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Reformulating the KKT Conditions:

The topic of this lecture is Lagrangian duality, a generalisation

of the LP duality theory we studied in the exercises relating to

Lecture 8.

As a by-product of this analysis we also find that constrained

convex optimisation problems allow first order necessary and suf-

ficient conditions.

This generalises our results for unconstrained convex optimisa-

tion from Lecture 1.



We consider the constrained optimisation problem

(NLP) min f(x)

s.t. gI(x) ≥ 0,

gE(x) = 0,

where gI is a vector of inequality constraints and gE a vector of

equality constraints.



The KKT conditions associated with this problem are

∇f(x∗) − g′I(x
∗)Tu∗ − g′E(x

∗)Tv = 0, (1)

gI(x
∗) ≥ 0, (2)

gE(x
∗) = 0, (3)

u∗
jgj(x

∗) = 0 (j ∈ I), (4)

u∗ ≥ 0. (5)



We extend the Lagrangian as follows:

L : Rn × Rp × Rq → R

(x, u, v) 7→















f(x) − uTgI(x) − vTgE(x), if x ∈ dom(f), u ≥ 0,

+∞ if x /∈ dom(f), u ≥ 0,

−∞ if u � 0.

This definition of the Lagrangian is a bit more general than the

one we encountered previously, but this is mainly interesting for

the purposes of simplifying notation and does not really entail a

conceptual change.



Proposition 1: The KKT conditions (1)–(5) are equivalent to

the following set of equations and inequalities,

∇xL(x∗, u∗, v∗) = 0, (6)

∇uL(x∗, u∗, v∗) ≤ 0, (7)

∇vL(x∗, u∗, v∗) = 0, (8)

u∗T∇uL(x∗, u∗, v∗) = 0, (9)

u∗ ≥ 0, (10)

where ∇xL = (DxL)T is the gradient with respect to x, and

likewise ∇uL and ∇vL the gradients with respect to u and v.

Proof:

• (6) is just a reformulation of (1).



• Note that ∇uL = −gI and ∇vL = −gE. Therefore, (2) is

equivalent to ∇uL(x∗, u∗, v∗) = −gI(x
∗) ≤ 0, which is (7).

• Likewise, (3) is equivalent to ∇vL(x∗, u∗, v∗) = −gE(x
∗) = 0,

which is (8).

• Finally, (4) and ∇uL = −gI imply

u∗T∇uL(x∗, u∗, v∗) = −
∑

i∈I

u∗
i gi(x

∗) = 0,

which is (9).

• On the other hand, (7),(10) and (9) imply that
∑

i∈I u∗
i gi(x

∗)

is a sum of nonnegative summands that adds to zero, and

hence all the summands must be zero, which shows (4).



Proposition 2: KKT and Saddle Points.

i) Equation (6) is the first order necessary condition for x∗ to

be a minimiser of the unconstrained problem

min
x∈Rn

L(x, u∗, v∗), (11)

where u∗ and v∗ are regarded as a set of fixed parameters.

ii) Equations (7)–(10) are the first order necessary optimality

conditions for the problem

max
(u,v)∈Rp×Rq

L(x∗, u, v) (12)

where x∗ is considered as a set of fixed parameters, and where

p = |E| and q = |I|.



Proof:

• i) is immediate, as (11) is an unconstrained problem.

• The objective function of problem (12) takes the value −∞

for u � 0 and finite values when u ≥ 0. Therefore, (12) is

equivalent to the constrained optimisation problem

min
(u,v)∈Rp×Rq

− L(x∗, u, v)

s.t. u ≥ 0.
(13)

• The LICQ holds at all feasible points because the constraint

gradients are the coordinate unit vectors {e1, . . . , ep} corre-

sponding to the variables of u, and these are linearly inde-

pendent.



• The KKT conditions for (13) are therefore necessary and say

that ∃λ∗ ∈ Rp such that
[

−∇uL(x∗, u∗, v∗)
−∇vL(x∗, u∗, v∗)

]

−
p

∑

j=1

λ∗
jej = 0, (14)

u∗ ≥ 0, (feasibility) (15)

λ∗
i u

∗
i = 0 (i = 1, . . . , p), (16)

λ∗ ≥ 0. (17)

• Equation (14) is clearly the same as

−∇uL(x∗, u∗, v∗) − λ∗ = 0, (18)

−∇vL(x∗, u∗, v∗) = 0, (19)

and it is easy to see that the system (15)–(19) is equivalent

to (7)–(10).



Lagrangian Duality:

Our view of the KKT conditions in the light of Proposition 2

suggests a closer look at the saddle-point finding problems as-

sociated with L:

(P) min
x

(

max
(u,v)

L(x, u, v)

)

,

(D) max
(u,v)

(

min
x

L(x, u, v)

)

.



In other words, (P) is a minimisation problem with objective

function

x 7→ max
(u,v)

L(x, u, v),

and likewise, (D) is a maximisation problem with objective func-

tion

(u, v) 7→ min
x

L(x, u, v).

(P) is called the Lagrangian primal problem associated with

(NLP) and (D) the Lagrangian dual.



The natural question to ask is: what is the relation between

(NLP), (P) and (D)?

The following Theorem shows that (P) and (NLP) are equiv-

alent, and later we will see that for convex problems (P) and

(D) are equivalent under certain regularity assumptions. This

amounts to showing that the max and min may be interchanged.



Theorem 1: (P) and (NLP) are equivalent problems.

Proof:

• If x is feasible for (NLP) then we have gI(x) ≥ 0 and gE(x) =

0. This implies

L(x, u, v) = f(x) − uTgI(x) − vTgE(x)

= f(x) − uTgI(x) ≤ f(x)

when u ≥ 0, and for u � 0 we have L(x, u, v) = −∞. There-

fore, for (NLP)-feasible x the objective function of (P) takes

the value

max
(u,v)

L(x, u, v) = L(x,0, v) = f(x).



• On the other hand, if x is infeasible for (NLP) then

- either there exists an index j ∈ I such that gj(x) < 0, and

then we can choose ui = M > 0,

- or there exists an index i ∈ E such that gi(x) 6= 0, and

then we can choose vj = − sign(hi(x))M .

In both cases, we can set all remaining entries of u and v to

zero, and then

L(x, u, v)
M→∞
−→ +∞,

showing that for (NLP)-infeasible x the objective function of

(P) takes the value

max
(u,v)

L(x, u, v) = +∞.



• In summary, we find that

max
(u,v)

L(x, u, v) =







f(x) if gI(x) ≥ 0, gE(x) = 0,

+∞ otherwise,

which shows that minimising

x 7→ max
(u,v)

L(x, u, v)

over Rn is the same as minimising f(x) over the feasible

domain of (NLP).



The Interpretation of the Dual:

The interpretation of the Lagrangian dual (D) is less straight

forward.

Example 2.2 of the lecture notes shows that in the case where

(P) is a linear programming problem, (D) is the usual LP dual,

and furthermore, if (P) is a convex quadratic programming prob-

lem, then (D) is a (dual) convex quadratic programming problem.

Thus, Lagrangian duality is a generalisation of LP duality.



Weak Duality: In the LP context there was a close connection

between optimality conditions and duality. We will now gener-

alise this connection too.

Theorem 2: Weak Lagrangian Duality. For all (x∗, u∗, v∗) ∈

Rn × Rp × Rq it is the case that

max
(u,v)

L(x∗, u, v) ≥ min
x

L(x, u∗, v∗). (20)

Proof: This is trivial, because

min
x

L(x, u∗, v∗) ≤ L(x∗, u∗, v∗) ≤ max
(u,v)

L(x∗, u, v).



Convex Programming:

To extend the theory further, we need to assume that (NLP) is

convex, that is,

• f is convex,

• gj is concave (j ∈ I),

• gi is affine (i.e., a linear constraint) (i ∈ E),

so that the feasible domain of (NLP) is convex.



Any convex programming problem is thus of the form

(CP) min
x

f(x)

s.t. Ax = b,

x ∈ K =
{

z ∈ Rn : gj(z) ≥ 0, (j ∈ I)
}

.

The matrix A ∈ Rm×n can always be chosen so that its row

vectors ∇gT
i (i ∈ E) are linearly independent.

K is a convex set.



The Lagrangian of a convex optimisation problem has nice con-

vexity properties itself:

i) For fixed (u∗, v∗) ∈ Rp
+ × Rq the function

x 7→ L(x, u∗, v∗) = f(x) +
∑

j∈I

u∗
j(−gj(x)) +

∑

i∈E

v∗i (−gi(x))

is a sum of the convex functions f , −u∗
jgj (j ∈ I) and −v∗i gi

(i ∈ E). By the results of Lecture 1 this implies that

x 7→ L(x, u∗, v∗)

is globally convex!



ii) For fixed x∗ ∈ Rn the function

(u, v) 7→ L(x∗, u, v)

is affine (linear plus a constant) on Rp
+ × Rq.

Furthermore, it takes the value −∞ when u � 0, which is consis-

tent with our definition of concavity for so-called proper functions

as introduced in Lecture 1. Therefore,

(u, v) 7→ L(x∗, u, v)

is globally concave!



Theorem 3: Suff. Opt. Cond. for Convex Programming.

Let (NLP) be a convex problem in which the objective and con-

straint functions are at least once continuously differentiable.

Let (x∗, u∗, v∗) be a point that satisfies the KKT conditions (6)–

(10). Then x∗ is a global minimiser of (NLP).

Proof:

• The condition ∇xL(x∗, u∗, v∗) = 0 implies that x∗ is a global

minimiser of the convex unconstrained function x 7→ L(x, u∗, v∗).



• For all x (NLP)-feasible we have gI(x) ≥ 0 and gE(x) = 0.

Since u∗ ≥ 0 we therefore have

f(x) ≥ f(x) − u∗TgI(x) − v∗TgE(x)

= L(x, u∗, v∗)

≥ L(x∗, u∗, v∗)

= f(x∗),

the last equality derives from the conditions (8) and (9),

gE(x
∗) = ∇vL(x∗, u∗, v∗) = 0,

u∗TgI(x
∗) = u∗T∇uL(x∗, u∗, v∗) = 0.



What about constraint qualifications? Why have they disap-

peared?!

It is important to realise that Theorem 3 only says that the

KKT conditions are sufficient optimality conditions for convex

programming, but not necessary conditions.

Of course, the KKT conditions also become necessary when the

LICQ or the more general MFCQ is satisfied.



For convex problems it is convenient to reformulate the MFCQ

by an equivalent criterion that is easier to check:

Definition 1: The convex programming problem (CP) satisfies

the Slater constraint qualification (SCQ) if A has full row-rank

and K◦ ∩ F is nonempty, in other words, there exists a point

x ∈ Rn such that gE(x) = 0 and gI(x) > 0.



Corollary 1: Convex Optimality. If (CP) satisfies the SCQ

then the KKT conditions are an exact characterisation of opti-

mality.

Proof: This follows immediately from Theorem 3 and the nec-

essary first order optimality conditions for nonlinear program-

ming.



Theorem 4: Strong Lagrangian Duality. Let (CP) be a con-

vex programming problem for which the SCQ holds and such

that an optimal solution x∗ exists. Then (D) has an optimal so-

lution (u∗, v∗) and the primal and dual objective function values

at x∗ and (u∗, v∗) coincide.

Proof:

• Because of the SCQ, there exists a vector (u∗, v∗) ∈ Rp
+ ×Rq

such that (x∗, u∗, v∗) satisfies the KKT conditions.



• Since x∗ is feasible, we have

L(x∗, u, v) = f(x∗) − uTgI(x) − vTgI(x)

= f(x∗) − uTgI(x)

≤ f(x∗)

= L(x∗, u∗, v∗)

for all (u, v) ∈ Rp
+ × Rq, where the last equality follows from

the complementarity requirement (9) in the KKT conditions.

Since L(x∗, u, v) = −∞ for u � 0, this shows that

L(x∗, u∗, v∗) = max
(u,v)

L(x∗, u, v).

• On the other hand, ∇xL(x∗, u∗, v∗) and the convexity of x 7→

L(x, u∗, v∗) imply that L(x∗, u∗, v∗) = minx L(x, u∗, v∗). The

result now follows from weak duality.



Reading Assignment: Lecture-Note 12.


