The Augmented Lagrangian Method

Lecture 14, Continuous Optimisation

Oxford University Computing Laboratory, HT 2006
Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

We will now see a related method that does not require μ_{k} to converge to zero, and yet in a neighbourhood of a KKT point x^{*} of the nonlinear optimisation problem

$$
\begin{array}{ll}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
\text { s.t. } & g_{\mathcal{E}}(x)=0 \\
& g_{\mathcal{I}}(x) \geq 0
\end{array}
$$

the iterates x_{k} still converge to x^{*} if the LICQ and the second order sufficient optimality conditions hold at this point. In fact, μ can even be held constant after a while and the convergence of x_{k} continues!

In Lecture 13 we saw that the quadratic penalty method has the disadvantage that the penalty parameter μ has to be reduced to very small values before x_{k} becomes feasible to high accuracy.

Moreover, we pointed out that reducing μ to very small values can lead to numerical instabilities if the method is not implemented very carefully.

Motivation:

The method is motivated by the observation that if we knew the Lagrange multipliers λ^{*} such that $\left(x^{*}, \lambda^{*}\right)$ is a KKT point for (NLP), then we could find x^{*} by solving the unconstrained problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} \mathcal{L}\left(x, \lambda^{*}\right) \tag{1}
\end{equation*}
$$

Indeed, as already remarked in Lemma 1.2 i) of Lecture 12, the first set of KKT conditions $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0$ amount to the first order necessary optimality conditions for (1).

Of course, λ^{*} is not known, but we know from Lecture 13 that one can obtain estimates $\lambda^{[k]}$ which can be used to set up the problem

$$
\min _{x \in \mathbb{R}^{n}} \mathcal{L}\left(x, \lambda^{[k]}\right) .
$$

as an approximation of (1).
If the estimates $\lambda^{[k]}$ can be iteratively improved and made to converge to λ^{*}, then this can form the basis of an algorithmic framework for solving (NLP).

Algorithm: Augmented Lagrangian Method (AL)

SO Initialisation: choose the following,

```
x
\lambda[0] }\in\mp@subsup{\mathbb{R}}{}{|\mathcal{E}\cup\mathcal{I}|}\mathrm{ (initial "guestimate" of Lagrange multiplier
vector)
\mu
( }\mp@subsup{\tau}{k}{}\mp@subsup{)}{\mp@subsup{\mathbb{N}}{0}{}}{}\searrow0\mathrm{ (error tolerance)
```


The Merit Function:

The merit function used by this algorithm is the augmented Lagrangian of (NLP), defined as follows,

$$
\begin{aligned}
\mathcal{L}_{A}(x, \lambda, \mu) & =\mathcal{L}(x, \lambda)+\frac{1}{2 \mu} \sum_{i \in \mathcal{I} \cup \mathcal{E}} \tilde{g}_{i}^{2}(x) \\
& =f(x)-\sum_{i \in \mathcal{I} \cup \mathcal{E}} \lambda_{i} g_{i}(x)+\sum_{i \in \mathcal{I} \cup \mathcal{E}} \frac{\tilde{g}_{i}(x)}{2 \mu} g_{i}(x) \\
& =f(x)+\sum_{i \in \mathcal{I} \cup \mathcal{E}}\left(\frac{\tilde{g}_{i}(x)}{2 \mu}-\lambda_{i}\right) g_{i}(x),
\end{aligned}
$$

where \tilde{g}_{i} is defined as in Lecture 13,

$$
\tilde{g}_{i}(x)= \begin{cases}g_{i}(x) & (i \in \mathcal{E}) \\ \min \left(g_{i}(x), 0\right) & (i \in \mathcal{I})\end{cases}
$$

S1 For $k=0,1,2, \ldots$ repeat

$$
y^{[0]}:=x_{k}, l:=0
$$

$$
\text { until }\left\|\nabla_{x} \mathcal{L}_{A}\left(y^{[l]}, \lambda^{[k]}, \mu_{k}\right)\right\| \leq \tau_{k} \text { repeat }
$$

$$
\text { compute } y^{[l+1]} \text { such that } \mathcal{L}_{A}\left(y^{[l+1]}, \lambda^{[k]}, \mu_{k}\right)<\mathcal{L}_{A}\left(y^{[l]}, \lambda^{[k]}, 1\right.
$$ (using unconstrained minimisation method)

$$
l \leftarrow l+1
$$

end

$$
\begin{aligned}
& x_{k+1}:=y^{[l]} \\
& \lambda_{i}^{[k+1]}:=\lambda_{i}^{[k]}-\frac{\tilde{g}_{i}\left(x_{k+1}\right)}{\mu_{k}}, \quad(i \in \mathcal{E} \cup \mathcal{I}), \\
& \lambda_{i}^{[k+1]} \leftarrow \max \left(0, \lambda_{i}^{[k+1]}\right), \quad(i \in \mathcal{I}) \\
& \text { choose } \mu_{k+1} \in\left(0, \mu_{k}\right)
\end{aligned}
$$

end

- By arguments similar to those in Theorem 2.2 in Lecture 13,

$$
\lambda_{i}^{[k]}-\frac{\tilde{g}_{i}\left(x_{k+1}\right)}{\mu_{k}} \simeq \lambda_{i}^{*}, \quad(i \in \mathcal{E} \cup \mathcal{I})
$$

- Therefore, we have

$$
\tilde{g}_{i}\left(x_{k+1}\right) \simeq \mu_{k}\left(\lambda_{i}^{[k]}-\lambda_{i}^{*}\right), \quad(i \in \mathcal{E} \cup \mathcal{I})
$$

which suggests that if $\lambda^{[k]} \rightarrow \lambda^{*}$ then all constraint residuals converge to zero like a function $o\left(\mu_{k}\right)$, where

$$
\lim _{\mu \rightarrow 0} \frac{o(\mu)}{\mu}=0
$$

That is, the convergence is much faster than the $O\left(\mu_{k}\right)$ convergence obtained in the quadratic penalty function method.

A quick argument gives insight into why this method can be expected to converge before μ_{k} reaches very small values:

- We have

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}_{A}\left(x_{k+1}, \lambda^{[k]}, \mu_{k}\right) \\
& \quad=\nabla f\left(x_{k+1}\right)-\sum_{i \in \mathcal{E} \cup \mathcal{I}}\left(\lambda_{i}^{[k]}-\frac{\tilde{g}_{i}\left(x_{k+1}\right)}{\mu_{k}}\right) \nabla g_{i}\left(x_{k+1}\right) .
\end{aligned}
$$

- Using $\left\|\nabla_{x} \mathcal{L}_{A}\left(x_{k+1}, \lambda^{[k]}, \mu_{k}\right)\right\| \leq \tau_{k}$, we find

$$
\sum_{i}\left(\lambda_{i}^{[k]}-\frac{\tilde{g}_{i}\left(x_{k+1}\right)}{\mu_{k}}\right) \nabla g_{i}\left(x_{k+1}\right)=\nabla f\left(x_{k+1}\right)+O\left(\tau_{k}\right)
$$

Theorem 1: Let x^{*} be a local minimiser of (NLP) where the LICQ and the first and second order sufficient optimality conditions are satisfied for some Lagrange multiplier vector λ^{*}. Then there exists a constant $\bar{\mu}>0$ such that x^{*} is a strict local minimiser of

$$
\min _{x \in \mathbb{R}^{n}} \mathcal{L}_{A}\left(x, \lambda^{*}, \mu\right)
$$

for all $\mu \in(0, \bar{\mu}]$.

Theorem 2: For $\left(x^{*}, \lambda^{*}\right)$ and $\bar{\mu}$ as in Theorem 1 there exist constants $M, \varepsilon, \delta>0$ such that the following is true:
i) If $\mu_{k} \leq \bar{\mu}$ and

$$
\begin{equation*}
\left\|\lambda^{[k]}-\lambda^{*}\right\| \leq \frac{\delta}{\mu_{k}} \tag{2}
\end{equation*}
$$

then the constrained minimisation problem

$$
\begin{align*}
& \min _{x} \mathcal{L}_{A}\left(x, \lambda^{[k]}, \mu_{k}\right) \tag{3}\\
& \text { s.t. }\left\|x^{*}-x\right\| \leq \varepsilon
\end{align*}
$$

has a unique minimiser x_{k+1},

Some remarks about this result:

- (3) suggests the use of a trust-region method in the inner loop of Algorithm (AL).
- Without loss of generality, we may assume that $\bar{\mu} \leq(2 M)^{-1}$. Note that if $\left(\lambda^{[k]}, \mu_{k}\right)$ satisfy the conditions of part i) of the theorem,
I) $\quad \mu_{k} \leq \bar{\mu}$,
II) $\quad\left\|\lambda^{[k]}-\lambda^{*}\right\| \leq \frac{\delta}{\mu_{k}}$,
and if it is also the case that
III) $\quad x_{k} \in B_{\varepsilon}\left(x^{*}\right)$,
and furthermore,

$$
\begin{equation*}
\left\|x^{*}-x_{k+1}\right\| \leq M \mu_{k}\left\|\lambda^{[k]}-\lambda^{*}\right\| \tag{4}
\end{equation*}
$$

ii) if μ_{k} and $\lambda^{[k]}$ are as in part i) and if $\lambda^{[k+1]}$ is chosen as in Algorithm (AL), then

$$
\begin{equation*}
\left\|\lambda^{[k+1]}-\lambda^{*}\right\| \leq M \mu_{k}\left\|\lambda^{[k]}-\lambda^{*}\right\| . \tag{5}
\end{equation*}
$$

then x_{k} is a feasible starting point for the constrained problem

$$
\begin{aligned}
& \min _{x} \mathcal{L}_{A}\left(x, \lambda^{[k]}, \mu_{k}\right) \\
& \text { s.t. }\left\|x^{*}-x\right\| \leq \varepsilon
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
\text { I') } & \mu_{k+1} \leq \mu_{k} \stackrel{\mathrm{I})}{\leq} \bar{\mu}, \\
\text { II') } & \left.\left\|\lambda^{[k+1]}-\lambda^{*}\right\| \stackrel{\mathrm{II}),(5)}{\leq} M \mu_{k} \frac{\delta}{\mu_{k}}=\delta M<\frac{\delta}{\bar{\mu}} \mathrm{I}^{\prime}\right) \\
\text { III' }) & x_{k+1} \in B_{\varepsilon}\left(x^{*}\right)
\end{aligned}
$$

Hence, by induction the relations I), II) and III) hold at every subsequent iteration j and the assumptions of part i) remain valid.

- Let k_{0} be the iteration where (4) and (5) first hold,

$$
\begin{aligned}
\left\|x^{*}-x_{k+1}\right\| & \leq M \mu_{k}\left\|\lambda^{[k]}-\lambda^{*}\right\|, \\
\left\|\lambda^{[k+1]}-\lambda^{*}\right\| & \leq M \mu_{k}\left\|\lambda^{[k]}-\lambda^{*}\right\| .
\end{aligned}
$$

Then induction on k shows that
$\left\|\lambda^{[k]}-\lambda^{*}\right\|,\left\|x_{k}-x^{*}\right\| \leq(M \bar{\mu})^{k-k_{0}}\left\|\lambda^{\left[k_{0}\right]}-\lambda^{*}\right\| \leq \frac{1}{2^{k-k_{0}}}\left\|\lambda^{\left[k_{0}\right]}-\lambda^{*}\right\|$.
Therefore, $x_{k} \rightarrow x^{*}$ and $\lambda^{[k]} \rightarrow \lambda^{*}$ at a Q-linear rate if $\mu \leq \bar{\mu}$ is held fixed.

Reading Assignment: Lecture-Note 14.

Recommended Additional Reading: Section 17.4, NocedalWright.

