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In Lecture 13 we saw that the quadratic penalty method has the
disadvantage that the penalty parameter u has to be reduced to
very small values before x; becomes feasible to high accuracy.

Moreover, we pointed out that reducing p to very small values
can lead to numerical instabilities if the method is not imple-
mented very carefully.



We will now see a related method that does not require u; to
converge to zero, and vet in a neighbourhood of a KKT point
x* of the nonlinear optimisation problem

(NLP) min f(x)
reRM?
s.t. ge(x) =0
gzr(z) > 0,

the iterates x; still converge to x* if the LICQ and the second
order sufficient optimality conditions hold at this point. In fact,
1 can even be held constant after a while and the convergence
of x; continues!



Motivation:

The method is motivated by the observation that if we knew
the Lagrange multipliers \* such that (z*,\*) is a KKT point
for (NLP), then we could find x* by solving the unconstrained
problem

min L(x, \*). (1)
rERM

Indeed, as already remarked in Lemma 1.2 i) of Lecture 12, the
first set of KKT conditions VzL(x*, A*) = 0 amount to the first
order necessary optimality conditions for (1).



Of course, \* is not known, but we know from Lecture 13 that
one can obtain estimates Akl which can be used to set up the
problem

i %]
xrg]qul L(x, A1),

as an approximation of (1).

If the estimates MFl can be iteratively improved and made to
converge to \*, then this can form the basis of an algorithmic
framework for solving (NLP).



T he Merit Function:

The merit function used by this algorithm is the augmented
Lagrangian of (NLP), defined as follows,
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where g; is defined as in Lecture 13,

G.(z) = g;(x) (ic€f&)
’ min(g;(z),0) (i e1).



Algorithm: Augmented Lagrangian Method (AL)

SO Initialisation: choose the following,
xg € R"™ (starting point, not necessarily feasible)

A0l e RIEVIT (initial " guestimate” of Lagrange multiplier
vector)

1o > 0 (initial value of homotopy parameter)

(Tk)Ng \ O (error tolerance)



S1 For k=0,1,2,... repeat
ylOl:=2,, 1:=0

until [|[VzLa(yld, AFL )] < 71 repeat

compute yllt such that £4(yUT AR 1) < £ 4t AL 1))
(using unconstrained minimisation method)
[— 1+ 1

end



Tpp1 =yl

AR = W 8@) e Uy,
AR max(o, ATy, (i € T)

choose pp+1 € (O, pg)

end



A quick argument gives insight into why this method can be
expected to converge before p; reaches very small values:

e \We have

Vol alzrt1, A, )

=Vf(zg+1) — > (Az[k] — gi(karl))ng'(ﬂ?k—l-l)-
iCEUT HE

e Using IIVxﬁA(xk+1,>\[k],uk)ll < 7, we find

Z(Az[k] - gi(karl))ng‘(wk-kﬂ = Vf(zg41) + O(7g).
i [k



e By arguments similar to those in Theorem 2.2 in Lecture 13,

A Gi(@rt1) A7 (i€ EUT).
s

e [ herefore, we have

9i(Tp41) ~ Mk(%[k] - Af>, (te£UI),

which suggests that if Al¥] — X\* then all constraint residuals
converge to zero like a function o(ug), where

im W)

p—0
That is, the convergence is much faster than the O(uy) con-
vergence obtained in the quadratic penalty function method.

0.




Theorem 1: Let x* be a local minimiser of (NLP) where the
LICQ and the first and second order sufficient optimality condi-
tions are satisfied for some Lagrange multiplier vector A\*. Then
there exists a constant g > 0 such that x* is a strict local min-
imiser of

min £4(x, A", p)
reR"

for all u € (0, u].



Theorem 2: For (z*,A\*) and u as in Theorem 1 there exist

constants M,e,d > 0 such that the following is true:

I) If,ukéﬁ and

)
AR — ) < =,
HE

then the constrained minimisation problem

min £4(z, A, )
s.t. [z —z| <e

has a uniqgue minimiser Tht-1,

(2)

(3)



and furthermore,

lz* — zpp ]l < Mg AP — 2%, (4)

i) if ui, and A¥l are as in part i) and if Akt is chosen as in
Algorithm (AL), then

I ) < Mgy | AT — 2% (5)



Some remarks about this result:

e (3) suggests the use of a trust-region method in the inner
loop of Algorithm (AL).

e Without loss of generality, we may assume that g < (2M) 1.
Note that if (A[k],uk) satisfy the conditions of part i) of the

theorem,
I) pr <
d

m A <=,
1275

and if it is also the case that

I11) z, € Be(z"),



then z;. is a feasible starting point for the constrained problem

min £4(z, A, )
s.t. [|2* —z|| <e.

Furthermore, we have

I)
I') pr+1 < pg < [,
11),(5) ) sI) 6
II') AR )T Mp— =M < = < ,
P po k41

I11") Tr4+1 € Be(x™).

Hence, by induction the relations I), II) and III) hold at every

subsequent iteration 5 and the assumptions of part i) remain
valid.



e Let kg be the iteration where (4) and (5) first hold,

|z — zpp 1]l < Mg AP — 2%,
INEFLD ) < g AP — )

Then induction on k shows that

IAEL X)) (g — 2] < (ME)E—Fo | alkel — x| < IAtkol _x\x.

2k—k0

Therefore, x; — x* and ARl \* at a Q-linear rate if < i
is held fixed.



Reading Assignment: Lecture-Note 14.

Recommended Additional Reading: Section 17.4, Nocedal—
Wright.



