CNAc: Continuous Optimization Problem set 5 — interior-point methods

Honour School of Mathematics, Oxford University Hilary Term 2006, Dr Nick Gould

Instructions: Asterisked problems are intended as a homework assignment. Please put your solutions in Denis Zuev's pigeon hole at the Maths Institute by 9AM on Monday of 8th week.

A positive scalar sequence $\{\sigma_k\}$ with limit 0 is said to converge at a Q-rate q if

$$\lim_{k \to \infty} \frac{\sigma_{k+1}}{\sigma_k^q} \le \kappa$$

for some constant κ —here "Q" stands for "Quotient", and the number q is sometimes known as the Q-factor. The convergence is said to be Q-linear if q=1 and $\kappa<1$, it is Q-superlinear if q>1 or q=1 and $\kappa=0$ and Q-quadratic if q=2. The Q-rate of convergence a vector sequence $\{x_k\}$ to its limit x_* is that of the sequence $\{\sigma_k\}$ where $\sigma_k=\|x_k-x_*\|$ for some appropriate norm.

*Problem 1.

What is the Q-rate of convergence of the following sequences $\{\sigma_k\}$?

- (a) $\sigma_k = 1/\log(k+1)$
- (b) $\sigma_k = 2^{-k}$
- (c) $\sigma_k = 2^{-k^2}$
- (d) $\sigma_k = 2^{-2^k}$

*Problem 2.

Consider the reciprocal barrier function

$$\Phi(x,\mu) = f(x) + \sum_{i=1}^{m} \frac{\mu}{c_i(x)}$$

for the inequality constrained optimization problem of minimizing f(x) subject $c_i(x) \ge 0$ for i = 1, ..., m. By setting the gradient of Φ to zero, suggest suitable Lagrange multiplier estimates y(x). Hence state and prove the analog of Theorem 6.1 for the reciprocal barrier function.

*Problem 3.

(a) Show that the logarithmic barrier function for the problem of minimizing $1/(1+x^2)$ subject to $x \ge 1$ is unbounded from below for all μ .

[Thus the barrier function approach will not always work.]

- (b) Find the minimizer $x(\mu)$, and its related Lagrange multiplier estimate $y(\mu)$, of the logarithmic barrier function for the problem of minimizing $\frac{1}{2}x^2$ subject to $x \geq 2a$ where a > 0. What is the rate of convergence of $x(\mu)$ to x_* as a function of μ ? And the rate of convergence of $y(\mu)$ to y_* as a function of μ ?
 - [Problems with strictly complementary solutions generally have $x(\mu) x_* = O(\mu)$ and $y(x(\mu)) y_* = O(\mu)$ as $\mu \to 0$.]
- (c) Find the minimizer $x(\mu)$, and its related Lagrange multiplier estimate $y(\mu)$, of the logarithmic barrier function for the problem of minimizing $\frac{1}{2}x^2$ subject to $x \ge 0$. How do the errors $x(\mu) x_*$ and $y(\mu) y_*$ behave as a function of μ ?
 - [Without strict complementarity, the errors $x(\mu) x_*$ and $y(x(\mu)) y_*$ are generally larger than in the strictly complementary case.]