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We again consider the general nonlinear optimisation problem

(NLP)  min f(x)

s.t. g;(x) =0 (1 €&),
gi(z) >0 (i€IZ).

We will now derive second order optimality conditions for (NLP).

For that purpouse, we assume that f and the g; (i € £EUTI) are
twice continuously differentiable functions.



Definition 1: Let #* € R"™ be a feasible point for (NLP) and let
T € CQ((—e, e),R”) be a path such that

z(0) = =¥,

_d

gi(z(t)) =0 (i €&t e (—¢¢)),
g;(x(t)) >0 (1€Z,te[0,¢€)).

(1)

Thus, we can imagine that z(¢) is a smooth piece of trajectory
of a point particle that passes through z* at time ¢t = 0 with
nonzero speed d and moves into the feasible domain.

We call z(t) a feasible exit path from x* and the tangent vector
d= %m(O) a feasible exit direction from x*.






The second order optimality analysis is based on the following
observation:

If * is a local minimiser of (NLP) and z(t) is a feasible exit path
from z* then z* must also be a local minimiser for the univariate
constrained optimisation problem

min f(z(t))
s.t. t>0

Before we start looking at such problems more closely, we de-
velop an alternative characterisation of feasible exit directions
from x*.



Definition 1 implies

d'Vgi(a*) = —gi(z(t)) =0 = { ¥ 7

Therefore, the following are necessary conditions for d € R"™ to
be a feasible exit direction from z*:

d # 0,
d'Vgi(a*) =0 (i€é), (2)
d'Vgij(x*) 20 (j € A@)),



On the other hand, if the LICQ holds at =* then Lemma 1 of
Lecture 9 shows that (2) implies the existence of a feasible exit
path from z* such that

%x(O) —d (3)
gi(z(#)) = td' Vg;(z*) (i € EUA(z*). (4)

Thus, when the LICQ holds then (2) is also a sufficient condition
and hence an exact characterisation for d to be a feasible exit

path from z*.



Second Order Necessary Optimality Conditions

Let ™ be a local minimiser of (NLP) where the LICQ holds. The
KKT conditions say that there exists a vector \* of Lagrange
multipliers such that

D L(z*, \*) =0,
>0 (e,
ANgi(z*) =0 (@(e&UI), (5)
gi(z*) >0 (jeI),
gi(z*) =0 (i€f),
where L(xz,\) = f(x) — >; \;jg; is the Lagrangian associated with
(NLP).



Now let z(t) be a feasible exit path from x* with exit direction
d, and let us consider the restricted problem

min f(z(t))
s.t. t>0

(6)

Since z* is a local minimiser of (NLP), ¢t = O must be a local
minimiser of (6).

By Taylor's theorem and the KK'T conditions,

f(z(t) = f(=*) +td" Vf(z*) + O(t?)

=f(z*) +t > Nd'Vg(z*) + O@F?).
1=1



We thus wish to show that for small ¢ > O,

t Y Ad'Vgi(z*) 4+ O0(t%) > 0. (7)
1=1
Note that
MdTVgi(z*) =0 (Ge&uTl\ AzY)),

so that these terms can be omitted from (7).

But what about indices j € A(xz*)? We have to distinguish two
different cases:



Case 1: there exists an index 57 € A(z*) such that dTng(:c*) > 0.

Then forall 0 <t K 1,

Fe() =@ +t 3 AdTVgi(a™) + O(E2)
1=1

> f(z*) +tAjd Vg(a*) + O@?)
> f(z7).

Thus, in this case f strlctly increases along the path z(¢) for
small positive t even if de(:c(O)) was negative. Because of the
constraint g;, nothing can be said about the D 2 f(z™)d.



Case 2:
NdTVgi(z*) =0 (GeTué). (8)

In this case the above argument fails to guarantee that f locally
increases along path x(t). We only know that d/dt f(x(0)) = 0,
that is, z* is a stationary point of (6).

But this might very well be a local maximiser of the restricted
problem. Second order derivatives jTQQf(:I;(O)) now decide whether
t = 0 is a local minimiser of the restricted problem (6), yielding
additional necessary information in this case!



x2

x1



Theorem 1: 2nd Order Necessary Optimality Conditions.
Let * be a local minimiser of (NLP) where the LICQ holds. Let
A* € R™ be a Lagrange multiplier vector such that (z*, \*) satisfy
the KK'T conditions. Then we have

d' Dy L(x*, X)d > 0 (9)

for all feasible exit directions d from z* that satisfy (8).



Proof:

e Let d #= 0 satisfy (2) and (8), and let z € 02<(—e, e),R”) be
a feasible exit path from z* corresponding to d.

e [ hen

L(z®),3) 2 F@®) = 3 Atd V) L fa).
=1

1=



e [ herefore, Taylor's theorem implies

flx(t)) = L(>(x",\*) +tDL(=, \*)d
t2 T X\ X ¥\ ok d2 3
+5(d Dy £(2*, A*)d + Dy L(x*, A >dt—2”"(o>) + O(t3)
KKT

2
= f(z*) + %dTDmE(x*, A)d + O(+3).

e If it were the case that d' D.L(z*, A*)d < 0 then f(z(t)) <
f(x*) for all ¢ sufficiently small, contradicting the assumption
that «* is a local minimiser. Therefore, it must be the case
that d' DgeL(x*, \*)d > 0. ]



Sufficient Optimality Conditions:

In unconstrained minimisation we found that strengthening the
second order condition D2f(z) = 0 to D2f(z) > O led to sufficient
optimality conditions.

Does the same happen when we change the inequality in (9) to
a strict inequality? Our next result shows that this is indeed the
case.



There are two issues that need to be addressed in the proof:

e [ he first is that ™ is a strict local minimiser for the restricted
problem (6). This is easy to prove using Taylor expansions.

e [ he second, more delicate issue is to show that it suffices to

look at the univariate problems (6) for all possible feasible
exit paths from z*.



Theorem: Sufficient Optimality Conditions.
Let (x*, \*) € R" x R™ be such that the KKT conditions (5) hold,
the LICQ holds, and

d" DypuL(2*,2)d > 0
for all feasible exit directions d € R"™ from z* that satisfy
MNd'Vgi () =0 (GeZué).

Then z* is a strict local minimiser.



Proof:

e Let us assume to the contrary of our claim that z* is not a
local minimiser.

e Then there exists a sequence of feasible points (zj)y such
that Iimk_wo T = x* and

flag) < f(a™) VkeN. (10)

_— * . . . .
e The sequence % lies on the unit sphere which is a com-

pact set. The Bolzano—Weierstrass theorem therefore im-
plies that we can extract a subsequence (fEki)ieNr k; < kj



(¢ < j), such that the limiting direction d := lim;_, dp, €x-
ists, where

k
:Ukz.—x

dy. =

Nl

e Since d lies on the unit sphere we have d #= 0. Replacing the
old sequence by the new one we may assume without loss of
generality that k; = 1.

e Let us check that d satisfies the conditions
d #= 0,
d'Vg(z")=0 (@Geé), (11)
d'Vgi(z*) >0 (j € A(z")).



and hence is a feasible exit direction:

gj(x;) — g;(x*)

d'Vg;(z*) = lim

im0 iz — o]
_[limi—se0=0 (j € &),
im0 > 0 (j € A™)).

e By Taylor’'s theorem,
f(&*) > flxp) = f(@*) + |z — 2| V£(@*) T dy, + O(||lzg — =*|°).
T herefore,

Vi) Td= Jim Vi) "d, <o. (12)



e On the other hand, the KKT conditions and (11) imply

TTYf) = 3 NdTVgi") > 0. (13)
1=1

e But (12) and (13) can be jointly true only if

MNdTVgi(z*) =0 (GeTUE).

e [ he assumption of the theorem therefore implies that

d" DpeC(z*, X*)d > 0. (14)



e On the other hand,

f(@®) > f(z)
KKT m
> flzp) — > Mgi(zr) (since A >0forieZ
i=1

and x is feasible)

= L(z*,\*) + [lzg, — 2*|| Do L(z*, A*)dy
a2
+ 12 = T T D Ay + Oy — *11%)
KKT r — x*[|2 § i
KTty + 1= T 2 e 3 dy + Oy, — *|3),

or

d DyzL(x*, \)dy, < |O(||zg — z*|))).



e [aking limits, we obtain

d" Dy L(2*, \)d = Jim d DyzL(x*, \*)dy, < 0.
— OO

e Since this contradicts (14), our assumption about the exis-
tence of the sequence (zj)ny Must have been wrong. [ ]



Reading Assignment: Lecture-Note 10.



