
CNAc: Continuous Optimization

Problem set 1 — optimality conditions

Honour School of Mathematics, Oxford University

Hilary Term 2006, Dr Nick Gould

Instructions: Asterisked problems are intended as a homework assignment, while nonasterisked problems

are not compulsory but can further help you understand the material. Please put your solutions in Denis

Zuev’s pigeon hole at the Maths Institute by 9AM on Monday of 3rd week.

*Problem 1. Let S ⊂ IRn, let f : S → IR, and suppose that x + αs ∈ S for all α ∈ [0, 1].

(i) By defining θ(α) = f(x + αs) and using the integration-by-parts (Newton) formula

θ(1) − θ(0) =

∫

1

0

θ′(α)dα,

show that

|f(x + s) − f(x) − g(x)T
s| ≤ 1

2
γL(x)‖s‖2,

whenever f ∈ C has a Lipschitz continuous gradient g(x) (with Lipschitz constant γL(x)) within S

(first result in Theorem 1.1).

(ii) Justify the integration-by-parts formula

θ(1) − θ(0) − θ′(0) =

∫

1

0

(1 − α)θ′′(α)dα.

Hence show that

|f(x + s) − f(x) − g(x)
T
s − 1

2
sT H(x)s| ≤ 1

6
γQ(x)‖s‖3,

whenever f ∈ C has a Lipschitz continuous Hessian H(x) (with Lipschitz constant γQ(x)) within S

(second result in Theorem 1.1).

*Problem 2.

(i) Let E , A be disjoint subsets of {1, . . . , m}. Given any vectors g and ai, i ∈ E
⋃

A, use Farkas’ lemma

to show that the set

S = {s | gT s < 0, ai
T s = 0 for i ∈ E , and ai

T s ≥ 0 for i ∈ A}

is empty if and only if

g ∈ C =

{

∑

i∈E

ziai +
∑

i∈A

yiai | yi ≥ 0 for all i ∈ A

}

.
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(ii) Hence or otherwise deduce first-order necessary optimality conditions for the differentiable optimiza-

tion problem

minimize
x∈IR

n

f(x) subject to ci(x) = 0, i ∈ E , and ci(x) ≥ 0, i ∈ I.

Problem 3. Suppose that fi(x), i = 1, . . . , m, are twice-continuously differentiable functions of x. Con-

sider the non-differentiable optimization problem

minimize
x∈IR

n

f(x) = max
1≤i≤m

|fi(x)|. (1)

(i) Why might this problem be “non-differentiable”?

(ii) By arguing that (1) is equivalent to the differentiable problem

minimize
x∈IR

nu∈IR

u subject to − u ≤ fi(x) ≤ u

for some additional variable u, deduce first-order necessary optimality conditions for (1).

The “Method of Lagrange multipliers” is the direct application of the necessary and sufficient optimality

conditions (Theorems 1.7–1.11) to solve constrained optimization problems. For the next three problems,

you will gain experience in using this method.

*Problem 4†. Use the method of Lagrange multipliers to solve the problem

minimize
x∈IR

2

‖x‖

such that

∥

∥

∥

∥

x −

(

0

1

)
∥

∥

∥

∥

≥ 1

and

∥

∥

∥

∥

x −

(

0

2

)∥

∥

∥

∥

≤ 1

(2)

where ‖ · ‖ denotes the (Euclidean) `2-norm.

*Problem 5†. Consider the minimization problem

min −0.1(x1 − 4)2 + x2

2
such that x2

1
+ x2

2
− 1 ≥ 0.

(i) Does this problem have a global minimiser?

(ii) Set up the KKT conditions for this problem.

(iii) Find all points x∗ and vectors y∗ of Lagrange multipliers so that (x∗, y∗) satisfy the KKT conditions.

(iv) Is the LICQ satisfied at theses x∗? [The linear-independence constraint qualification (LICQ) holds

if the gradients of the active constraints are linearly independent.]

(v) Check if the sufficient optimality conditions hold at x∗.

Problem 6†. Consider the half space defined by H = {x ∈ IRn : aT x + b ≥ 0}, where a ∈ IRn and b ∈ IR

are given. Formulate and solve the optimisation problem of finding the point x in H that has the smallest

Euclidean norm.

† Thanks to Raphael Hauser for these examples
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