
The Barrier Method

Lecture 15, Continuous Optimisation

Oxford University Computing Laboratory, HT 2006

Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

Today we are going to learn two more methods for the general

nonlinear programming problem

(NLP) min
x∈Rn

f(x)

s.t. gE(x) = 0

gI(x) ≥ 0.

In the previous two Lectures we learned that nonlinear constraints

can be dealt with by incorporating a term forcing asymptotic

feasibility into the objective function, which is then called merit

function.

So far we used quadratic penalty terms to construct merit func-

tions.

The barrier method makes another choice,

P (x, µ) = f(x)− µ
∑

j∈I

ln gj(x) +
1

2µ

∑

i∈E

g2
i (x),

where µ > 0 is a homotopy parameter.

• Equality constraints are again enforced using quadratic penalty

terms that become gradually more stringent. The penalty

terms are defined for all x.

• Inequality constraints are managed via the barrier term

−µ
∑

j∈I

ln gj(x)

which is only defined when all the gj(x) are strictly positive.

Definition 1: A point x ∈ Rn is admissible for (NLP) if all

inequality constraints are satisfied.

The point is called strictly admissible if all inequality constraints

are strictly satisfied, that is,

gj(x) > 0 (j = I)

holds.

Note that admissible points may violate some or all of the equal-

ity constraints.

The sets of admissible and strictly admissible points respectively

are called admissible and strictly admissible domain.



The barrier term is thus only defined for strictly admissible points.

We can extend it outside the admissible domain by the conven-

tion

P (x, µ) =







P (x, µ) (x admissible),

+∞ (x inadmissible).

Note also that if (xk)N is a sequence of admissible points such

that xk → x∗, where x∗ is on the boundary of the admissible

domain, then there exists j ∈ I such that gj(xk) → gj(x
∗) = 0,

and then

lim
k→∞

P (xk, µ) = +∞.

A mechanistic interpretation . . .

g

fr

fg

f−

f+

I. The Primal Barrier Method

We are ready to formulate a first algorithm based on the merit

function introduced above.

Algorithm (PBM): Primal Barrier.

S0 Initialisation

choose µ−1 > µ0 > 0, ε0 > 0;

choose x0 strictly admissible;

S1 For k = 0,1,2, . . . repeat

solve D2
xxP (xk, µk−1)ẋ + ∂

∂µ∇xP (xk, µk−1) = 0;

set y[0] := xk + (µk − µk−1)ẋ; l := 0;

until ‖∇xP (y[l], µk)‖ ≤ εk repeat

find y[l+1] s.t. P (y[l+1], µk) < P (y[l], µk); l← l + 1;

end (inner loop)

xk+1 := y[l]; choose µk+1 < µk, εk+1 < εk;

end (outer loop)



Finding an Admissible Starting Point:

In step S0 we need to find a strictly admissible point x0.

This is not a problem, because we can use the same algorithm

to solve the phase I (or auxiliary) problem

(AUX) min
(x,t)

t

s.t. gj(x) + t ≥ 0, (j ∈ I).

A strictly admissible solution of (AUX) is readily available,

x0 ∈ R
n arbitrary,

t0 := −min{gj(x0) : j ∈ I}+ 1.

Proposition 1: (NLP) has strictly admissible points if and only

if the optimal solution (x∗, t∗) of (AUX) satisfies t∗ < 0.

Note that if t∗ < 0 then tk < 0 after finite time k, and then xk is

strictly admissible for (NLP).

If t∗ > 0 then this yields a certificate of inadmissibility for (NLP).

Convergence of the Algorithm:

The termination criterion in the inner loop guarantees that

∇xP (xk, µk−1) = ∇f(xk)−
∑

j∈I

µk−1

gj(xk)
∇gj(xk)

+
∑

i∈E

gi(xk)

µk−1
∇gi(xk) = O(εk−1). (1)

Arguments similar to those used Lecture 13 show the following

convergence result.

Theorem 1: Let x∗ = liml→∞ xkl
be an accumulation point of

the sequence (xk)N0
generated by Algorithm (PBM) and such

that {∇gi(x
∗) : i ∈ A(x∗)} is linearly independent. Then

i) x∗ is feasible,

ii) the LICQ holds at x∗,

iii) the limit λ∗ = liml→∞ λ[kl] exists, where

λ
[k]
i =











µk−1
gi(xk)

, (i ∈ I)

−gi(xk)
µk−1

(i ∈ E),
(2)

iv) (x∗, λ∗) is a KKT point of (NLP).



Selection of the Starting Point in the Inner Loop:

Algorithm (PBM) determines a starting point y[0] for the inner

loop in a somewhat intricate way. Why not use y[0] = xk instead?

When a Newton step is applied to the unconstrained subproblem

min
y∈Rn

P (y, µk)

at y[0] := xk, then

gj(xk + ∆x) ≈ gj(xk) +∇gT
j (xk)∆x ≈

(

2−
µk−1

µk

)

gj(xk). (3)

But note that 2− µk−1/µk < 0 for µk < µk−1/2.

This shows that only a modest reduction of µk is possible in each

iteration, because otherwise the Newton step takes the iterate

outside of the admissible domain.

The choice y[0] = xk thus leads to poor convergence of the

algorithm.

On the other hand, the choice made by Algorithm (PBM),

y[0] := xk + (µk − µk−1)ẋ,

can be shown to behave much better.

Let us now give an hand-waving argument for why (3) is true.

Suppose we apply a Newton-Raphson update to the starting

point y[0] = xk. The update ∆x ∈ Rn satisfies the system

D2
xxP (xk, µk)∆x = −∇xP (xk, µk). (4)

We have

D2
xxP(xk, µk) =

=



D2f(xk)−
µk

µk−1

∑

j∈I

( µk−1

gj(xk)

)

D2gi(xk)−
µk−1

µk

∑

i∈E

(

−
gi(xk)

µk−1

)

D2gi(xk)





+





∑

j∈I

µk

g2
j (xk)

∇gj(xk)∇gj(xk)
T +

1

µk

∑

i∈E

∇gi(xk)∇gi(xk)
T





= C(xk, µk) + B(xk, µk).

Now

λ∗i ≈ λ
[k]
i =











µk−1
gi(xk)

, (i ∈ I)

−gi(xk)
µk−1

(i ∈ E)

implies

‖C(xk, µk)‖ = O(1),

‖B(xk, µk)‖ = O

(

max

(

µ−1
k ,max

i

(

gi(xk)
−1
)

))

.

This means that the Newton system is ill-conditioned whenever

rank
(

B(x∗,0)
)

:= rank
(

lim
l→∞

B(xkl
, µkl

)
)

/∈ {0, n},



and then we have

∑

j∈A(x∗)∩I

µk∇gT
j (xk)∆x

g2
j (xk)

∇gj(xk) +
∑

i∈E

∇gT
i (xk)∆x

µk
∇gi(xk)

≈ B(xk, µk)∆x

≈ D2
xxP (xk, µk)∆x

= −∇xP (xk, µk)

≈ −∇f(xk) +
∑

j∈A(x∗)∩I

µk

gj(xk)
∇gj(xk)−

∑

i∈E

gi(xk)

µk
∇gi(xk)

(1)
≈

∑

j∈A(x∗)∩I

µk − µk−1

gj(xk)
∇gj(xk) +

∑

i∈E

(µk − µk−1)gi(xk)

µkµk−1
∇gi(xk).

Since the LICQ holds at x∗, this implies that

∇gT
j (xk)∆x ≈

(

1−
µk−1

µk

)

gj(xk), (j ∈ I ∩ A(x∗)),

and hence,

gj(xk + ∆x) ≈ gj(xk) +∇gT
j (xk)∆x ≈

(

2−
µk−1

µk

)

gj(xk),

as claimed in (3).

Note that the ill-conditioned Newton system also creates nu-
merical problems similar to those encountered in the quadratic
penalty function method.

Although we are not going to show this here, the choice

y[0] := xk + (µk − µk−1)ẋ

resolves these problems.

The Primal-Dual Barrier Method:

The bad scaling of the primal barrier method can be overcome

by exploiting the fact that Lagrange multiplier estimates become

available as µ is decreased. This leads to the primal-dual barrier

method which we will describe next.

The relationship between the primal barrier method and the

primal-dual barrier method is in some ways similar to the re-

lationship between the quadratic penalty function method and

the augmented Lagrangian method of Lectures 13 and 14.

Recall the KKT conditions for problem (NLP),

∇f(x)−
∑

i

λi∇gi(x) = 0 (5)

gE(x) = 0 (6)

λjgj(x) = 0 (j ∈ I) (7)

λI, gI(x) ≥ 0. (8)

Motivation of the primal-dual barrier method:

• Guarantee that (8) holds through the application of line

searches to prevent iterates to become inadmissible.

• Perturb the right hand side of the complementarity equations

(7) by µ.



Therefore, in each iteration of the algorithm one or several

damped Newton steps are applied to the nonlinear system of

equations

∇f(x)−
∑

i

λi∇gi(x) = 0

gE(x) = 0

λjgj(x) = µ. (j ∈ I)

(9)

The corresponding Newton system is
(

D2f(x)−
∑

i λiD2gi(x)
)

∆x −
(

g′I∪E(x)
)T

∆λ = −∇f(x) +
(

g′I∪E(x)
)T

λ
g′E(x)∆x = −gE(x)

Diag(λ)g′I(x)∆x +Diag(gI(x))∆λ =

[

µ
...
µ

]

−Diag(λ)gI(x)

(10)

where Diag(v) denotes a diagonal matrix with a vector v on its

diagonal.

Algorithm (PDBM): Primal-Dual Barrier Method.

S0 Initialisation: choose µ−1 > µ0 > 0, ε0 > 0, θ ∈ (0,1),

x0 strictly admissible, λ[0] s.t. λ
[0]
I ≥ 0;

S1 For k = 0,1,2, . . . repeat

set y[0] := xk, η[0] := λ[k], l := 0;

until ‖∆x,∆λ‖ ≤ εk repeat

solve (10) for (∆x,∆λ) with (x, λ, µ) := (y[l], η[l], µk);

set αmax := max
{

α ≥ 0 : gI(y
[l] + α∆x) ≥ 0, (η[l] + α∆λ)I ≥ 0

}

;

choose αl ∈ (0,max{1,0.98× αmax}];

(y[l+1], η[l+1]) = (y[l], η[l]) + αl(∆x,∆λ);

l← l + 1;

end (inner loop)

(xk+1, λ[k+1]) := (y[l], η[l]);

µk+1 = θµk;

choose εk+1 ∈ (0, εk);

end (outer loop)

Note that we initialised the starting vector for the inner loop by

y[0] = xk. In contrast to the primal barrier method, the primal-

dual barrier method works fine with this choice, as a somewhat

intricate analysis shows.

In Lecture 16 we will analyse the primal-dual barrier method for

linear programming in further detail.

Reading Assignment: Lecture-Note 15.


