
Part 7: SQP methods for

equality constrained optimization

Nick Gould (RAL)

minimize
x∈IRn

f(x) subject to c(x) = 0

Part C course on continuoue optimization

EQUALITY CONSTRAINED MINIMIZATION

minimize
x∈IRn

f(x) subject to c(x) = 0

where the objective function f : IRn −→ IR

and the constraints c : IRn −→ IRm (m ≤ n)

� assume that f, c ∈ C1 (sometimes C2) and Lipschitz

� often in practice this assumption violated, but not necessary

� easily generalized to inequality constraints . . . but may be

better to use interior-point methods for these



OPTIMALITY AND NEWTON’S METHOD

1st order optimality:

g(x, y) ≡ g(x) − AT (x)y = 0 and c(x) = 0

nonlinear system (linear in y)

=⇒

use Newton’s method to find a correction (s, w) to (x, y)

=⇒
(

H(x, y) −AT (x)

A(x) 0

)(

s

w

)

= −

(

g(x, y)

c(x)

)

ALTERNATIVE FORMULATIONS

unsymmetric:
(

H(x, y) −AT (x)

A(x) 0

)(

s

w

)

= −

(

g(x, y)

c(x)

)

or symmetric:
(

H(x, y) AT (x)

A(x) 0

)(

s

−w

)

= −

(

g(x, y)

c(x)

)

or (with y+ = y + w) unsymmetric:
(

H(x, y) −AT (x)

A(x) 0

)(

s

y+

)

= −

(

g(x)

c(x)

)

or symmetric:
(

H(x, y) AT (x)

A(x) 0

)(

s

−y+

)

= −

(

g(x)

c(x)

)



DETAILS

� Often approximate with symmetric B ≈ H(x, y) =⇒ e.g.
(

B AT (x)

A(x) 0

)(

s

−y+

)

= −

(

g(x)

c(x)

)

� solve system using

� unsymmetric (LU) factorization of

(

B −AT (x)

A(x) 0

)

� symmetric (indefinite) factorization of

(

B AT (x)

A(x) 0

)

� symmetric factorizations of B and the

Schur Complement A(x)B−1AT (x)

� iterative method (GMRES(k), MINRES, CG within N (A),. . . )

AN ALTERNATIVE INTERPRETATION

QP : minimize
s∈IRn

g(x)Ts + 1
2s

TBs subject to A(x)s = −c(x)

� QP = quadratic program

� first-order model of constraints c(x + s)

� second-order model of objective f(x + s) . . . but

B includes curvature of constraints

solution to QP satisfies
(

B AT (x)

A(x) 0

)(

s

−y+

)

= −

(

g(x)

c(x)

)



SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming

or recursive quadratic programming (RQP)

Given (x0, y0), set k = 0

Until “convergence” iterate:

Compute a suitable symmetric Bk using (xk, yk)

Find

sk = arg min
s∈IRn

gT
k s + 1

2s
TBks subject to Aks = −ck

along with associated Lagrange multiplier estimates yk+1

Set xk+1 = xk + sk and increase k by 1

ADVANTAGES

� simple

� fast

� quadratically convergent with Bk = H(xk, yk)

� superlinearly convergent with good Bk ≈ H(xk, yk)

. don’t actually need Bk −→ H(xk, yk)

PROBLEMS WITH PURE SQP

� how to choose Bk?

� what if QPk is unbounded from below? and when?

� how do we globalize this iteration?



QP SUB-PROBLEM

minimize
s∈IRn

gTs + 1
2sBs subject to As = −c

� need constraints to be consistent

� OK if A is full rank

� need B to be positive (semi-) definite when As = 0

⇐⇒

NTBN positive (semi-) definite where the columns of N

form a basis for null(A)

⇐⇒
(

B AT

A 0

)

(is non-singular and) has m −ve eigenvalues

LINESEARCH SQP METHODS

sk = arg min
s∈IRn

gT
k s + 1

2s
TBks subject to Aks = −ck

Basic idea:

� Pick xk+1 = xk + αksk, where

� αk is chosen so that

Φ(xk + αksk, pk)“<”Φ(xk, pk)

� Φ(x, p) is a “suitable” merit function

� pk are parameters

� vital that sk is a descent direction for Φ(x, pk) at xk

� normally require that Bk is positive definite



SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

Φ(x, µ) = f(x) +
1

2µ
‖c(x)‖2

2

Theorem 7.1. Suppose that Bk is positive definite, and that

(sk, yk+1) are the SQP search direction and its associated Lagrange

multiplier estimates for the problem

minimize
x∈IRn

f(x) subject to c(x) = 0

at xk. Then if xk is not a first-order critical point, sk is a descent

direction for the quadratic penalty function Φ(x, µk) at xk whenever

µk ≤
‖c(xk)‖2

‖yk+1‖2

PROOF OF THEOREM 7.1

SQP direction sk and associated multiplier estimates yk+1 satisfy

Bksk − AT
k yk+1 = −gk (1)

and

Aksk = −ck. (2)

(1) + (2) =⇒ sT
k gk = −sT

k Bksk + sT
k AT

k yk+1 = −sT
k Bksk − cT

k yk+1

(3)

(2) =⇒
1

µk

sT
k AT

k ck = −
‖ck‖

2
2

µk

. (4)

(3) + (4), the positive definiteness of Bk, the Cauchy-Schwarz inequal-

ity, the required bound on µk, and sk 6= 0 if xk is not critical =⇒

sT
k∇xΦ(xk) = sT

k

(

gk +
1

µk

AT
k ck

)

= −sT
k Bksk − cT

k yk+1 −
‖ck‖

2
2

µk

< −‖ck‖2

(

‖ck‖2

µk

− ‖yk+1‖2

)

≤ 0



NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

Φ(x, ρ) = f(x) + ρ‖c(x)‖

for any norm ‖ · ‖ and scalar ρ > 0.

Theorem 7.2. Suppose that f, c ∈ C2, and that x∗ is an isolated

local minimizer of f(x) subject to c(x) = 0, with corresponding

Lagrange multipliers y∗. Then x∗ is also an isolated local minimizer

of Φ(x, ρ) provided that
ρ > ‖y∗‖D,

where the dual norm

‖y‖D = sup
x6=0

yTx

‖x‖
.

SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

Φ(x, ρ) = f(x) + ρ‖c(x)‖

for any norm ‖ · ‖ (with dual norm ‖ · ‖D) and scalar ρ > 0.

Theorem 7.3. Suppose that Bk is positive definite, and that

(sk, yk+1) are the SQP search direction and its associated Lagrange

multiplier estimates for the problem

minimize
x∈IRn

f(x) subject to c(x) = 0

at xk. Then if xk is not a first-order critical point, sk is a descent

direction for the non-differentiable penalty function Φ(x, ρk) at xk

whenever ρk ≥ ‖yk+1‖D



PROOF OF THEOREM 7.3

Taylor’s theorem applied to f and c + (2) =⇒ (for small α)

Φ(xk + αsk, ρk) − Φ(xk, ρk) = αsT
k gk + ρk

(

‖ck + αAksk‖ − ‖ck‖
)

+ O(α2)

= αsT
k gk + ρk

(

‖(1 − α)ck‖ − ‖ck‖
)

+ O(α2)

= α
(

sT
k gk − ρk‖ck‖

)

+ O
(

α2
)

+ (3), the positive definiteness of Bk, the Hölder inequality, and sk 6= 0

if xk is not critical =⇒

Φ(xk + αsk, ρk) − Φ(xk, ρk) = −α
(

sT
k Bksk + cT

k yk+1 + ρk‖ck‖
)

+ O(α2)

< −α
(

−‖ck|‖yk+1‖D + ρk‖ck‖
)

+ O(α2)

= −α‖ck‖
(

ρk − ‖yk+1‖D

)

+ O(α2) < 0

because of the required bound on ρk, for sufficiently small α. Hence

sufficiently small steps along sk from non-critical xk reduce Φ(x, ρk).

THE MARATOS EFFECT
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f(x) = 2(x2
1 + x2

2 − 1) − x1

and c(x) = x2
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solution: x∗ = (1, 0), y∗ = 3
2

Maratos effect: merit function may prevent acceptance of the

SQP step arbitrarily close to x∗ =⇒ slow convergence



AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is

not adequately represented by linearization in the SQP model:

c(xk + sk) = O(‖sk‖
2)

=⇒ need to correct for this curvature

=⇒ use a second-order correction from xk + sk:

c(xk + sk + sC

k) = o(‖sk‖
2)

also do not want to destroy potential for fast convergence =⇒

sC

k = o(sk)

POPULAR 2ND-ORDER CORRECTIONS

� minimum norm solution to c(xk + sk) + A(xk + sk)s
C

k = 0
(

I AT (xk + sk)

A(xk + sk) 0

)(

sC

k

−yC

k+1

)

= −

(

0

c(xk + sk)

)

� minimum norm solution to c(xk + sk) + A(xk)s
C

k = 0
(

I AT (xk)

A(xk) 0

)(

sC

k

−yC

k+1

)

= −

(

0

c(xk + sk)

)

� another SQP step from xk + sk
(

H(xk + sk, y
+
k ) AT (xk + sk)

A(xk + sk) 0

)(

sC

k

−yC

k+1

)

= −

(

g(xk + sk)

c(xk + sk)

)

� etc., etc.



2ND-ORDER CORRECTIONS IN ACTION
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� (very) fast convergence

� xk + sk + sC

k reduces Φ =⇒ global convergence

TRUST-REGION SQP METHODS

Obvious trust-region approach:

sk = arg min
s∈IRn

gT
k s + 1

2s
TBks subject to Aks = −ck and ‖s‖ ≤ ∆k

� do not require that Bk be positive definite

=⇒ can use Bk = H(xk, yk)

� if ∆k < ∆CRIT where

∆CRIT def
= min ‖s‖ subject to Aks = −ck

=⇒ no solution to trust-region subproblem

=⇒ simple trust-region approach to SQP is flawed if ck 6= 0 =⇒

need to consider alternatives



INFEASIBILITY OF THE SQP STEP
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ALTERNATIVES

� the S`pQP method of Fletcher

� composite step SQP methods

� constraint relaxation (Vardi)

� constraint reduction (Byrd–Omojokun)

� constraint lumping (Celis–Dennis–Tapia)

� the filter-SQP approach of Fletcher and Leyffer



THE S`pQP METHOD

Try to minimize the `p-(exact) penalty function

Φ(x, ρ) = f(x) + ρ‖c(x)‖p

for sufficiently large ρ > 0 and some `p norm (1 ≤ p ≤ ∞), using a

trust-region approach

Suitable model problem: `pQP

minimize
s∈IRn

(fk+) gT
k s + 1

2s
TBks + ρ‖ck + Aks‖p subject to ‖s‖ ≤ ∆k

� model problem always consistent

� when ρ and ∆k are large enough, model minimizer = SQP direction

� when the norms are polyhedral (e.g., `1 or `∞ norms), `pQP is

equivalent to a quadratic program . . .

THE `1QP SUBPROBLEM

`1QP model problem with an `∞ trust region

minimize
s∈IRn

gT
k s + 1

2s
TBks + ρ‖ck + Aks‖1 subject to ‖s‖∞ ≤ ∆k

But

ck + Aks = u − v, where (u, v) ≥ 0

=⇒ `1QP equivalent to quadratic program (QP):

minimize
s∈IRn, u,v∈IRm

gT
k s + 1

2s
TBks + ρ(eTu + eTv)

subject to Aks − u + v = −ck

u ≥ 0, v ≥ 0

and −∆ke ≤ s ≤ ∆ke

� good methods for solving QP

� can exploit structure of u and v variables



PRACTICAL S`1QP METHODS

� Cauchy point requires solution to `1LP model:

minimize
s∈IRn

gT
k s + ρ‖ck + Aks‖1 subject to ‖s‖∞ ≤ ∆k

� approximate solutions to both `1LP and `1QP subproblems suffice

� need to adjust ρ as method progresses

� easy to generalize to inequality constraints

� globally convergent, but needs second-order correction for fast

asymptotic convergence

� if c(x) = 0 are inconsistent, converges to (locally) least value

of infeasibility ‖c(x)‖

COMPOSITE-STEP METHODS

Aim: find composite step

sk = nk + tk

where

the normal step nk moves towards feasibility of the linearized

constraints (within the trust region)

‖Aknk + ck‖ < ‖ck‖

(model objective may get worse)

the tangential step tk reduces the model objective function (within

the trust-region) without sacrificing feasibility obtained from nk

Ak(nk + tk) = Aknk =⇒ Aktk = 0



NORMAL AND TANGENTIAL STEPS

Points on dotted line are all potential tangential steps
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CONSTRAINT RELAXATION — VARDI

normal step: relax

Aks = −ck and ‖s‖ ≤ ∆k

to

Akn = −σkck and ‖n‖ ≤ ∆k

where σk ∈ [0, 1] is small enough so that there is a feasible nk

tangential step:

(approximate) arg min
t∈IRn

(gk + Bknk)
T t + 1

2t
TBkt

subject to Akt = 0 and ‖nk + t‖ ≤ ∆k

Snags:

� choice of σk

� incompatible constraints



CONSTRAINT REDUCTION — BYRD–OMOJOKUN

normal step: replace

Aks = −ck and ‖s‖ ≤ ∆k

by

approximately minimize ‖Akn + ck‖ subject to ‖n‖ ≤ ∆k

tangential step: as in Vardi

� use conjugate gradients to solve both subproblems

=⇒ Cauchy points in both cases

� globally convergent using `2 merit function

� basis of successful KNITRO package

CONSTRAINT LUMPING — CELIS–DENNIS–TAPIA

normal step: replace

Aks = −ck and ‖s‖ ≤ ∆k

by

‖Akn + ck‖ ≤ σk and ‖n‖ ≤ ∆k

where σk ∈ [0, ‖ck‖] is large enough so that there is a feasible nk

tangential step:

(approximate) arg min
t∈IRn

(gk + Bknk)
T t + 1

2t
TBkt

subject to ‖Akt + Aknk + ck‖ ≤ σk and ‖t + nk‖ ≤ ∆k

Snags:

� choice of σk

� tangential subproblem is (NP?) hard



FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

� trust-region and linearized constraints compatible if ck is small

enough so long as c(x) = 0 is compatible

=⇒ if trust-region subproblem incompatible, simply move closer to

constraints

� merit functions depend on arbitrary parameters

=⇒ use a different mechanism to measure progress

Let θ = ‖c(x)‖

A filter is a set of pairs {(θk, fk)} such that no member dominates

another, i.e., it does not happen that

θi“<”θj and fi“<”fj

for any pair of filter points i 6= j

A FILTER WITH FOUR ENTRIES

6

0

f(x)

-

θ(x)

s

1

s
4

s
2

s
3



BASIC FILTER METHOD

� if possible find

sk = arg min
s∈IRn

gT
k s + 1

2s
TBks subject to Aks = −ck and ‖s‖ ≤ ∆k

otherwise, find sk:

θ(xk + sk)“<”θi for all i ≤ k

� if xk + sk is “acceptable” for the filter, set xk+1 = xk + sk

and possibly increase ∆k and “prune” filter

� otherwise reduce ∆k and try again

In practice, far more complicated than this!


