Part 1: Optimality conditions
and why they are important
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clx) >0, glx)+Al(x)y =0, y >0

MSc course on nonlinear optimization

OPTIMIZATION PROBLEMS

Unconstrained minimization:

minimize f(x)
relR"

where the objective function f :IR" — IR

Equality constrained minimization:

minimize f(x) subject to ¢(x) =0
reIR"

where the constraints ¢ : IR" — IR™ (m < n)

Inequality constrained minimization:

minimize f(z) subject to ¢(x) >0
reR"

where ¢ : IR" — IR™ (m may be larger than n)




NOTATION
Use the following throughout the course:

glz) V. f(z) gradient of f

H(z) i Vo f(2) Hessian matrix of f
a;(z) i V.ci(z) gradient of ith constraint
H;(z) i VuCi(T) Hessian of ith constraint

y of ()
Alr) = Ve(z) = e Jacobian matrix of ¢
y'c(x) Lagrangian function, where

y are Lagrange multipliers

H(z,y) = Val(x,y) = Hessian of the Lagrangian

LIPSCHITZ CONTINUITY

© X and ) open sets

o F: X =Y
© || - ||+ and || - ||y are norms
Then

© F'is Lipschitz continuous at x € X if 3 y(x) such that
[F(z) = F(z)lly <~v(z)llz — ]l
for all z € X.
© F is Lipschitz continuous throughout/in X if 3 -y such that
[1F(z) = Fx)lly < 7llz — =[x
for all x and z € X.



USEFUL TAYLOR APPROXIMATIONS

Theorem 1.1. Let & be an open subset of IR", and suppose
f S — IR is continuously differentiable throughout §. Suppose
further that g(x) is Lipschitz continuous at z, with Lipschitz con-
stant v*(z) in some appropriate vector norm. Then, if the segment

r+0seSforall 6 €l0,1],
[f(z+ ) =mi(w +5)| < py"(@)lls])*, where
mE(x+s) = f(x) +g(x) s

If f is twice continuously differentiable throughout & and H(z) is
Lipschitz continuous at , with Lipschitz constant v9(x),

@ +5) —m®(z +s)] < 1%a)||s]|’, where

m®(x + s) = f(z) + g(z)"'s + ysT H(x)s.

MEAN VALUE THEOREM

Theorem 1.2. Let S be an open subset of IR", and suppose f :
S — IR is twice continuously differentiable throughout S. Suppose
further that s # 0, and that the interval [z, 2 + s] € S. Then

Fla+s) = flz)+g(x) s+ 1s"H(2)s

for some z € (z,x + s).




ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.3. Let S be an open subset of IR", and suppose F :
S — IR™ is continuously differentiable throughout S. Suppose
further that V,F'(x) is Lipschitz continuous at z, with Lipschitz
constant yZ(x) in some appropriate vector norm and its induced
matrix norm. Then, if the segment x 4 0s € S for all § € [0, 1],

1F(z+s) = M* @+ s)l| < " (@)lls]I”,

where

MY (x4 s) = F(x) + V,F(x)s.

OPTIMALITY CONDITIONS

Optimality conditions are useful because:

© they provide a means of guaranteeing that a
candidate solution is indeed optimal
(sufficient conditions), and

® they indicate when a point is not optimal
(necessary conditions)

Furthermore they

® guide in the design of algorithms, since
lack of optimality <=-indication of improvement



UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.4. Suppose that f € C!, and that z, is a local mini-
mizer of f(x). Then

g(x,) = 0.

Second-order necessary optimality:

Theorem 1.5. Suppose that f € C?, and that z, is a local mini-
mizer of f(x). Then g(x,) = 0 and H(z,) is positive semi-definite,
that is

STH(CL’*)S > () for all s eIR".

PROOF OF THEOREM 1.4
Suppose otherwise, that g(x.) # 0.
Taylor expansion in the direction —g(z,) gives

flos — ag(@.) = f(2.) — allgl@)]” + O(a?).
For sufficiently small o, 1a||g(z.)]|* > O(a?), and thus

(o — ag(z,)) < f(z.) = jallg(@)l* < f(z.).

This contradicts hypothesis that x, is a local minimizer.



PROOF OF THEOREM 1.5
Suppose otherwise that sT H(x,)s < 0.
Taylor expansion in the direction s gives

f(ze +as) = f(x,) + 1a’s" H(z,)s + O(a?),

since g(z,) = 0. For sufficiently small o, —1a?s' H(z,)s > O(a?),
and thus

@+ as) < flz.) +1a’sT H(z)s < f(x.).

This contradicts hypothesis that x, is a local minimizer.

UNCONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.6. Suppose that f € C?, that x, satisfies the con-
dition g(z.) = 0, and that additionally H (z,) is positive definite,
that is

s'H(x,)s >0 forall s#0¢€IR"

Then x, is an isolated local minimizer of f.




PROOF OF THEOREM 1.6
Continuity = H (x) positive definite V& in open ball N around ..

Ty + 5 € N + generalized mean value theorem = 3z between x, and
T, + s for which

fle+8) = flz.) +g(x)Ts+ 1sTH(2)s
= f(z,)+isTH(2)s
> fla)

Vs # (0 = x, is an isolated local minimizer.

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.7. Suppose that f, ¢ € C', and that z, is a local
minimizer of f(z) subject to ¢(xz) = 0. Then, so long as a first-
order constraint qualification holds, there exist a vector of Lagrange

multipliers y, such that

c(z,) =0 (primal feasibility) and
g(z,) — Al (2,)y, = 0 (dual feasibility).




PROOF OF THEOREM 1.7
Constraint qualification = 3 vector valued C* (C*® for Theorem 1.8)
function x(«v) of the scalar « for which

z(0) =z, and c(z(a)) =0
and
z(a) =z, + as + a’p + O(a?)
+ Taylor’s theorem =—
0 = ¢i(z(a)) = c(zs + as + sa?p + O(a?))
= ¢;(z,) + a (z) (as + ja?p) + ja?sT Hi(x,)s + O(a?)
= aa] (z.)s + 3 (al (z.)p + s"Hi(z,)s) + O(a?)
Matching similar asymptotic terms =
Alz,)s =0 (1)

and
al (z)p+ s Hi(z,)s =0 Yi=1,...,m (2)

Now consider objective function

flz(a)) = flzi+as+a’p+ O(a?))

f(z) + g(za)" (as + 1a?p) + 3a?s" H(z.)s + O(a?)

F(.) + agl@.)ls + 10? (g(w.)Tp + 5T H(z.)s) + O(a?)
(3)

f(x) unconstrained along z(a) =
g(z,)"s =0 for all s such that A(z,)s =0, (4)
Let S be a basis for null space of A(x,) =
g(z,) = AT(2,)y, + Sz, (5)
for some y, and z,. (4) = ¢! (2,)S =0+ A(x,)S =0 =
0= STg(a:*) = STAT(;U*)y* + 878z, = STSz2,.
= STSz, =0+ S full tank = 2z, =0+ (5) =
g(x.) — Al (z,)y. = 0.



EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.8. Suppose that f, ¢ € C?, and that z, is a local
minimizer of f(z) subject to ¢(z) = 0. Then, provided that first-
and second-order constraint qualifications hold, there exist a vector
of Lagrange multipliers y, such that

sTH (24, y,)s >0 forall s € N

where

N ={seIR"| A(z.)s = 0}.

PROOF OF THEOREM 1.8
g(z.) — A (z.)y. = 0. (6)
while (3) =
fla(a) = fla.) +1a® (p' g(w.) + 5" H(z.)s) +O(a®)  (7)
for all s and p satisfying A(z,)s = 0 and
al(z)p+ s"Hi(x,)s =0 Vi=1,...,m. (8)

Hence, necessarily, pTg(x.) + sTH(z.)s > 0 (9)

But (6) + <8> = m m
pTg(J?*) = Z(y*)z‘pTGi(I*) = — Z(y*)iSTHi(JJ*)S

i=1 i=1
— (9) is equivalent to

st (H(CU*) — Z(y*)ZHZ(x*)> s =5 H(xy,15)s >0

for all s satisfying A(z,)s = 0.




INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.9. Suppose that f, ¢ € C!, and that z, is a local
minimizer of f(z) subject to ¢(x) > 0. Then, provided that a first-
order constraint qualification holds, there exist a vector of Lagrange
multipliers y, such that

c(xz,) > 0 (primal feasibility),

g(x.) — Al(z,)y, = 0
and 1y, > 0
ci(z)[y«)i =0 (complementary slackness).

(dual feasibility) and

Often known as the Karush-Kuhn-Tucker (KKT) conditions

PROOF OF THEOREM 1.9

Consider feasible perturbations about x,. ¢;j(z,) > 0 = ¢;(x) > 0
for small perturbations = need only consider perturbations that are
constrained by ¢;(z) > 0 fori € A o {i:ci(z,) =0}.

Consider z(a): x(0) =z, ¢;(z(a)) > 0 for i € A and

z(a) = o, + as + a’p + O(a?)

—_—
0 < c¢i(z(a)) = c(zs + as + 1a*p + O(a?))
= ci(z.) + ai(z.) as + Ja?p + 1a2sTHy(z,)s + O(a?)
= aa;(z,)" s+ La? (ai(:c*)Tp + sTH,-(:U*)s) + O(a?)
Vie A=
sTaj(x,) >0 Vie A (10)
and

plai(z,) + sTHy(z.)s > 0 when sTa;(z,) =0 Vie A (11)




Expansion (3) of f(z(«))
Fla() = f(e.) + agle.)"s + 4o (g(e.)Tp + 5" H(z.)s) + O(c?)
— x, can only be a local minimizer if
S={s]s'g(x,) <0 and s'a;(z,) >0 for i € A} = 0.

Result then follows directly from Farkas’ lemma:

Farkas’ lemma. Given any vectors g and a;, 1 € A, the set

S={s|s'g<0 and s'a; >0 for i € A}

9= Zyiai

€A

is empty if and only if

for some y; > 0,1 € A

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.10. Suppose that f, ¢ € C?, and that z, is a local
minimizer of f(z) subject to ¢(x) > 0. Then, provided that first-
and second-order constraint qualifications hold, there exist a vec-
tor of Lagrange multipliers g, for which primal /dual feasibility and
complementary slackness requirements hold as well as

STH(ZL’*,y*>S >0 forall s e Ny

where

sTa;(x,) > 0if ¢;j(z.) = 0 & [ys); = 0

T, —0if o — .
N+{361R” stai(xy) = 01f ¢;(xy) 0&[y*]z>0&}'




PROOF OF THEOREM 1.10
Expansion

fla(a)) = fla.) +ag(z)'s + ja® (g(z.) p + s H(z,)s) + O(a”)

for change in objective function dominated by as?g(x,) for feasible
perturbations unless s” g(z,) = 0, in which case the expansion

flz(a)) = flz.) +10? (p"g(z.) + 5" H(z.)s) + O(?)
is relevant —-
pTg(x*) + STH(x*)s > () (12)

holds for all feasible s for which s’ g(z,) = 0 =

0=s"g(x,) = Z(y*)isTai(a:*) — cither (y,); = 0 or ai(z,)' s = 0.
icA
— second-order feasible perturbations characterised by s € NV,.

Focus on subset of all feasible arcs that ensure ¢;(x(a)) = 0if (yx); > 0
and ¢;(z(a)) > 0if ()i =0fori € A= se N,.
When ¢;(z(a)) = 0 =

al (z.)p + s' Hi(z.)s =0

Pole) = S ale) = Y () (e

icA €A
(y%)i>0
= = > ()" Hi(w)s = =) _(y)is” Hilw.)s
€A €A
(y*)i>0

+ (12) =  sTH(zy,ys)s = sT (H(az*) — Z(yﬁ@(m)) s

i=1
— pTg<x*) + STH<$*)S > 0.

for all s € N



INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.11. Suppose that f, ¢ € C?, that x, and a vector of
Lagrange multipliers v, satisfy

c(xy) >0, g(xs) — AT<33*)?J* =0,9. >0, and c;(2.)[ys)i =0

and that
sTH(z4,1.)s > 0

for all s in the set

N = {S €Ik sTai(x,) > 0if ¢i(z,) = 0 & [yu]; = 0.

sTa;(x,) = 0if ci(w,) =0 & [1]; > 0 & }

Then z, is an isolated local minimizer of f(z) subject to c(z) > 0.

PROOF OF THEOREM 1.11
Consider any feasible arc z(«). Already shown

stai(z,) >0 Vie A (13)
and

plai(z,) + s" Hi(z,)s > 0 when s”a;(x,) =0 Vie A (14)

and that second-order feasible perturbations are characterized by N,

(14) = plye) = S wp ale) =3 (y)w ailz.)

€A ieA
sTa;(24)=0
> =Y (y)is" Hi(w)s = =Y (ya)is” Hi(w.)s,
icA ieA
sTa;(x4)=0

and hence by assumption that
plg(z,) +sTH(x,)s > st (H(x*) —

(y*)sz'(fL‘*)) S

= sTH(x,,y,)s
Vs e Ny + (3) + (13) = f(z(a)) > f(x,)

NG

ufficiently small a.



