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Definition 1: Let z* € R™ be a feasible point for (NLP) and let
T € C2<(—e,e),R"> be a path such that
z(0) = z7,
d:=2a(0) # 0
= —=x ,
dt

gi(z(t)) =0 (i € E,t € (—e,€)),
gi(z(t)) >0 (i eZ,tel0,e)).

(1)

Thus, we can imagine that z(t) is a smooth piece of trajectory
of a point particle that passes through z* at time ¢t = 0 with
nonzero speed d and moves into the feasible domain.

We call z(t) a feasible exit path from z* and the tangent vector
d = $x(0) a feasible exit direction from z*.

We again consider the general nonlinear optimisation problem

(NLP) min f(x)
zeR™
s.t. gi(z) =0 (1 €&),
9i(z) >0 (i €I).

We will now derive second order optimality conditions for (NLP).

For that purpouse, we assume that f and the g; (1 € EUZI) are
twice continuously differentiable functions.




The second order optimality analysis is based on the following
observation:

If z* is a local minimiser of (NLP) and z(t) is a feasible exit path
from z* then z* must also be a local minimiser for the univariate
constrained optimisation problem

min f(z(t))
st. t>0

Before we start looking at such problems more closely, we de-
velop an alternative characterisation of feasible exit directions
from z*.

On the other hand, if the LICQ holds at z* then Lemma 1 of
Lecture 9 shows that (2) implies the existence of a feasible exit
path from z* such that

%x(O) =d, (3)
gi(z()) = td"Vgi(z*) (i € EUA(zY). (4)

Thus, when the LICQ holds then (2) is also a sufficient condition
and hence an exact characterisation for d to be a feasible exit
path from z*.

Definition 1 implies

dT (¥ = 4. t _g=1{4d ,
Vi (z*) dtgz(:c( Nlt=0 {”mtﬂo+ M >0 (i € A(

Therefore, the following are necessary conditions for d € R" to
be a feasible exit direction from z*:

d#0,
dTVgi(z*) =0 (i€é), (2)
dTVgj(z*) >0 (j € A(z").

Second Order Necessary Optimality Conditions

Let z* be a local minimiser of (NLP) where the LICQ holds. The
KKT conditions say that there exists a vector A\* of Lagrange
multipliers such that
D.L(z*,\*) =0,
N0 (jeD),
Ngi(z) =0 (i€€UT), (5)
g;(*) >0 (eI,
9i(z*) =0 (i€éf),
where L(z,\) = f(x) — 3 ; N\;g; is the Lagrangian associated with
(NLP).



Now let z(t) be a feasible exit path from z* with exit direction
d, and let us consider the restricted problem

min f(z(t))
st. t>0 (6)

Since z* is a local minimiser of (NLP), ¢ = 0 must be a local
minimiser of (6).

By Taylor's theorem and the KKT conditions,
f@@) = f(a*) + td " Vf(z*) + O(t?)
=f(@*) +t Y AfdTVg;(z*) + O(#?).

=1

Case 1: there exists an index j € A(z*) such that dTVg;(z*) > 0.

Then forall 0 <tk 1,

fla®) =f(@*) +t > AfdTVg(a*) + O(t?)
=1
> f(z*) 4 tAjd" Vgi(z*) + O(t?)
> f(z*).

Thus, in this case f strictly increases along the path z(t) for

2
small positive t even if C%Qf(m(o)) was negative. Because of the

constraint g;, nothing can be said about the D2 f(z*)d.

We thus wish to show that for small t > 0O,

£ AdTVgi(a") + 0(2) > 0. ()

=1

Note that
MdTVgi(z*) =0 (ie&UT\ A(zY)),

so that these terms can be omitted from (7).

But what about indices j € A(z*)? We have to distinguish two
different cases:

Case 2:
NdTVgi(e*) =0 (ieZUéf). (8)

In this case the above argument fails to guarantee that f locally
increases along path z(t). We only know that d/dt f(«(0)) = 0,
that is, z* is a stationary point of (6).

But this might very well be a local maximiser of the restricted
problem. Second order derivatives é%f(as(o)) now decide whether
t = 0 is a local minimiser of the restricted problem (6), vielding
additional necessary information in this case!



x2

x1

Proof:

e Let d # O satisfy (2) and (8), and let z € 02((—6, e),R”) be
a feasible exit path from z* corresponding to d.
e Then

(2. 2) € f@®) - 3 ATV 2 FE).

i=1

Theorem 1: 2nd Order Necessary Optimality Conditions.
Let z* be a local minimiser of (NLP) where the LICQ holds. Let
A* € R™ be a Lagrange multiplier vector such that (z*, \*) satisfy
the KKT conditions. Then we have

d" Dy l(z*, X )d >0 (9)

for all feasible exit directions d from z* that satisfy (8).

e Therefore, Taylor's theorem implies

() = L(z*,\*) + tDL(x*, \*)d
+ E(dTDm,/:(x A 4+ Do L(z*, ) )ﬁm(O)) + 03

2
“ET f@) + %dTDmﬁ(a:*, AYd 4 O(t3).

e If it were the case that d' Dy L(z*, \*)d < 0 then f(z(t)) <
f(z*) for all t sufficiently small, contradicting the assumption
that z* is a local minimiser. Therefore, it must be the case
that dT DypL(z*, A*)d > 0. O



Sufficient Optimality Conditions:

In unconstrained minimisation we found that strengthening the
second order condition D2f(z) > 0 to D2f(z) > O led to sufficient
optimality conditions.

Does the same happen when we change the inequality in (9) to
a strict inequality? Our next result shows that this is indeed the
case.

Theorem: Sufficient Optimality Conditions.
Let (z*,2\*) € R" xR™ be such that the KKT conditions (5) hold,
the LICQ holds, and

d" DyaL(z*,\)d > 0
for all feasible exit directions d € R™ from z* that satisfy
MNd Vgi(z*) =0 (ieZU&).

Then z* is a strict local minimiser.

There are two issues that need to be addressed in the proof:

e The first is that =* is a strict local minimiser for the restricted
problem (6). This is easy to prove using Taylor expansions.

e The second, more delicate issue is to show that it suffices to
look at the univariate problems (6) for all possible feasible
exit paths from z*.

Proof:

e Let us assume to the contrary of our claim that z* is not a
local minimiser.

e Then there exists a sequence of feasible points (z;)y such
that limy_ .z, = =* and

flzp) < f(@*) VkeN. (10)

e The sequence Hz:i:i::\l lies on the unit sphere which is a com-
pact set. The Bolzano—Weierstrass theorem therefore im-
plies that we can extract a subsequence (zy)ien, ki < kj



(i < ), such that the limiting direction d := lim_, d, ex-
ists, where
Ty, — 2

dy, =

ek, — =¥

e Since d lies on the unit sphere we have d # 0. Replacing the
old sequence by the new one we may assume without loss of
generality that k; = 3.

e Let us check that d satisfies the conditions

d#0,
d'Vgi(z*) =0 (i€é&), (11)
d"Vgi(z*) >0 (j € A(z")).

e On the other hand, the KKT conditions and (11) imply

TV = 3 Nd V(") > 0. (13)
i=1

e But (12) and (13) can be jointly true only if

MNd Vg (z¥) =0 (eZuf).

e The assumption of the theorem therefore implies that

dT" DyaL(x*,X*)d > 0. (14)

and hence is a feasible exit direction:

dTVg;(a*) = lim %2 ~9;(7)

i—oo o — |
(im0 =0 (j € &),
~ imie 2 > 0 (j € A@z*)).

e By Taylor's theorem,

F@®) > fzp) = f(@) + llog — ¥V F(2*) Tdy + Oz, — =*||?).
Therefore,

Vi) Td= Jim Vf(z*)Td < 0. (12)

e On the other hand,

f(@*) > f(xg)
KKT m
> flog) — Y Aigi(zg) (since A\ >0 forieZ
i=1
and z;, is feasible)
= L(2*,\*) + |log — 2*|| Do L(z*, Xy,
g — 2*|2
T 2
KKT zp — z*||?
KT fioy + Il

Al Daa£(z*, \*)dy, + O(||z, — 2*||3)

Y Dyal(x*, N )dy, + O(||zy, — 2*|13),
or

df Daa £(z*, X*)dy, < |O(|lz), — 2*|)].



e Taking limits, we obtain
dT DpaL(z*, X\ )d = Jim df Dyz £(z*, \*)dy, < 0.
— 00
Reading Assignment: Lecture-Note 10.

e Since this contradicts (14), our assumption about the exis-
tence of the sequence (z;)y must have been wrong. [l



