The code we used in our
numerical experiments to generate an incomplete LU preconditioner will be included in
Release 12 of the Harwell Subroutine Library (1996) as routine MI11. The code first
finds a permutation matrix

j
so that the matrix

j[�
has nonzeros on the diagonal. If no

such permutation can be found, the method breaks down. Assuming such a permutation
exists, an incomplete factorization of the permuted matrix

jÁ�Â�ÄÃÆÅ {ÈÇ
, where

Ç
is

some error matrix, and
Ã

and
Å

have the same nonzero structure as the lower and upper
parts of

�
, respectively, is formed. The ILU(0) preconditioner is then � � - ÃÆÅ 1 h 1 j .

The incomplete factorization of
j¡�

will breakdown if, at any stage À of the elimination
process, the À th diagonal entry is zero. To prevent this breakdown, MI11 checks the size
of the diagonal entry against the entries in its row and column and, if it is too small, the
value of the diagonal entry is increased using a user-defined control parameter.

In Tables 5.8 and 5.9 results are given for the ILU(0) preconditioner computed using
MI11 and for the sparse approximate-inverse preconditioner � (computed using the
block form and Out�v). For problems ORSREG1, ORSIRR2, PORES2, SHERMAN1, and
SAYLR4, the stopping criteria � for the columns of the sparse inverse preconditioner was
chosen so that the numbers of iterations required by the iterative schemes using � were
generally comparable to those required using the ILU(0) preconditioner. We see that, for
these problems, the time required to generate � is substantially more than is needed by
the ILU(0) factorization.

For some of the test problems, including PORES2 and SAYLR4, the number of
nonzeros in � is significantly greater than the number in

�
(and hence in the ILU(0)

preconditioner). This can mean that each preconditioning operation with � is much
more expensive on a scalar machine than with the ILU(0) preconditioner. Thus, even

5 NUMERICAL EXPERIMENTS 16

Single block Block form
Matrix Method Iterations CPU Time Iterations CPU Time

ORSREG1 BiCG 86 3.64 86 3.61
CGS 48 2.00 48 2.00
BiCGSTAB 56 2.30 56 2.30
GMRES(20) 85 3.04 85 3.04

ORSIRR2 BiCG 69 1.13 69 1.12
CGS 40 0.68 41 0.68
BiCGSTAB 39 0.66 42 0.70
GMRES(20) 75 0.98 79 1.00

PORES2 BiCG 57 2.10 57 2.10
CGS 40 1.47 40 1.42
BiCGSTAB 44 1.60 44 1.55
GMRES(50) 114 3.05 114 3.03

SHERMAN1 BiCG 80 1.22 82 1.47
CGS 55 0.85 55 0.99
BiCGSTAB 51 0.75 50 0.89
GMRES(20) 113 1.45 113 1.49

SHERMAN2 BiCG 29 1.26 27 1.34
CGS 14 0.61 9 0.45
BiCGSTAB 10 0.44 9 0.43
GMRES(50) 16 0.48 15 0.47

SAYLR4 BiCG 110 10.33 110 10.68
CGS 96 9.32 96 9.69
BiCGSTAB 87 8.39 87 8.51
GMRES(50) 519 57.77 519 57.19

BP200 BiCG
´

27 0.55
CGS

´
19 0.35

BiCGSTAB
´

27 0.30
GMRES(50)

´
26 0.37

WEST0497 BiCG
´

21 0.20
CGS

´
14 0.13

BiCGSTAB
´

13 0.12
GMRES(50)

´
21 0.15

Table 5.7: Convergence results for the preconditioner obtained by treating the matrix
as a single block versus the preconditioner obtained using the block form.

´
indicates

convergence was not attained in 1000 iterations

5 NUMERICAL EXPERIMENTS 17

ILU(0) approximate-inverse preconditioner
Matrix CPU Time � � max ��«�-f� 1J®@��«�- � 1 CPU Time
ORSREG1 2.53 0.3 50 1.257 29.60
ORSIRR2 0.41 0.3 50 1.154 9.28
PORES2 0.85 0.2 150 2.226 62.46
SHERMAN1 0.35 0.3 25 1.144 3.13
SHERMAN2 0.99 0.4 200 0.916 206.51
SAYLR4 6.32 0.15 300 5.460 2667.49

³
RAEFSKY1 23.08 0.3 50 0.084 1067.42
BP200 0.22 0.4 50 1.133 0.35
WEST0497 0.11 0.4 100 1.260 1.36
GRE512 0.11 0.4 100 7.498 27.03

³
Table 5.8: Cost of ILU(0) versus sparse approximate-inverse preconditioner.

³
indicates

that not all columns satisfy (4.1)

if the numbers of iterations required using the two preconditioners are similar, the con-
vergence times using the sparse approximate-inverse preconditioner may exceed those
for the ILU(0) preconditioner. The only test problem for which � was much sparser
than the ILU(0) preconditioner was problem RAEFSKY1. For this problem, the number
of iterations required using � as a preconditioner was significantly larger than for the
ILU(0) preconditioner, but for each of the iterative methods apart from GMRES, the time
needed for convergence using � was less than that using the ILU(0) preconditioner.

For problem GRE512, the ILU(0) factorization was successfully computed using
MI11, without the need to increase any diagonal entries to prevent breakdown. However,
when used as a preconditioner, the ILU(0) factorization gave much poorer results for this
problem than were achieved using the sparse approximate-inverse preconditioner. For
SHERMAN2, BP200, and WEST0497, MI11 issued a warning that the value of one or
more diagonal entry had been increased and the resulting ILU(0) factorization gave poor
convergence (or no convergence) when used with the iterative solvers.

5.7 Parallel preconditioning

A significant advantage of the sparse approximate-inverse preconditioner � over the
ILU(0) preconditioner is that the computation of � is inherently parallel, since its columns
are calculated independently of one another. If there are À processors available, an obvious
way of distributing the work between the processors is to assign the calculation of columns
1 to À7®@� to processor 1, that for columns À7®@� {

1 to 2 À7®�� to processor 2, and so on.
A disadvantage of this strategy is that load balancing may be very poor since we have
observed in practice that � often contains a small number of columns with many more
nonzeros than the remaining columns, and computing these few columns accounts for
most of the computational effort in generating � . For example, for the matrix SAYLR4,� has only 28 columns with more than 100 nonzeros and the time taken to compute these
columns is 85.90 seconds, compared with 188.94 seconds for the whole matrix.

5 NUMERICAL EXPERIMENTS 18

ILU(0) �
Matrix Method Iterations CPU Time Iterations CPU Time

ORSREG1 BiCG 67 3.59 69 3.33
CGS 40 2.15 39 1.87
BiCGSTAB 37 2.00 45 2.16
GMRES(20) 60 2.63 62 3.61

ORSIRR2 BiCG 52 1.19 55 1.06
CGS 32 0.65 32 0.59
BiCGSTAB 31 0.63 32 0.62
GMRES(20) 58 0.86 56 0.80

PORES2 BiCG 50 1.58 57 2.10
CGS 38 1.13 40 1.47
BiCGSTAB 37 1.40 44 1.60
GMRES(50) 42 1.44 114 3.05

SHERMAN1 BiCG 49 0.92 60 1.00
CGS 39 0.72 39 0.64
BiCGSTAB 35 0.62 38 0.62
GMRES(20) 61 0.92 76 1.05

SHERMAN2 BiCG 84 4.09 27 1.34
CGS 44 1.98 9 0.45
BiCGSTAB 256 11.24 9 0.43
GMRES(50) 48 1.70 15 0.46

SAYLR4 BiCG 60 5.25 64 9.31
CGS 50 4.25 48 7.08
BiCGSTAB 41 3.51 42 6.15
GMRES(50) 70 6.45 89 11.60

RAEFSKY1 BiCG 36 15.90 103 12.14
CGS 31 12.26 85 10.30
BiCGSTAB 27 10.71 72 8.66
GMRES(50) 35 8.71 265 25.14

BP200 BiCG 74 1.16 27 0.50
CGS 94 1.39 19 0.35
BiCGSTAB 99 1.49 17 0.30
GMRES(50) 39 0.66 26 0.37

WEST0497 BiCG
´

21 0.20
CGS

´
14 0.13

BiCGSTAB 655 5.33 13 0.12
GMRES(50) 129 1.05 21 0.15

GRE512 BiCG
´

144 2.75
CGS

´
126 2.41

BiCGSTAB
´

122 2.26
GMRES(20)

´
363 4.35

Table 5.9: Convergence results for ILU(0) versus approximate-inverse preconditioner.´
indicates convergence was not attained in 1000 iterations

5 NUMERICAL EXPERIMENTS 19

An alternative strategy is to hold the columns in a queue and as soon as a processor
becomes free, it is assigned the next column in the queue. This has the advantage that
considerable load balancing can be achieved even if the processors are not all identical.
We have performed some experiments to simulate this strategy for the case of identical
processors. Let �'ÉJ�0�g» denote the time required to start the computation (this is on a single
processor). Let ¾�½@T�É/�.�Ê»M-.�f1 be the time taken by a processor to compute column � of � ,
and let Ë £ be the set of column indices which are assigned to processor T (T � 1 % 2 % N NÌN %)À).
Define ÍqÎ »(Ï T � �'ÉJ�0�g» { - �G ���

1

¾B½@TÐÉJ�0�g»M-0�i1/1/®�À
and Ñ ¾)ÉJÒuÏ T � �'ÉJ�0�g» { max£ - G� =@ÓBÔ ¾�½@T�É/�.�Ê»M-.�f1/1ÍqÎ »'Ï�T is the time to compute � on À processors assuming that, after the initial start-up,
each processor performs the same amount of work.

Ñ ¾)ÉJÒuÏ T is the time which will elapse
actually before all the processors have finished. Comparing

Ñ ¾)ÉJÒuÏ T with

Í~Î »(Ï�T gives an
indication of efficiency of computing � in parallel.

We see from Table 5.10 that, for a small number of processors (up to about 16), theÑ ¾)ÉJÒ7Ï�T and

Í~Î »(Ï�T times generally differ by only a small amount. As the number of
processors is increased, the difference between

Ñ ¾ÕÉJÒuÏ�T and

ÍqÎ »'Ï�T remains small provided
most of the columns of � are of a similar length (for example, problems ORSREG1
and RAEFSKY1). However, if a few columns of � have many more nonzeros than
the remaining columns, the speedup which can be achieved by increasing the number of
processors is much less. For example, for problem PORES2, increasing the number of
processors from 16 to 64 only reduces the

Ñ ¾ÕÉJÒuÏ T time by a factor of approximately 2.6.
If a column is assigned to a single processor, the

Ñ ¾)É/ÒuÏ�T time cannot be reduced beyond�'ÉJ�0�g» { max £ ¾�½@T�É/�.�Ê»M-.Tµ1 . This is illustrated by problems SHERMAN2 and SAYLR4.
The only hope for improvement in these cases is to allocate more than one processor for
the calculation of difficult columns.

We note that, for most of our test problems, provided sufficiently many processors are
available, the potential parallel processing times are quite competitive with the ILU(0)
times. Encouraged by these predictions, we intend to implement a parallel version of
MI12.

5.8 Limitations of the sparse approximate-inverse preconditioner

The results which we have presented so far have shown that the sparse approximate-
inverse preconditioner can be effective when used with the standard iterative methods
BiCG, CGS, BiCSTAB, and GMRES, although it can be very expensive to compute for
large and difficult problems, particularly in a sequential environment, and it may not give
any improvement over an ILU(0) preconditioner. During our experiments we also found
matrices for which the sparse approximate-inverse preconditioner failed to converge when
used with the iterative methods. In particular, we failed to get convergence for problems
NNC261 and GRE1107 (the ILU(0) preconditioner also failed to converge for these
problems). To try and understand why the sparse approximate-inverse preconditioner was
failing for these problems, we used the Harwell Subroutine Library (1993) routine MA48
(Duff and Reid, 1993) to compute the exact inverses. MA48 is a direct solver and, once

5 NUMERICAL EXPERIMENTS 20

max £ Number of

ÍqÎ »'Ï�T Ñ ¾)ÉJÒ7Ï�T
Matrix � � max �'É/�.�Ê» ¾B½¿T�ÉJ�0�g»M-0T01 processors time time

ORSREG1 0.3 50 0.00 0.15 1 29.60 29.60
8 3.69 3.70

16 1.88 1.89
64 0.52 0.53

256 0.18 0.21
ORSIRR2 0.3 50 0.00 0.15 1 9.28 9.28

8 1.12 1.12
16 0.56 0.56
64 0.14 0.23

256 0.03 0.16
PORES2 0.2 150 0.00 0.81 1 64.26 64.26

8 7.71 7.71
16 3.85 4.55
64 0.96 1.72

256 0.24 0.96
SHERMAN1 0.3 25 0.00 0.03 1 3.13 3.13

8 0.39 0.40
16 0.20 0.20
64 0.05 0.05

256 0.01 0.03
SHERMAN2 0.4 200 0.12 6.22 1 208.19 208.19

8 26.10 26.10
16 13.11 13.11
64 3.37 6.34

256 0.93 6.34
RAEFSKY1 0.3 50 0.96 1.55 1 1069.59 1069.59

8 134.39 134.61
16 67.67 67.94
64 17.64 17.93

256 5.13 5.51
SAYLR4 0.15 300 0.12 26.45 1 2667.49 2667.49

8 333.42 333.42
16 166.78 166.78
64 41.78 41.79

256 10.54 26.57

Table 5.10:

ÍqÎ »(Ï T time versus
Ñ ¾)ÉJÒuÏ T time (in seconds) to compute the sparse approximate-

inverse preconditioner in parallel

6 OTHER METHODS 21

the LU factors of
�

have been determined, it allows repeated calls to the solve routine
MA48C to solve for different right-hand sides. By choosing the right-hand side vector to
be each of the columns of the identity matrix in turn, we were able to compute

� h 1.
Applying MA48 in this way, we found that the inverse of the NNC261 matrix is dense,

having 60136 entries. Furthermore, the absolute values of many of these entries are
not small, so that it is not possible to approximate the inverse well by a sparse matrix.
Similarly, the inverse of the GRE1107 matrix is found to be completely dense, again with
many entries with large absolute values.

Thus, with hindsight, it is easy to see why a sparse approximate-inverse method has
trouble with these matrices. Of course, it is difficult to know a priori whether such a
method is likely to succeed. However, the disadvantage of not knowing if the method will
succeed is shared by its competitors.

6 Other methods

In the methods considered so far, the sparsity pattern for a particular column directly
defines its numerical values. Chow and Saad (1994) propose a different strategy in which
an approximate solution to the system ��K � � � � (6.1)

is sought using a few iterations of a suitable iterative method (in their case GMRES is
used). Once an adequate approximation to the required solution is found, a subset of its
components are reset to zero (dropped). The authors suggest a number of dropping rules.
Of course, solving each equation (6.1) is hardly easier than solving the original problem
(1.1) if high accuracy is required, so the authors accept very low accuracy. The authors
acknowledge that achieving even low accuracy can be difficult if

�
is ill-conditioned. They

therefore propose using the columns of the preconditioner computed so far to precondition
the remaining equations, although they warn that this reduces the scope for parallelism.
Alternatively, they suggest improving the preconditioner using refinement. That is, given
a preconditioner � ��Ö h 1

�
, they construct � �×Ö �

by approximately solving each equation
(6.1), using an iterative method preconditioned by � �×Ö h 1

�
, and then dropping appropriate

values.
Chow and Saad (1994) indicate that their approach is effective, but give little indication

as to the cost of their methods. We would be surprised if these methods were cheaper than
the methods considered elsewhere in this paper, and it is not obvious to us how the more
sophisticated variants may be parallelised effectively.

7 Conclusions

We have considered sparse approximate-inverse preconditioners for the iterative solution of
nonsymmetric linear systems of equations. We have proposed a number of enhancements
to existing methods which appear to improve their performance. In comparison with ILU
preconditioned methods, the sparse approximate-inverse methods are significantly more
expensive to use on a single processor machine. However, the sparse approximate-inverse
methods can be successful when ILU preconditioners fail, and we have indicated that

8 AVAILABILITY OF THE CODES 22

the imbalance in the computation times can be redressed when the methods are used in
parallel. We intend to provide a full parallel implementation in due course.

8 Availability of the codes

The codes MI03, MI04, MI05, MI06, MI11, and MI12 are all written in standard
FORTRAN 77. The codes will be included in the forthcoming Release 12 of the Har-
well Subroutine Library (1996). Anyone interested in using the codes should contact
the HSL Manager: Dr. J. Harding, AEA Technology, Building 552 Harwell, Didcot,
Oxfordshire, OX11 0RA, England, tel. (+44) 1235 434573 fax (+44) 1235 434340, or
e-mail john.harding@aeat.co.uk, who will provide licence details.

9 Acknowledgement

We should like to thank Iain Duff and John Reid for their helpful comments on earlier
drafts of this paper.

References

R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the solution of linear systems:
building blocks for iterative methods. SIAM, Philadelphia, USA, 1994.

M. W. Benson and P. O. Frederickson. Iterative solution of large sparse linear systems
arising in certain multidimensional approximation problems. Utilitas Mathemtica,
22, 127–140, 1982.

A. Björck. Least squares methods. In P. G. Ciarlet and J. L. Lions, eds, ‘Handbook of
Numerical Analysis 1’. Elsevier/North Holland, Amsterdam, 1989.

E. Chow and Y. Saad. Approximate inverse preconditioners for general sparse matrics.
Research Report UMSI 94/101, University of Minnesota Supercomputer Institute,
Minneapolis, Minnesota, USA, 1994.

J. D. F. Cosgrove, J. C. Diaz, and A. Griewank. Approximate inverse preconditionings for
sparse linear systems. International Journal on Computer Mathematics, 44, 91–110,
1992.

J. W. Daniel, W. B. Gragg, L. C. Kaufman, and G. W. Stewart. Reorthogonalization and
stable algorithms for updating the Gram-Scmidt QR factorization. Mathematics of
Computation, 30, 772–795, 1976.

T. Davis. Sparse matrix collection. NA Digest, Volume 94: Issue 42, October 1994.

E. de Doncker and A. K. Gupta. Coarse grain preconditioned conjugate gradient solver
for large sparse systems. In D. H. Bailey, ed., ‘Proceedings of the Seventh SIAM
Conference on Parallel Processing for Scientific Computing’, pp. 472–477. SIAM,
Philadelphia, USA, 1995.

REFERENCES 23

S. Demko, W. F. Moss, and P. W. Smith. Decay rates for inverses of band matrices.
Mathematics of Computation, 43, 491–499, 1984.

J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Solving Linear Systems
on Vector and Shared Memory Computers. SIAM, Philadelphia, USA, 1991.

I. S. Duff and J. K. Reid. MA48, a Fortran code for direct solution of sparse unsymmetric
linear systems of equations. Technical Report RAL-93-072, Rutherford Appleton
Laboratory, Chilton, England, 1993.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Clarendon
Press, Oxford, UK, 1986.

I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing sparse
matrix collection (Release 1). Technical Report RAL-92-086, Rutherford Appleton
Laboratory, Chilton, England, 1992.

P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix
factorizations. Mathematics of Computation, 28, 505–535, 1974.

M. Grote and T. Huckle. Effective parallel preconditioning with sparse approximate
inverses. In D. H. Bailey, ed., ‘Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing’, pp. 466–471. SIAM, Philadelphia,
USA, 1995.

Harwell Subroutine Library. A catalogue of subroutines (release 11). Advanced Comput-
ing Department, Harwell Laboratory, Harwell, UK, 1993.

Harwell Subroutine Library. A catalogue of subroutines (release 12). Advanced Comput-
ing Department, Harwell Laboratory, Harwell, UK, 1996.

T. Huckle and M. Grote. A new approach to parallel preconditioning with sparse ap-
proximate inverses. Technical report SCCM-94-03, School of Engineering, Stanford
University, California, USA, 1994.

L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse precondi-
tionings I. Theory. SIAM Journal on Matrix Analysis and Applications, 14(1), 45–58,
1993.

C. L. Lawson and R. J. Hanson. Solving least squares problems. Prentice-Hall, Englewood
Cliffs, USA, 1974.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1, 146–160, 1972.

