Part 7: SQP methods for equality constrained optimization

Nick Gould (RAL)

 $\begin{array}{c} \text{minimize} \\ x \in \mathbb{R}^n \end{array}$

f(x) subject to c(x) = 0

Part C course on continuoue optimization

EQUALITY CONSTRAINED MINIMIZATION

 $\underset{x \in {\rm I\!R}^n}{{\rm minimize}} \ f(x) \ {\rm subject to} \ c(x) = 0$

where the **objective function** $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and the **constraints** $c : \mathbb{R}^n \longrightarrow \mathbb{R}^m \ (m \le n)$

- \circ assume that $f, c \in C^1$ (sometimes C^2) and Lipschitz
- $\odot\,$ often in practice this assumption violated, but not necessary
- \circ easily generalized to inequality constraints ... but may be better to use interior-point methods for these

OPTIMALITY AND NEWTON'S METHOD

1st order optimality:

$$g(x,y) \equiv g(x) - A^T(x)y = 0$$
 and $c(x) = 0$

nonlinear system (linear in y)

 \implies

 \Longrightarrow

use Newton's method to find a correction (s, w) to (x, y)

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

ALTERNATIVE FORMULATIONS

unsymmetric:

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = - \begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

or symmetric:

$$\begin{pmatrix} H(x,y) & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

or (with $y^{+} = y + w$) unsymmetric:

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ y^{+} \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

or symmetric:

$$\begin{pmatrix} H(x,y) & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

DETAILS

 \odot Often approximate with symmetric $B \approx H(x, y) \Longrightarrow$ e.g.

$$\begin{pmatrix} B & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

 $\odot\,$ solve system using

- symmetric factorizations of B and the Schur Complement $A(x)B^{-1}A^{T}(x)$
- \diamond iterative method (GMRES(k), MINRES, CG within $\mathcal{N}(A), \dots$)

AN ALTERNATIVE INTERPRETATION

- **QP** : minimize $g(x)^T s + \frac{1}{2}s^T Bs$ subject to A(x)s = -c(x)
- \odot QP = quadratic program
- \odot first-order model of constraints c(x+s)
- \odot second-order model of objective $f(x + s) \dots$ but B includes curvature of constraints

solution to QP satisfies

$$\begin{pmatrix} B & A^T(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^+ \end{pmatrix} = - \begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or **successive** quadratic programming or **recursive** quadratic programming (RQP)

Given (x_0, y_0) , set k = 0Until "convergence" iterate: Compute a suitable symmetric B_k using (x_k, y_k) Find $s_k = \arg \min_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s$ subject to $A_k s = -c_k$ along with associated Lagrange multiplier estimates y_{k+1} Set $x_{k+1} = x_k + s_k$ and increase k by 1

ADVANTAGES

- \circ simple
- \odot fast
 - \diamond quadratically convergent with $B_k = H(x_k, y_k)$
 - \diamond superlinearly convergent with good $B_k \approx H(x_k, y_k)$
 - $\triangleright \text{ don't actually need } B_k \longrightarrow H(x_k, y_k)$

PROBLEMS WITH PURE SQP

- \odot how to choose B_k ?
- $\odot\,$ what if ${\rm QP}_k$ is unbounded from below? and when?
- \odot how do we globalize this iteration?

QP SUB-PROBLEM

 $\underset{s \in \mathbb{R}^n}{\text{minimize }} g^T s + \frac{1}{2} sBs \text{ subject to } As = -c$

 $\odot\,$ need constraints to be consistent

 $\diamond\,$ OK if A is full rank

 \circ need *B* to be positive (semi-) definite when *As* = 0 ↔

 $N^T B N$ positive (semi-) definite where the columns of N form a basis for null(A)

 \iff

$$\left(\begin{array}{cc} B & A^T \\ A & 0 \end{array}\right)$$

(is non-singular and) has m –ve eigenvalues

LINESEARCH SQP METHODS

$$s_k = \arg\min_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$

Basic idea:

• Pick $x_{k+1} = x_k + \alpha_k s_k$, where

 $\diamond \alpha_k$ is chosen so that

$$\Phi(x_k + \alpha_k s_k, p_k) "<" \Phi(x_k, p_k)$$

 $\diamond \ \Phi(x,p)$ is a "suitable" merit function

 $\diamond p_k$ are parameters

- \circ vital that s_k is a descent direction for $\Phi(x, p_k)$ at x_k
- \odot normally require that B_k is positive definite

SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

Theorem 7.1. Suppose that B_k is positive definite, and that (s_k, y_{k+1}) are the SQP search direction and its associated Lagrange multiplier estimates for the problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$$

at x_k . Then if x_k is not a first-order critical point, s_k is a descent direction for the quadratic penalty function $\Phi(x, \mu_k)$ at x_k whenever

$$\mu_k \le \frac{\|c(x_k)\|_2}{\|y_{k+1}\|_2}$$

PROOF OF THEOREM 7.1

SQP direction s_k and associated multiplier estimates y_{k+1} satisfy

$$B_k s_k - A_k^T y_{k+1} = -g_k \tag{1}$$

and

$$A_k s_k = -c_k. (2)$$

$$(1) + (2) \implies s_k^T g_k = -s_k^T B_k s_k + s_k^T A_k^T y_{k+1} = -s_k^T B_k s_k - c_k^T y_{k+1}$$
(3)

$$(2) \Longrightarrow \frac{1}{\mu_k} s_k^T A_k^T c_k = -\frac{\|c_k\|_2^2}{\mu_k}.$$
(4)

(3) + (4), the positive definiteness of B_k , the Cauchy-Schwarz inequality, the required bound on μ_k , and $s_k \neq 0$ if x_k is not critical \Longrightarrow

$$s_{k}^{T} \nabla_{x} \Phi(x_{k}) = s_{k}^{T} \left(g_{k} + \frac{1}{\mu_{k}} A_{k}^{T} c_{k} \right) = -s_{k}^{T} B_{k} s_{k} - c_{k}^{T} y_{k+1} - \frac{\|c_{k}\|_{2}^{2}}{\mu_{k}} - \|c_{k}\|_{2} \left(\frac{\|c_{k}\|_{2}}{\mu_{k}} - \|y_{k+1}\|_{2} \right) \le 0$$

NON-DIFFERENTIABLE EXACT PENALTIES The **non-differentiable exact penalty function**:

$$\Phi(x,\rho) = f(x) + \rho \|c(x)\|$$

for any norm $\|\cdot\|$ and scalar $\rho > 0$.

Theorem 7.2. Suppose that $f, c \in C^2$, and that x_* is an isolated local minimizer of f(x) subject to c(x) = 0, with corresponding Lagrange multipliers y_* . Then x_* is also an isolated local minimizer of $\Phi(x, \rho)$ provided that

$$\rho > \|y_*\|_D,$$

where the **dual norm**

$$||y||_D = \sup_{x \neq 0} \frac{y^T x}{||x||}$$

SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

$$\Phi(x,\rho)=f(x)+\rho\|c(x)\|$$

for any norm $\|\cdot\|$ (with dual norm $\|\cdot\|_D$) and scalar $\rho > 0$.

Theorem 7.3. Suppose that B_k is positive definite, and that (s_k, y_{k+1}) are the SQP search direction and its associated Lagrange multiplier estimates for the problem

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$

at x_k . Then if x_k is not a first-order critical point, s_k is a descent direction for the non-differentiable penalty function $\Phi(x, \rho_k)$ at x_k whenever $\rho_k \geq \|y_{k+1}\|_D$

PROOF OF THEOREM 7.3

Taylor's theorem applied to f and $c + (2) \Longrightarrow$ (for small α)

$$\begin{split} \Phi(x_k + \alpha s_k, \rho_k) &- \Phi(x_k, \rho_k) = \alpha s_k^T g_k + \rho_k \left(\|c_k + \alpha A_k s_k\| - \|c_k\| \right) + O(\alpha^2) \\ &= \alpha s_k^T g_k + \rho_k \left(\|(1 - \alpha) c_k\| - \|c_k\| \right) + O(\alpha^2) \\ &= \alpha \left(s_k^T g_k - \rho_k \|c_k\| \right) + O\left(\alpha^2\right) \end{split}$$

+ (3), the positive definiteness of B_k , the Hölder inequality, and $s_k \neq 0$ if x_k is not critical \Longrightarrow

$$\begin{split} \Phi(x_k + \alpha s_k, \rho_k) &- \Phi(x_k, \rho_k) = -\alpha \left(s_k^T B_k s_k + c_k^T y_{k+1} + \rho_k \|c_k\| \right) + O(\alpha^2) \\ &< -\alpha \left(-\|c_k\| \|y_{k+1}\|_D + \rho_k \|c_k\| \right) + O(\alpha^2) \\ &= -\alpha \|c_k\| \left(\rho_k - \|y_{k+1}\|_D \right) + O(\alpha^2) < 0 \end{split}$$

because of the required bound on ρ_k , for sufficiently small α . Hence sufficiently small steps along s_k from non-critical x_k reduce $\Phi(x, \rho_k)$.

THE MARATOS EFFECT

 ℓ_1 non-differentiable exact penalty function ($\rho = 1$): $f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$ and $c(x) = x_1^2 + x_2^2 - 1$ solution: $x_* = (1, 0), y_* = \frac{3}{2}$

Maratos effect: merit function may prevent acceptance of the SQP step arbitrarily close to $x_* \implies$ slow convergence

AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is not adequately represented by linearization in the SQP model:

$$c(x_k + s_k) = O(||s_k||^2)$$

 \implies need to correct for this curvature

 \implies use a **second-order correction** from $x_k + s_k$:

$$c(x_k + s_k + s_k^{\rm C}) = o(\|s_k\|^2)$$

also do not want to destroy potential for fast convergence \implies

 $s_k^{\scriptscriptstyle \mathrm{C}} = o(s_k)$

POPULAR 2ND-ORDER CORRECTIONS

 \circ minimum norm solution to $c(x_k + s_k) + A(x_k + s_k)s_k^c = 0$

$$\begin{pmatrix} I & A^T(x_k + s_k) \\ A(x_k + s_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^{\rm c} \\ -y_{k+1}^{\rm c} \end{pmatrix} = -\begin{pmatrix} 0 \\ c(x_k + s_k) \end{pmatrix}$$

• minimum norm solution to $c(x_k + s_k) + A(x_k)s_k^{c} = 0$

$$\begin{pmatrix} I & A^T(x_k) \\ A(x_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^{\rm C} \\ -y_{k+1}^{\rm C} \end{pmatrix} = -\begin{pmatrix} 0 \\ c(x_k + s_k) \end{pmatrix}$$

 \odot another SQP step from $x_k + s_k$

$$\begin{pmatrix} H(x_k+s_k,y_k^+) & A^T(x_k+s_k) \\ A(x_k+s_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^{\rm C} \\ -y_{k+1}^{\rm C} \end{pmatrix} = -\begin{pmatrix} g(x_k+s_k) \\ c(x_k+s_k) \end{pmatrix}$$

 $\odot\,$ etc., etc.

2ND-ORDER CORRECTIONS IN ACTION

 ℓ_1 non-differentiable exact penalty function $(\rho = 1)$: $f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$ and $c(x) = x_1^2 + x_2^2 - 1$ solution: $x_* = (1, 0), y_* = \frac{3}{2}$

 \odot (very) fast convergence

 $\odot \ x_k + s_k + s_k^{\scriptscriptstyle \rm C}$ reduces $\Phi \Longrightarrow$ global convergence

TRUST-REGION SQP METHODS

Obvious trust-region approach:

 $s_k = \underset{s \in \mathbb{R}^n}{\operatorname{arg\,min}} g_k^T s + \frac{1}{2} s^T B_k s$ subject to $A_k s = -c_k$ and $||s|| \le \Delta_k$

• do not require that B_k be positive definite \implies can use $B_k = H(x_k, y_k)$

 \odot if $\Delta_k < \Delta^{\text{CRIT}}$ where

 $\Delta^{\text{CRIT}} \stackrel{\text{def}}{=} \min \|s\|$ subject to $A_k s = -c_k$

 \implies no solution to trust-region subproblem \implies simple trust-region approach to SQP is flawed if $c_k \neq 0 \implies$ need to consider alternatives

INFEASIBILITY OF THE SQP STEP

ALTERNATIVES

- $\odot\,$ the $\mathrm{S}\ell_{\mathbf{p}}\mathrm{QP}$ method of Fletcher
- $\odot\,$ composite step SQP methods
 - constraint relaxation (Vardi)
 - ◇ constraint reduction (Byrd–Omojokun)
 - ◊ constraint lumping (Celis−Dennis−Tapia)
- $\odot\,$ the filter-SQP approach of Fletcher and Leyffer

THE $S\ell_pQP$ METHOD

Try to minimize the ℓ_p -(exact) penalty function

$$\Phi(x,\rho) = f(x) + \rho \|c(x)\|_p$$

for sufficiently large $\rho > 0$ and some ℓ_p norm $(1 \le p \le \infty)$, using a trust-region approach

Suitable model problem: $\ell_p \mathbf{QP}$

$$\underset{s \in \mathbb{R}^n}{\text{minimize}} (f_k +) g_k^T s + \frac{1}{2} s^T B_k s + \rho \|c_k + A_k s\|_p \text{ subject to } \|s\| \le \Delta_k$$

- \odot model problem always consistent
- \circ when ρ and Δ_k are large enough, model minimizer = SQP direction
- \circ when the norms are polyhedral (e.g., ℓ_1 or ℓ_{∞} norms), $\ell_p QP$ is equivalent to a quadratic program ...

THE ℓ_1 QP SUBPROBLEM

 ℓ_1 QP model problem with an ℓ_∞ trust region

 $\underset{s \in \mathbb{R}^n}{\text{minimize}} \ g_k^T s + \frac{1}{2} s^T B_k s + \rho \|c_k + A_k s\|_1 \text{ subject to } \|s\|_{\infty} \leq \Delta_k$

But

$$c_k + A_k s = u - v$$
, where $(u, v) \ge 0$

 $\implies \ell_1 \text{QP}$ equivalent to quadratic program (QP):

$$\begin{array}{ll} \underset{s \in \mathbb{R}^{n}, \, u, v \in \mathbb{R}^{m}}{\text{minimize}} & g_{k}^{T}s + \frac{1}{2}s^{T}B_{k}s + \rho(e^{T}u + e^{T}v)\\ \text{subject to} & A_{k}s - u + v = -c_{k}\\ & u \geq 0, \ v \geq 0\\ & \text{and} & -\Delta_{k}e \leq s \leq \Delta_{k}e \end{array}$$

 \odot good methods for solving QP

 \odot can exploit structure of u and v variables

PRACTICAL S ℓ_1 QP METHODS

 $\odot\,$ Cauchy point requires solution to $\ell_1 \text{LP}$ model:

$$\underset{s \in \mathbb{R}^n}{\text{minimize}} \ g_k^T s + \rho \|c_k + A_k s\|_1 \text{ subject to } \|s\|_{\infty} \le \Delta_k$$

- \odot approximate solutions to both $\ell_1 LP$ and $\ell_1 QP$ subproblems suffice
- \odot need to adjust ρ as method progresses
- \odot easy to generalize to inequality constraints
- globally convergent, but needs second-order correction for fast asymptotic convergence
- if c(x) = 0 are inconsistent, converges to (locally) least value of infeasibility ||c(x)||

COMPOSITE-STEP METHODS

Aim: find composite step

$$s_k = n_k + t_k$$

where

the **normal step** n_k moves towards feasibility of the linearized constraints (within the trust region)

$$\|A_k n_k + c_k\| < \|c_k\|$$

(model objective may get worse)

the **tangential step** t_k reduces the model objective function (within the trust-region) without sacrificing feasibility obtained from n_k

$$A_k(n_k + t_k) = A_k n_k \implies A_k t_k = 0$$

NORMAL AND TANGENTIAL STEPS

Points on dotted line are all potential tangential steps

CONSTRAINT RELAXATION — VARDI

normal step: relax

$$A_k s = -c_k$$
 and $||s|| \le \Delta_k$

to

$$A_k n = -\sigma_k c_k$$
 and $||n|| \le \Delta_k$

where $\sigma_k \in [0, 1]$ is small enough so that there is a feasible n_k

tangential step:

(approximate) arg min

$$t \in \mathbb{R}^n$$
 $(g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t$
subject to $A_k t = 0$ and $||n_k + t|| \le \Delta_k$

Snags:

- \odot choice of σ_k
- $\odot\,$ incompatible constraints

CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace

$$A_k s = -c_k$$
 and $||s|| \le \Delta_k$

by

approximately minimize $||A_k n + c_k||$ subject to $||n|| \leq \Delta_k$

tangential step: as in Vardi

- \odot use conjugate gradients to solve both subproblems \implies Cauchy points in both cases
- $\odot\,$ globally convergent using ℓ_2 merit function
- $\odot\,$ basis of successful KNITRO package

CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace

$$A_k s = -c_k$$
 and $||s|| \le \Delta_k$

by

$$||A_k n + c_k|| \le \sigma_k$$
 and $||n|| \le \Delta_k$

where $\sigma_k \in [0, ||c_k||]$ is large enough so that there is a feasible n_k

tangential step:

(approximate) arg min

$$t \in \mathbb{R}^n$$
 $(g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t$
subject to $||A_k t + A_k n_k + c_k|| \le \sigma_k$ and $||t + n_k|| \le \Delta_k$

Snags:

- \odot choice of σ_k
- $\odot\,$ tangential subproblem is (NP?) hard

FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

- \circ trust-region and linearized constraints compatible if c_k is small enough so long as c(x) = 0 is compatible \implies if trust-region subproblem incompatible, simply move closer to constraints
- \circ merit functions depend on arbitrary parameters ⇒ use a different mechanism to measure progress

Let $\theta = \|c(x)\|$

A filter is a set of pairs $\{(\theta_k, f_k)\}$ such that no member dominates another, i.e., it does not happen that

$$\theta_i$$
"<" θ_j and f_i "<" f_j

for any pair of filter points $i\neq j$

A FILTER WITH FOUR ENTRIES

BASIC FILTER METHOD

- \odot if possible find
 - $s_k = \underset{s \in \mathbb{R}^n}{\operatorname{arg\,min}} g_k^T s + \frac{1}{2} s^T B_k s$ subject to $A_k s = -c_k$ and $||s|| \le \Delta_k$

otherwise, find s_k :

$$\theta(x_k + s_k)$$
"<" θ_i for all $i \le k$

- if $x_k + s_k$ is "acceptable" for the filter, set $x_{k+1} = x_k + s_k$ and possibly increase Δ_k and "prune" filter
- $\odot~$ otherwise reduce Δ_k and try again

In practice, far more complicated than this!