CNAc: Continuous Optimization Problem set 6 - SQP methods

Honour School of Mathematics, Oxford University
Hilary Term 2006, Dr Nick Gould

Instructions: Asterisked problems are intended as a homework assignment. Please put your solutions in Denis Zuev's pigeon hole at the Maths Institute by 9AM on Monday of 1st week of Trinity Term.

*Problem 1.

(a) Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has a Lipschitz continuous Jacobian within some open set \mathcal{S} containing a root x_{*} of the nonlinear equation $F(x)=0$. Show that the Newton sequence $\left\{x_{k}\right\}$, where $x_{k+1}=$ $x_{k}-\left(\nabla_{x} F\left(x_{k}\right)\right)^{-1} F\left(x_{k}\right)$, converges Q-quadratically to x_{*} from any starting point sufficiently close to x_{*} provided that $\nabla_{x} F\left(x_{*}\right)$ is non-singular. [Hint: use Theorem 1.3].
(b) Consider the nonlinear equation $F(x)=x^{2}=0$. What is the Q-rate of convergence of Newton's method? How does this reflect on the result from part (a)?

*Problem 2.

(a) What is the solution of the problem $2\left(x_{1}^{2}+x_{2}^{2}-1\right)-x_{1}$ for which $x_{1}^{2}+x_{2}^{2}-1=0$? Show that its Lagrange multiplier is $3 / 2$?
(b) Compute the SQP step s for this problem from the feasible point $x_{k}=(\cos \theta, \sin \theta)^{T}(\theta \in(-\pi, \pi))$, using the (optimal) Lagrange multiplier estimate y_{*}. Show that both the objective function and the constraint violation would increase if the SQP step were taken if $\theta \neq 0$ [This is the Maratos effect).
(c) Show that the second-order correction

$$
\left(\begin{array}{cc}
I & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s^{\mathrm{C}}}{-y^{\mathrm{C}}}=-\binom{0}{c(x+s)}
$$

to s is small relative to s. [You might also show that adding s^{C} to s gives a step that reduces the non-differentiable penalty function, but this is messy so I don't insist!].

*Problem 3.

Show that the smallest (in the Euclidean norm) s that satisfies $A s+c=0$ may be found by solving the linear system

$$
\left(\begin{array}{cc}
I & A^{T} \\
A & 0
\end{array}\right)\binom{s}{-y}=-\binom{0}{c}
$$

involving an auxiliary vector y.

*Problem 4.

Formulate the ℓ_{∞} QP subproblem with an ℓ_{1}-norm trust region

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} g_{k}^{T} s+\frac{1}{2} s^{T} B_{k} s+\rho\left\|c_{k}+A_{k} s\right\|_{\infty} \text { subject to }\|s\|_{1} \leq \Delta_{k}
$$

as a quadratic program.

*Problem 5.

Consider the quartic penalty function

$$
\Phi(x, \mu)=f(x)+\frac{1}{4 \mu}\|c(x)\|_{2}^{4}
$$

we examined in problem sheet 4. Show that the equivalent version of Theorem 7.1 holds for this Φ, namely that the SQP search direction is a descent direction when B_{k} is positive definite, whenever

$$
\mu_{k} \leq \frac{\left\|c\left(x_{k}\right)\right\|_{2}^{3}}{\left\|y_{k+1}\right\|_{2}}
$$

