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In Lecture 13 we saw that the quadratic penalty method has the

disadvantage that the penalty parameter µ has to be reduced to

very small values before xk becomes feasible to high accuracy.

Moreover, we pointed out that reducing µ to very small values

can lead to numerical instabilities if the method is not imple-

mented very carefully.

We will now see a related method that does not require µk to

converge to zero, and yet in a neighbourhood of a KKT point

x∗ of the nonlinear optimisation problem

(NLP) min
x∈Rn

f(x)

s.t. gE(x) = 0

gI(x) ≥ 0,

the iterates xk still converge to x∗ if the LICQ and the second

order sufficient optimality conditions hold at this point. In fact,

µ can even be held constant after a while and the convergence

of xk continues!

Motivation:

The method is motivated by the observation that if we knew

the Lagrange multipliers λ∗ such that (x∗, λ∗) is a KKT point

for (NLP), then we could find x∗ by solving the unconstrained

problem

min
x∈Rn

L(x, λ∗). (1)

Indeed, as already remarked in Lemma 1.2 i) of Lecture 12, the

first set of KKT conditions ∇xL(x∗, λ∗) = 0 amount to the first

order necessary optimality conditions for (1).



Of course, λ∗ is not known, but we know from Lecture 13 that

one can obtain estimates λ[k] which can be used to set up the

problem

min
x∈Rn

L(x, λ[k]).

as an approximation of (1).

If the estimates λ[k] can be iteratively improved and made to

converge to λ∗, then this can form the basis of an algorithmic

framework for solving (NLP).

The Merit Function:

The merit function used by this algorithm is the augmented

Lagrangian of (NLP), defined as follows,

LA(x, λ, µ) = L(x, λ) +
1

2µ

∑

i∈I∪E

g̃2
i (x)

= f(x)−
∑

i∈I∪E

λigi(x) +
∑

i∈I∪E

g̃i(x)

2µ
gi(x)

= f(x) +
∑

i∈I∪E

(

g̃i(x)

2µ
− λi

)

gi(x),

where g̃i is defined as in Lecture 13,

g̃i(x) =







gi(x) (i ∈ E)

min(gi(x),0) (i ∈ I).

Algorithm: Augmented Lagrangian Method (AL)

S0 Initialisation: choose the following,

x0 ∈ Rn (starting point, not necessarily feasible)

λ[0] ∈ R|E∪I| (initial ”guestimate” of Lagrange multiplier

vector)

µ0 > 0 (initial value of homotopy parameter)

(τk)N0
↘ 0 (error tolerance)

S1 For k = 0,1,2, . . . repeat

y[0] := xk, l := 0

until ‖∇xLA(y[l], λ[k], µk)‖ ≤ τk repeat

compute y[l+1] such that LA(y[l+1], λ[k], µk) < LA(y[l], λ[k], µk)

(using unconstrained minimisation method)

l← l + 1

end



xk+1 := y[l]

λ
[k+1]
i := λ

[k]
i −

g̃i(xk+1)
µk

, (i ∈ E ∪ I),

λ
[k+1]
i ←max(0, λ

[k+1]
i ), (i ∈ I)

choose µk+1 ∈ (0, µk)

end

A quick argument gives insight into why this method can be

expected to converge before µk reaches very small values:

• We have

∇xLA(xk+1, λ[k], µk)

= ∇f(xk+1)−
∑

i∈E∪I

(

λ
[k]
i −

g̃i(xk+1)

µk

)

∇gi(xk+1).

• Using ‖∇xLA(xk+1, λ[k], µk)‖ ≤ τk, we find

∑

i

(

λ
[k]
i −

g̃i(xk+1)

µk

)

∇gi(xk+1) = ∇f(xk+1) + O(τk).

• By arguments similar to those in Theorem 2.2 in Lecture 13,

λ
[k]
i −

g̃i(xk+1)

µk

' λ∗i , (i ∈ E ∪ I).

• Therefore, we have

g̃i(xk+1) ' µk

(

λ
[k]
i − λ∗i

)

, (i ∈ E ∪ I),

which suggests that if λ[k] → λ∗ then all constraint residuals

converge to zero like a function o(µk), where

lim
µ→0

o(µ)

µ
= 0.

That is, the convergence is much faster than the O(µk) con-

vergence obtained in the quadratic penalty function method.

Theorem 1: Let x∗ be a local minimiser of (NLP) where the

LICQ and the first and second order sufficient optimality condi-

tions are satisfied for some Lagrange multiplier vector λ∗. Then

there exists a constant µ̄ > 0 such that x∗ is a strict local min-

imiser of

min
x∈Rn

LA(x, λ∗, µ)

for all µ ∈ (0, µ̄].



Theorem 2: For (x∗, λ∗) and µ̄ as in Theorem 1 there exist

constants M, ε, δ > 0 such that the following is true:

i) If µk ≤ µ̄ and

‖λ[k] − λ∗‖ ≤
δ

µk

, (2)

then the constrained minimisation problem

min
x
LA(x, λ[k], µk) (3)

s.t. ‖x∗ − x‖ ≤ ε

has a unique minimiser xk+1,

and furthermore,

‖x∗ − xk+1‖ ≤Mµk‖λ
[k] − λ∗‖, (4)

ii) if µk and λ[k] are as in part i) and if λ[k+1] is chosen as in

Algorithm (AL), then

‖λ[k+1] − λ∗‖ ≤Mµk‖λ
[k] − λ∗‖. (5)

Some remarks about this result:

• (3) suggests the use of a trust-region method in the inner

loop of Algorithm (AL).

• Without loss of generality, we may assume that µ̄ ≤ (2M)−1.

Note that if (λ[k], µk) satisfy the conditions of part i) of the

theorem,

I) µk ≤ µ̄,

II) ‖λ[k] − λ∗‖ ≤
δ

µk

,

and if it is also the case that

III) xk ∈ Bε(x
∗),

then xk is a feasible starting point for the constrained problem

min
x
LA(x, λ[k], µk)

s.t. ‖x∗ − x‖ ≤ ε.

Furthermore, we have

I’) µk+1 ≤ µk

I)
≤ µ̄,

II’) ‖λ[k+1] − λ∗‖
II),(5)
≤ Mµk

δ

µk

= δM <
δ

µ̄

I’)
≤

δ

µk+1
,

III’) xk+1 ∈ Bε(x
∗).

Hence, by induction the relations I), II) and III) hold at every

subsequent iteration j and the assumptions of part i) remain

valid.



• Let k0 be the iteration where (4) and (5) first hold,

‖x∗ − xk+1‖ ≤Mµk‖λ
[k] − λ∗‖,

‖λ[k+1] − λ∗‖ ≤Mµk‖λ
[k] − λ∗‖.

Then induction on k shows that

‖λ[k]−λ∗‖, ‖xk−x∗‖ ≤ (Mµ̄)k−k0‖λ[k0]−λ∗‖ ≤
1

2k−k0
‖λ[k0]−λ∗‖.

Therefore, xk → x∗ and λ[k] → λ∗ at a Q-linear rate if µ ≤ µ̄

is held fixed.
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