Part 7: SQP methods for equality constrained optimization

Nick Gould (RAL)
minimize $\quad f(x)$ subject to $c(x)=0$ $x \in \mathbb{R}^{n}$

Part C course on continuoue optimization

EQUALITY CONSTRAINED MINIMIZATION

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ and the constraints $c: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}(m \leq n)$
\odot assume that $f, c \in C^{1}$ (sometimes C^{2}) and Lipschitz

- often in practice this assumption violated, but not necessary
- easily generalized to inequality constraints ... but may be better to use interior-point methods for these

1st order optimality:

$$
g(x, y) \equiv g(x)-A^{T}(x) y=0 \text { and } c(x)=0
$$

nonlinear system (linear in y)
\Longrightarrow
use Newton's method to find a correction (s, w) to (x, y)

$$
\Longrightarrow \quad\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{w}=-\binom{g(x, y)}{c(x)}
$$

ALTERNATIVE FORMULATIONS

unsymmetric:

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{w}=-\binom{g(x, y)}{c(x)}
$$

or symmetric:

$$
\left(\begin{array}{cc}
H(x, y) & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-w}=-\binom{g(x, y)}{c(x)}
$$

or (with $y^{+}=y+w$) unsymmetric:

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{y^{+}}=-\binom{g(x)}{c(x)}
$$

or symmetric:

$$
\left(\begin{array}{cc}
H(x, y) & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-y^{+}}=-\binom{g(x)}{c(x)}
$$

- Often approximate with symmetric $B \approx H(x, y) \Longrightarrow$ e.g.

$$
\left(\begin{array}{cc}
B & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-y^{+}}=-\binom{g(x)}{c(x)}
$$

\odot solve system using
\diamond unsymmetric (LU) factorization of $\left(\begin{array}{cc}B & -A^{T}(x) \\ A(x) & 0\end{array}\right)$
\diamond symmetric (indefinite) factorization of $\left(\begin{array}{cc}B & A^{T}(x) \\ A(x) & 0\end{array}\right)$

- symmetric factorizations of B and the Schur Complement $A(x) B^{-1} A^{T}(x)$
- iterative method (GMRES(k), MINRES, CG within $\mathcal{N}(A), \ldots)$

AN ALTERNATIVE INTERPRETATION

QP : minimize $g(x)^{T} s+\frac{1}{2} s^{T} B s$ subject to $A(x) s=-c(x)$ $s \in \mathbb{R}^{n}$

- $\mathrm{QP}=$ quadratic program
- first-order model of constraints $c(x+s)$
- second-order model of objective $f(x+s) \ldots$ but B includes curvature of constraints
solution to QP satisfies

$$
\left(\begin{array}{cc}
B & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-y^{+}}=-\binom{g(x)}{c(x)}
$$

SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming or recursive quadratic programming (RQP)

Given $\left(x_{0}, y_{0}\right)$, set $k=0$
Until "convergence" iterate:
Compute a suitable symmetric B_{k} using $\left(x_{k}, y_{k}\right)$
Find

$$
s_{k}=\underset{s \in \mathbb{R}^{n}}{\arg \min } g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s \text { subject to } A_{k} s=-c_{k}
$$

along with associated Lagrange multiplier estimates y_{k+1}
Set $x_{k+1}=x_{k}+s_{k}$ and increase k by 1

ADVANTAGES

- simple
- fast
\diamond quadratically convergent with $B_{k}=H\left(x_{k}, y_{k}\right)$
\diamond superlinearly convergent with good $B_{k} \approx H\left(x_{k}, y_{k}\right)$
\triangleright don't actually need $B_{k} \longrightarrow H\left(x_{k}, y_{k}\right)$

PROBLEMS WITH PURE SQP

\odot how to choose B_{k} ?
\odot what if QP_{k} is unbounded from below? and when?
\odot how do we globalize this iteration?

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} g^{T} s+\frac{1}{2} s B s \text { subject to } A s=-c
$$

- need constraints to be consistent
\diamond OK if A is full rank
\odot need B to be positive (semi-) definite when $A s=0$
$N^{T} B N$ positive (semi-) definite where the columns of N form a basis for $\operatorname{null}(A)$
\Longleftrightarrow

$$
\left(\begin{array}{cc}
B & A^{T} \\
A & 0
\end{array}\right)
$$

(is non-singular and) has m-ve eigenvalues

LINESEARCH SQP METHODS

$$
s_{k}=\underset{s \in \mathbb{R}^{n}}{\arg \min } g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s \text { subject to } A_{k} s=-c_{k}
$$

Basic idea:

- Pick $x_{k+1}=x_{k}+\alpha_{k} s_{k}$, where
$\diamond \alpha_{k}$ is chosen so that

$$
\Phi\left(x_{k}+\alpha_{k} s_{k}, p_{k}\right) "<" \Phi\left(x_{k}, p_{k}\right)
$$

$\diamond \Phi(x, p)$ is a "suitable" merit function

- p_{k} are parameters
- vital that s_{k} is a descent direction for $\Phi\left(x, p_{k}\right)$ at x_{k}
\odot normally require that B_{k} is positive definite

SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

$$
\Phi(x, \mu)=f(x)+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}
$$

Theorem 7.1. Suppose that B_{k} is positive definite, and that $\left(s_{k}, y_{k+1}\right)$ are the SQP search direction and its associated Lagrange multiplier estimates for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

at x_{k}. Then if x_{k} is not a first-order critical point, s_{k} is a descent direction for the quadratic penalty function $\Phi\left(x, \mu_{k}\right)$ at x_{k} whenever

$$
\mu_{k} \leq \frac{\left\|c\left(x_{k}\right)\right\|_{2}}{\left\|y_{k+1}\right\|_{2}}
$$

PROOF OF THEOREM 7.1

SQP direction s_{k} and associated multiplier estimates y_{k+1} satisfy

$$
\begin{equation*}
B_{k} s_{k}-A_{k}^{T} y_{k+1}=-g_{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{gather*}
A_{k} s_{k}=-c_{k} . \tag{2}\\
(1)+(2) \Longrightarrow s_{k}^{T} g_{k}=-s_{k}^{T} B_{k} s_{k}+s_{k}^{T} A_{k}^{T} y_{k+1}=-s_{k}^{T} B_{k} s_{k}-c_{k}^{T} y_{k+1}
\end{gather*}
$$

$$
\begin{equation*}
(2) \Longrightarrow \frac{1}{\mu_{k}} s_{k}^{T} A_{k}^{T} c_{k}=-\frac{\left\|c_{k}\right\|_{2}^{2}}{\mu_{k}} \tag{3}
\end{equation*}
$$

(3) $+(4)$, the positive definiteness of B_{k}, the Cauchy-Schwarz inequality, the required bound on μ_{k}, and $s_{k} \neq 0$ if x_{k} is not critical \Longrightarrow

$$
\begin{aligned}
s_{k}^{T} \nabla_{x} \Phi\left(x_{k}\right) & =s_{k}^{T}\left(g_{k}+\frac{1}{\mu_{k}} A_{k}^{T} c_{k}\right)=-s_{k}^{T} B_{k} s_{k}-c_{k}^{T} y_{k+1}-\frac{\left\|c_{k}\right\|_{2}^{2}}{\mu_{k}} \\
& <-\left\|c_{k}\right\|_{2}\left(\frac{\left\|c_{k}\right\|_{2}}{\mu_{k}}-\left\|y_{k+1}\right\|_{2}\right) \leq 0
\end{aligned}
$$

NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

$$
\Phi(x, \rho)=f(x)+\rho\|c(x)\|
$$

for any norm $\|\cdot\|$ and scalar $\rho>0$.

Theorem 7.2. Suppose that $f, c \in C^{2}$, and that x_{*} is an isolated local minimizer of $f(x)$ subject to $c(x)=0$, with corresponding Lagrange multipliers y_{*}. Then x_{*} is also an isolated local minimizer of $\Phi(x, \rho)$ provided that

$$
\rho>\left\|y_{*}\right\|_{D},
$$

where the dual norm

$$
\|y\|_{D}=\sup _{x \neq 0} \frac{y^{T} x}{\|x\|} .
$$

SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

$$
\Phi(x, \rho)=f(x)+\rho\|c(x)\|
$$

for any norm $\|\cdot\|\left(\right.$ with dual norm $\left.\|\cdot\|_{D}\right)$ and scalar $\rho>0$.

Theorem 7.3. Suppose that B_{k} is positive definite, and that $\left(s_{k}, y_{k+1}\right)$ are the SQP search direction and its associated Lagrange multiplier estimates for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

at x_{k}. Then if x_{k} is not a first-order critical point, s_{k} is a descent direction for the non-differentiable penalty function $\Phi\left(x, \rho_{k}\right)$ at x_{k} whenever $\rho_{k} \geq\left\|y_{k+1}\right\|_{D}$

PROOF OF THEOREM 7.3

Taylor's theorem applied to f and $c+(2) \Longrightarrow$ (for small α)

$$
\begin{aligned}
\Phi\left(x_{k}+\alpha s_{k}, \rho_{k}\right)-\Phi\left(x_{k}, \rho_{k}\right) & =\alpha s_{k}^{T} g_{k}+\rho_{k}\left(\left\|c_{k}+\alpha A_{k} s_{k}\right\|-\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right) \\
& =\alpha s_{k}^{T} g_{k}+\rho_{k}\left(\left\|(1-\alpha) c_{k}\right\|-\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right) \\
& =\alpha\left(s_{k}^{T} g_{k}-\rho_{k}\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right)
\end{aligned}
$$

$+(3)$, the positive definiteness of B_{k}, the Hölder inequality, and $s_{k} \neq 0$ if x_{k} is not critical \Longrightarrow

$$
\begin{aligned}
\Phi\left(x_{k}+\alpha s_{k}, \rho_{k}\right)-\Phi\left(x_{k}, \rho_{k}\right) & =-\alpha\left(s_{k}^{T} B_{k} s_{k}+c_{k}^{T} y_{k+1}+\rho_{k}\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right) \\
& <-\alpha\left(-\left\|c_{k}\right\| y_{k+1}\left\|_{D}+\rho_{k}\right\| c_{k} \|\right)+O\left(\alpha^{2}\right) \\
& =-\alpha\left\|c_{k}\right\|\left(\rho_{k}-\left\|y_{k+1}\right\|_{D}\right)+O\left(\alpha^{2}\right)<0
\end{aligned}
$$

because of the required bound on ρ_{k}, for sufficiently small α. Hence sufficiently small steps along s_{k} from non-critical x_{k} reduce $\Phi\left(x, \rho_{k}\right)$.

THE MARATOS EFFECT

Maratos effect: merit function may prevent acceptance of the SQP step arbitrarily close to $x_{*} \Longrightarrow$ slow convergence

AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is not adequately represented by linearization in the SQP model:

$$
c\left(x_{k}+s_{k}\right)=O\left(\left\|s_{k}\right\|^{2}\right)
$$

\Longrightarrow need to correct for this curvature
\Longrightarrow use a second-order correction from $x_{k}+s_{k}$:

$$
c\left(x_{k}+s_{k}+s_{k}^{\mathrm{C}}\right)=o\left(\left\|s_{k}\right\|^{2}\right)
$$

also do not want to destroy potential for fast convergence \Longrightarrow

$$
s_{k}^{\mathrm{C}}=o\left(s_{k}\right)
$$

POPULAR 2ND-ORDER CORRECTIONS

\odot minimum norm solution to $c\left(x_{k}+s_{k}\right)+A\left(x_{k}+s_{k}\right) s_{k}^{\mathrm{C}}=0$

$$
\left(\begin{array}{cc}
I & A^{T}\left(x_{k}+s_{k}\right) \\
A\left(x_{k}+s_{k}\right) & 0
\end{array}\right)\binom{s_{k}^{\mathrm{C}}}{-y_{k+1}^{\mathrm{C}}}=-\binom{0}{c\left(x_{k}+s_{k}\right)}
$$

\odot minimum norm solution to $c\left(x_{k}+s_{k}\right)+A\left(x_{k}\right) s_{k}^{\mathrm{C}}=0$

$$
\left(\begin{array}{cc}
I & A^{T}\left(x_{k}\right) \\
A\left(x_{k}\right) & 0
\end{array}\right)\binom{s_{k}^{\mathrm{C}}}{-y_{k+1}^{\mathrm{C}}}=-\binom{0}{c\left(x_{k}+s_{k}\right)}
$$

- another SQP step from $x_{k}+s_{k}$

$$
\left(\begin{array}{cc}
H\left(x_{k}+s_{k}, y_{k}^{+}\right) & A^{T}\left(x_{k}+s_{k}\right) \\
A\left(x_{k}+s_{k}\right) & 0
\end{array}\right)\binom{s_{k}^{\mathrm{C}}}{-y_{k+1}^{\mathrm{C}}}=-\binom{g\left(x_{k}+s_{k}\right)}{c\left(x_{k}+s_{k}\right)}
$$

- etc., etc.

ℓ_{1} non-differentiable exact penalty function $(\rho=1)$: $f(x)=2\left(x_{1}^{2}+x_{2}^{2}-1\right)-x_{1}$ and $c(x)=x_{1}^{2}+x_{2}^{2}-1$ solution: $x_{*}=(1,0), y_{*}=\frac{3}{2}$
- (very) fast convergence
$\odot x_{k}+s_{k}+s_{k}^{\mathrm{C}}$ reduces $\Phi \Longrightarrow$ global convergence

TRUST-REGION SQP METHODS

Obvious trust-region approach:

- do not require that B_{k} be positive definite

$$
\Longrightarrow \text { can use } B_{k}=H\left(x_{k}, y_{k}\right)
$$

\odot if $\Delta_{k}<\Delta^{\mathrm{CRIT}}$ where

$$
\Delta^{\mathrm{CRIT}} \stackrel{\text { def }}{=} \min \|s\| \text { subject to } A_{k} s=-c_{k}
$$

\Longrightarrow no solution to trust-region subproblem
\Longrightarrow simple trust-region approach to SQP is flawed if $c_{k} \neq 0 \Longrightarrow$ need to consider alternatives

ALTERNATIVES

- the $S \ell_{\mathbf{p}} \mathrm{QP}$ method of Fletcher
- composite step SQP methods
- constraint relaxation (Vardi)
- constraint reduction (Byrd-Omojokun)
- constraint lumping (Celis-Dennis-Tapia)
- the filter-SQP approach of Fletcher and Leyffer

THE $\mathrm{S} \ell_{\mathrm{p}} \mathrm{QP}$ METHOD

Try to minimize the $\ell_{p^{-}}$(exact) penalty function

$$
\Phi(x, \rho)=f(x)+\rho\|c(x)\|_{p}
$$

for sufficiently large $\rho>0$ and some ℓ_{p} norm $(1 \leq p \leq \infty)$, using a trust-region approach

Suitable model problem: $\ell_{\mathrm{p}} \mathrm{QP}$

$$
\operatorname{minimize}\left(f_{k}+\right) g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s+\rho\left\|c_{k}+A_{k} s\right\|_{p} \text { subject to }\|s\| \leq \Delta_{k}
$$ $s \in \mathbb{R}^{n}$

- model problem always consistent
\odot when ρ and Δ_{k} are large enough, model minimizer $=\mathrm{SQP}$ direction
\odot when the norms are polyhedral (e.g., ℓ_{1} or ℓ_{∞} norms), $\ell_{\mathbf{p}} \mathrm{QP}$ is equivalent to a quadratic program...

THE ℓ_{1} QP SUBPROBLEM

ℓ_{1} QP model problem with an ℓ_{∞} trust region

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s+\rho\left\|c_{k}+A_{k} s\right\|_{1} \text { subject to }\|s\|_{\infty} \leq \Delta_{k}
$$

But

$$
c_{k}+A_{k} s=u-v, \text { where }(u, v) \geq 0
$$

$\Longrightarrow \ell_{1} \mathrm{QP}$ equivalent to quadratic program (QP):

$$
\begin{aligned}
\underset{s \in \mathbb{R}^{n}, u, v \in \mathbb{R}^{m}}{\operatorname{minimize}} & g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s+\rho\left(e^{T} u+e^{T} v\right) \\
\text { subject to } & A_{k} s-u+v=-c_{k} \\
& u \geq 0, v \geq 0 \\
\text { and } & -\Delta_{k} e \leq s \leq \Delta_{k} e
\end{aligned}
$$

\odot good methods for solving QP

- can exploit structure of u and v variables
- Cauchy point requires solution to ℓ_{1} LP model:

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} g_{k}^{T} s+\rho\left\|c_{k}+A_{k} s\right\|_{1} \text { subject to }\|s\|_{\infty} \leq \Delta_{k}
$$

- approximate solutions to both $\ell_{1} \mathrm{LP}$ and $\ell_{1} \mathrm{QP}$ subproblems suffice
- need to adjust ρ as method progresses
\odot easy to generalize to inequality constraints
- globally convergent, but needs second-order correction for fast asymptotic convergence
\odot if $c(x)=0$ are inconsistent, converges to (locally) least value of infeasibility $\|c(x)\|$

COMPOSITE-STEP METHODS

Aim: find composite step

$$
s_{k}=n_{k}+t_{k}
$$

where
the normal step n_{k} moves towards feasibility of the linearized constraints (within the trust region)

$$
\left\|A_{k} n_{k}+c_{k}\right\|<\left\|c_{k}\right\|
$$

(model objective may get worse)
the tangential step t_{k} reduces the model objective function (within the trust-region) without sacrificing feasibility obtained from n_{k}

$$
A_{k}\left(n_{k}+t_{k}\right)=A_{k} n_{k} \Longrightarrow \quad A_{k} t_{k}=0
$$

Points on dotted line are all potential tangential steps

CONSTRAINT RELAXATION — VARDI

normal step: relax

$$
A_{k} s=-c_{k} \text { and }\|s\| \leq \Delta_{k}
$$

to

$$
A_{k} n=-\sigma_{k} c_{k} \text { and }\|n\| \leq \Delta_{k}
$$

where $\sigma_{k} \in[0,1]$ is small enough so that there is a feasible n_{k}
tangential step:
(approximate) arg min $\left(g_{k}+B_{k} n_{k}\right)^{T} t+\frac{1}{2} t^{T} B_{k} t$
$t \in \mathbb{R}^{n}$
subject to $\quad A_{k} t=0$ and $\left\|n_{k}+t\right\| \leq \Delta_{k}$
Snags:
\odot choice of σ_{k}

- incompatible constraints

CONSTRAINT REDUCTION - BYRD-OMOJOKUN

normal step: replace

$$
A_{k} s=-c_{k} \text { and }\|s\| \leq \Delta_{k}
$$

by
approximately minimize $\left\|A_{k} n+c_{k}\right\|$ subject to $\|n\| \leq \Delta_{k}$
tangential step: as in Vardi

- use conjugate gradients to solve both subproblems
\Longrightarrow Cauchy points in both cases
\odot globally convergent using ℓ_{2} merit function
- basis of successful KNITRO package

CONSTRAINT LUMPING - CELIS-DENNIS-TAPIA

normal step: replace

$$
A_{k} s=-c_{k} \text { and }\|s\| \leq \Delta_{k}
$$

by

$$
\left\|A_{k} n+c_{k}\right\| \leq \sigma_{k} \text { and }\|n\| \leq \Delta_{k}
$$

where $\sigma_{k} \in\left[0,\left\|c_{k}\right\|\right]$ is large enough so that there is a feasible n_{k}
tangential step:
(approximate) arg min $\left(g_{k}+B_{k} n_{k}\right)^{T} t+\frac{1}{2} t^{T} B_{k} t$
$t \in \mathbb{R}^{n}$
subject to $\left\|A_{k} t+A_{k} n_{k}+c_{k}\right\| \leq \sigma_{k}$ and $\left\|t+n_{k}\right\| \leq \Delta_{k}$
Snags:
\odot choice of σ_{k}

- tangential subproblem is (NP?) hard

FILTER METHODS - FLETCHER AND LEYFFER

Rationale:
\odot trust-region and linearized constraints compatible if c_{k} is small enough so long as $c(x)=0$ is compatible
\Longrightarrow if trust-region subproblem incompatible, simply move closer to constraints

- merit functions depend on arbitrary parameters
\Longrightarrow use a different mechanism to measure progress
Let $\theta=\|c(x)\|$
A filter is a set of pairs $\left\{\left(\theta_{k}, f_{k}\right)\right\}$ such that no member dominates another, i.e., it does not happen that

$$
\theta_{i} "<" \theta_{j} \text { and } f_{i} "<" f_{j}
$$

for any pair of filter points $i \neq j$

A FILTER WITH FOUR ENTRIES

- if possible find

$$
s_{k}=\underset{s \in \mathbb{R}^{n}}{\arg \min } g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s \text { subject to } A_{k} s=-c_{k} \text { and }\|s\| \leq \Delta_{k}
$$

otherwise, find s_{k} :

$$
\theta\left(x_{k}+s_{k}\right) "<" \theta_{i} \text { for all } i \leq k
$$

- if $x_{k}+s_{k}$ is "acceptable" for the filter, set $x_{k+1}=x_{k}+s_{k}$ and possibly increase Δ_{k} and "prune" filter
\odot otherwise reduce Δ_{k} and try again

In practice, far more complicated than this!

