CNAc: Continuous Optimization Problem set 3 - trust-region methods

Honour School of Mathematics, Oxford University
Hilary Term 2006, Dr Nick Gould

Instructions: Asterisked problems are intended as a homework assignment., Please put your solutions in Denis Zuev's pigeon hole at the Maths Institute by 9AM on Monday of 6th week.

*Problem 1.

Describe how you would find the Cauchy point for a second-order model

$$
m_{k}(s)=f_{k}+s^{T} g_{k}+\frac{1}{2} s^{T} B_{k} s
$$

of $f\left(x_{k}+s\right)$ within the trust-region $\|s\| \leq \Delta_{k}$.

*Problem 2.

Solve the "trust-region" sub-problem

$$
\begin{equation*}
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} s^{T} g+\frac{1}{2} s^{T} B s \text { subject to }\|s\|_{2} \leq \Delta \tag{1}
\end{equation*}
$$

in the following cases:
(a)

$$
B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad g=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \text { and } \Delta=2
$$

(b)

$$
B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad g=\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right) \quad \text { and } \Delta=5 / 12
$$

[Hint: a root of the nonlinear equation

$$
\frac{1}{(1+\lambda)^{2}}+\frac{1}{(2+\lambda)^{2}}=\frac{25}{144}
$$

is $\lambda=2$.],
(c)

$$
B=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad g=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad \Delta=5 / 12,
$$

(d)

$$
B=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \text { and } \Delta=1 / 2, \text { and }
$$

(e)

$$
B=\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad g=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \text { and } \Delta=\sqrt{2} .
$$

*Problem 3.

Sketch the solution of problem (1) with data

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right) \quad \text { and } g=\binom{1}{1}
$$

as a function of the trust-region radius Δ. In which direction does the solution point as Δ shrinks to zero? How does the Lagrange multiplier for the trust-region constraint depend on the trust-region radius? For what value of the radius does the solution become unconstrained?

*Problem 4.

Suppose M is a symmetric, positive-definite matrix and we define the M-norm of a vector s so that $\|s\|_{M}^{2}=s^{T} M s$. Find necessary and sufficient conditions for s_{*} to

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} \quad q(s) \equiv s^{T} g+\frac{1}{2} s^{T} B s \text { subject to }\|s\|_{M} \leq \Delta .
$$

[Hint: recall that any symmetric positive definite matrix M may be written as $M=R^{T} R$ for some non-singular R.]

